
Astronomical Data Analysis Software and Systems XVII P4.6

ASP Conference Series, Vol. 394, c© 2008
R. W. Argyle, P. S. Bunclark, and J. R. Lewis, eds.

Column-Oriented Table Access Using STIL: Fast Analysis
of Very Large Tables

Mark B. Taylor

Department of Physics, University of Bristol, UK

Clive G. Page

Department of Physics and Astronomy, University of Leicester, UK

Abstract. By use of column-oriented storage and file mapping, great im-
provements in efficiency over more conventional methods can be made for some
important kinds of access to large and very large tabular datasets. These tech-
niques have been implemented in the STIL library, enabling their use in the
established table analysis applications TOPCAT and STILTS. Benchmarks are
presented which show certain common analysis tasks running 10–40 times faster
than their MySQL equivalents. Applied to datasets in the range hundreds of
Mbyte to hundreds of Gbyte this speedup can be put to good use both on the
desktop and at the data center to bring new regimes of data exploration within
practical reach.

1. Introduction

When dealing with tabular data stored on disk, the most straightforward way
to operate is to read the entire file into memory and then to do the processing.
This approach works well for small datasets, but for large tables, especially when
the required memory begins to exceed available physical memory, it can become
inefficient or unworkable, and some kind of on-demand access to the data on
disk becomes necessary.

There is no shortage of datasets for which this is a genuine issue. On
the astronomer’s desktop it is true that one trend in Virtual Observatory-type
working is to retrieve small (i.e. small enough to fit in memory) subsets of large
server-based datasets for local analysis. However the opposite approach in which
a whole dataset such as a survey catalog, or a substantial part of one, is directly
available to the astronomer can sometimes be much more effective, especially for
exploratory analysis or revealing unexpected relationships. At the data center
the size of survey catalogs continues to grow, and while relational databases are
widely seen as the only option for handling these, there are some common query
types for which RDBMS performance is poor.

For such on-demand access, whether sequential or random, the way the data
are arranged on disk and the way in which they are accessed can have a major
impact on performance. This paper describes approaches to these issues which
provide highly efficient data access, and presents library and related application
software which makes use of it to provide practical benefit for client- and server-
side access to large scale data.

422



Column-Oriented Table Access using STIL 423

Figure 1. Schematic of a full column scan using row-oriented and column-
oriented storage.

2. Techniques

The central problem of providing efficient disk I/O is to ensure that disk access
and system I/O calls are infrequent. This section discusses two of the data
access techniques used in the current study to achieve these goals. Neither one
of these is particularly novel in general or in astronomical contexts; column-
oriented table handling in the MIDAS and STSDAS packages and file mapping
in the Starlink HDS library provide examples of prior art of a couple of decades’
standing. However use of these techniques is far from ubiquitous and their
importance in supporting the reported performance at high data volumes makes
it worthwhile to review them here.

2.1. Column-Oriented Storage

There are two obvious arrangements for storing table data on disk: row-oriented
and column-oriented. Most common table storage formats (FITS, VOTable,
CSV, nearly all RDBMS) are basically row-oriented. This is good for reading all
the columns from a few rows, but, as illustrated in Figure 1, poor for scanning
the whole of one or a few columns. This is especially true for wide tables,
increasingly the norm for astronomical survey data; for instance 2XMM has
∼ 300 columns and the SDSS PhotoObj table has ∼ 500.

Many common analysis operations benefit from column-oriented access, for
instance full-table data visualisation, row selection based on an unindexed col-
umn or a combination of columns, and univariate or multivariate statistical
calculations.

2.2. File Mapping

Some operations, for instance sorting, crossmatching, and use of temporary or
persistent indices, require random access on a table, which means reading a few
bytes here and a few bytes there. Näıve read-on-demand implementations would
result in very poor performance. In principle it is possible to improve matters
by reading and caching larger blocks near each site, but it is difficult to decide
on optimal caching strategies (what size blocks to read, how long to keep them).

By using file mapping (the Unix mmap(2) system call or
Java FileChannel.map method) rather than buffered or unbuffered seek/read



424 Taylor and Page

operations you can get the Operating System to take care of this for you. Highly
optimised OS routines for block caching are then used automatically which usu-
ally results in good performance for a wide range of access patterns. As a bonus,
file-mapped reads are typically somewhat faster than normal reads. There are
one or two OS-dependent issues with this technique, but tests have found it
working well. One issue to note is the limitation of mapped file size by available
address space. In practice this means that for multi-Gbyte datasets, a 64-bit OS
is required.

