Using X-ray Vision to Weigh Clusters of Galaxies

Ben Maughan

Christine Jones Bill Forman Alexey Vikhlinin Leon Van Speybroeck

Harvard-Smithsonian Centre for Astrophysics

Overview

★ Introduction to galaxy clusters

- Why should we weigh them?
- ★ X-ray self-similar scaling relations
 - Use for mass estimates
 - Use for probing physical processes in clusters
- ★ Using X-ray luminosity as simple mass indicator

★ Similarity breaking

Galaxy Cluster Recipe

Galaxies $\approx 3\%$

Ben Maughan - Using X-ray Vision to Weigh Clusters of Galaxies

Cluster Formation

Early Universe was smooth with tiny density perturbations

- ★ Density peaks amplified by gravity
- ★ Galaxy clusters form via series of mergers of smaller systems hierarchical formation
- ★ Largest gravitationally bound objects in Universe

Yepes et al. (2002)

Clusters & Cosmology

Growth of large scale structure traced by clusters

- ★ Sensitive to cosmological parameters
- ★ Clusters provide powerful tests of cosmological models

Clusters & Cosmology

Cluster constraints competitive, independent and different degeneracies to other methods

★ Cosmological tests require cluster masses

Precise measurements of e.g. w require masses for

 \star Large samples (100's-1000's)

\star Samples at high redshift (z~1)

An observational challenge!

★ X-ray observations are powerful way to study clusters

X-ray Observatories

Weighing Clusters: X-ray

★ Cluster filled with hot (~10⁷K) ionised gas (ICM)

- Extremely X-ray luminous
- Detect & study to high-z

★ Measure X-ray properties:

- Luminosity (Lx),
 Temperature (kT), Gas
 density (hence mass)
- ★ Radial kT and density profiles give total mass (inc. dark matter) assuming hydrostatic equilibrium
 - High quality data

Weighing Clusters: Scaling Relations

If we assume:

- \star Clusters form in single gravitational collapse at z_{obs}
- ★ Gravitation is only energy input into ICM
- Clusters will be "self-similar" simple scaled up and down versions of one another
- ★ Predict simple power law relations between cluster observables and mass

e.g. Lx ∝ M^{4/3}

★ Simply measure Lx and get mass of cluster – Bob's your uncle!

X-ray Scaling Relations

However, things not quite that simple!

 \star Observationally, slopes of relations differ from SS models

e.g. Lx-M slope is ~5/3 not 4/3

★ Relations found to have significant intrinsic scatter

- Luminosity found to have
 ~60% scatter with mass
- ★ Points to physical processes not in SS model
- \star Use scaling relations to:
 - Probe these processes
 - Provide easy masses

X-ray Mass Proxies

What do we want from an X-ray mass proxy?
★ Easy to measure & low-scatter relationship with mass
Historically, kT & Mgas were preferred (scatter ~20%)
★ Luminosity found to have ~60% scatter with mass

X-ray Mass Proxies

What do we want from an X-ray mass proxy?
★ Easy to measure & low-scatter relationship with mass
Historically, kT & Mgas were preferred (scatter ~20%)
★ Luminosity found to have ~60% scatter with mass

Lx-M relation required for
Low quality data
Understanding survey selection functions
Key stages:
Calibrate mass proxies

 \star Measure/minimise scatter

Calibration

- In order to calibrate mass observable scaling relations,
- need to know masses of clusters!
- \star Simulations
- ★ Full hydrostatic masses
- ★ Use kT and assume isothermal

Scatter Sources: Cooling

 $Lx \propto \rho^2$ - gas in dense cluster cores radiates thermal energy away as X-ray emission

- ★ Gas cools efficiently and condenses, replaced by gas cooling in from larger radii
- ★ Runaway process, known as a cooling core
- ★ Cores disrupted by mergers

 ★ Cooling balanced by AGN energy input

Scatter Sources: Cooling

Cooling core clusters are **cooler** and **brighter** than those without

★ Significant source of scatter

★ Improve by excluding core regions

> Requires good spatial resolution

Scatter Sources: Mergers

Clusters form via hierarchical series of mergers of smaller systems

- ★ Mergers extremely energetic, disrupt ICM properties
- ★ Adds scatter to e.g. M-kT relation

30th April 2008

Yx: A Super Scaler

- Recent work (Kravtsov et al. 2006) shown that Yx is superior mass proxy
- ★ Product of kT & Mgas (cores excluded)
- ★ Very low scatter with mass (~8%)

Ben Maughan - Using X-ray Vision to Weigh Clusters of Galaxies

Recap

Clusters important cosmological probes, but need masses

★ Self-similar model predicts simple relations between X-ray properties and mass

- ★ Want easily measured property
 - Calibrate relation with mass
 - Minimise scatter
- ★ Scatter caused by cool cores and mergers
- **\star Yx-M** relation seems perfect
- Lx-M relation has high scatter but still important

Lx-M Relation Revisited

Now in position to improve on earlier studies of Lx-M
★ Use Yx instead of kT to investigate Lx-M for first time
★ Investigate removing cores to reduce scatter

★ Does the 60% scatter found in earlier work hold up?