2.3. Implementation

The Starlink Tables Infrastructure Library (STIL1) is a general purpose multi-
format library for I/O and processing of astronomical tables. By design the
library itself makes few assumptions about data access methods or storage lay-
out, but has a pluggable architecture which permits experimentation with dif-
ferent data access layers. This makes it highly suitable for testing out the ideas
described here. STIL table handlers were implemented which provide mapped
access to column-oriented data, enabling use of these techniques in established
applications without requiring changes to the application code.

A new column-oriented file format, dubbed “colfits” was introduced for this
purpose. It is a variant of FITS — a table is represented by a one-row (NAXIS2=1)
bintable extension, in which each cell of the single row is a vector containing
all the values in the column. The resulting file is perfectly legal FITS, though
it may or may not be intelligible to general purpose FITS handling software.

It was easy using the STILTS tcopy command to convert between colfits
and other storage formats, including exchanging data with a MySQL database.

3. Benchmarks

Some full column queries were performed on datasets in various forms to assess
performance. The following datasets were used:
XSC: 2MASS Extended Source Catalog (1,647,599 rows × 391 cols ≈ 2.2 Gb)
PSC: 2MASS Point Source Catalog (470,992,970 rows × 61 cols ≈ 111 Gb)
Two types of query were run on each dataset:
STAT1: calculation of mean, variance etc on a single column
SEL2: row selection based on difference between two columns
and three data storage systems were tested:
MySQL: MySQL 4.1.20 RDBMS using unindexed MyISAM tables
colfits: STILTS using column-oriented file-mapped FITS
fits: STILTS using row-oriented file-mapped FITS

Table 1 shows some representative results. For these and similar queries
STILTS/colfits run times are 10–40 times faster than the MySQL ones. In cases
where columns can be cached in memory, not shown here, subsequent queries
can be faster still.

1http://www.starlink.ac.uk/stil/



Column-Oriented Table Access using STIL 425

Table 1. Timings in seconds for column scan benchmarks.

Data Test MySQL colfits fits

XSC STAT1 65 2.0 51
XSC SEL2 66 4.7 89
PSC STAT1 3390 105 2321
PSC SEL2 3422 397 2417

4. Discussion

The dramatic query time reductions exemplified in the previous section can
qualitatively change the kinds of work that an astronomer can practically do
on large datasets, bringing interactive modes of data investigation within reach.
The two datasets used there (2MASS XSC and PSC) represent two interesting,
and illustrative, regimes of data size.

The XSC, at 1.6 Mrow and 2 Gbyte, is of a size which would convention-
ally require some pre-selection prior to interactive analysis; for instance an as-
tronomer might query a copy of the database using some VO or data center-
specific protocol to retrieve a small selection of rows and columns and then
perform plots or other analyses on that selection only. However, using the soft-
ware presented here it is quite feasible to acquire the entire dataset (2 Gbyte is
no longer too large to download or to store locally) and work interactively on
it using TOPCAT2, which is a graphical tabular analysis application based on
STIL. For instance a colour-magnitude plot of all objects in the XSC can be
generated in just a few seconds even on a machine of modest specification.

The PSC, at > 100 Gbyte, is far too large to download to order. But data
centers which need to service queries entailing full-column scans could make
use of data in column-oriented form alongside their existing representation in a
conventional database. Duplicating the data in this way, while increasing disk
space requirements (scarcely an economic constraint these days) could substan-
tially reduce I/O and CPU load on servers which are dominated by full-column
scan-type queries. Since such queries are much the most expensive operations
for conventional databases, such reductions are feasible even where these queries
form only a small proportion of those received. This approach could be imple-
mented using either custom application code based on STIL, or using STILTS3,
a suite of command-line tools based on STIL.

Acknowledgements. This work has been funded by the VOTech and As-
troGrid projects, the former Starlink project and the former Particle Physics
and Astronomy Research Council.

2http://www.starlink.ac.uk/topcat/

3http://www.starlink.ac.uk/stilts/