The Sample

115 clusters observed with Chandra (0.1<z<1.3)

The Sample

115 clusters observed with Chandra (0.1<z<1.3)

★ Really want to look at Lx-M relation but can't measure M Data not deep enough for hydrostatic mass ★ Measure Lx and Yx for each cluster ★ Measure properties within R500 - Radius enclosing mean density 500 times critical density Enables fair comparisons between clusters of different mass and z ★ Include evolution factor (ignore for our purposes) adaptively smoothed, 3Mpc per side, in order of z

The Lx-Yx Relation

Start with Lx-Yx relation:

★ Use Lx measured within R500 including core

★ Scatter in Lx: $\sigma_{L} = 36\%$

Ben Maughan - Using X-ray Vision to Weigh Clusters of Galaxies

The Lx-Yx Relation: Cool Cores

Exclude central 0.15R500 from measurements

- **★** Scatter in Lx including core: $\sigma_L = 36\%$
- **★** Scatter in Lx excluding core: $\sigma_{L} = 11\%$

Ben Maughan - Using X-ray Vision to Weigh Clusters of Galaxies

The Lx-Yx Relation: Mergers

How do mergers effect the relation?

- ★ Split sample into relaxed and disturbed clusters
- ★ No offset between populations

Ben Maughan - Using X-ray Vision to Weigh Clusters of Galaxies

The Lx-M Relation

- Lx-Yx relation implies Lx-M better than previously thought
- ★ Convert Yx to M using Kravtsov et al. (2006) Yx-M relation
- ★ Include 8% scatter and errors on slope and norm (small)

:(z)^{-7/3}L_X (erg/s)

- $\star \sigma_{L}=17\%$
- ★ Much lower than previous ~60%
 - Improved mass estimates from Yx
 - Conservative exclusion of cores

Hang on a Minute!

Yx has lower scatter than Lx with mass, so why bother?★ If data are good enough to measure Yx then use that

- ★ Clusters detected in X-ray surveys need follow up to measure Yx
 - Can measure count rate
 (Lx) from survey data
 - Need Lx-M relation for survey selection functions

Application to Survey Data

Typically measure soft X-ray count rate (no Yx, kT, R500)

★ Measure count rate in (0.15-1)E(z)⁻¹ Mpc aperture for sample

Application to Survey Data

Typically measure soft X-ray count rate (no Yx, kT, R500)

★ Measure count rate in (0.15-1)E(z)⁻¹ Mpc aperture for sample

★ Use count rate and z to estimate Lx

 \star Compare with Yx and M

High-z Clusters in Surveys

Lose ~30% of cluster emission when exclude cores
 Large PSF (ROSAT & XMM) - can't exclude cores at high-z
 Measure scatter in Lx-Yx with cores included

 \star z<0.5 \rightarrow σ_{L} =44%

$$\star$$
 z>0.5 \rightarrow σ_{L} =22%

★ Not critical to exclude core regions for high-z clusters

- why?

High-z Clusters in Surveys

- ★ Significant absence of cool core clusters at z>0.5
- ★ Likely related to morphological evolution
 - Fraction of mergers higher at z>0.5 in our sample

Self Similarity: Slopes

- ★ SS model predicts slopes of Lx scaling relations shallower than observed
- ★ Requires physical process not included in SS model

Ben Maughan - Using X-ray Vision to Weigh Clusters of Galaxies

Self Similarity: Slopes

- ★ SS model predicts Lx-Yx slope of B=0.8
- ★ Best fit steeper; B=0.94±0.03
- ★ Split into CC and NCC clusters (using kT difference)

Self Similarity: Slopes

★ Same true for LT relation - SS predicts B=2 ★ NCC clusters \rightarrow B=2.9±0.2

Ben Maughan - Using X-ray Vision to Weigh Clusters of Galaxies

Recap

- ★ Revisited Lx-M relation using Yx to estimate masses
- ★ Scatter (17%) significantly lower than previously thought (60%)
- ★ Scatter remains low if we:
 - Use count rate instead of measured Lx
 - Use (0.15-1)E(z)⁻¹ Mpc aperture instead of R500
 - Do not exclude cores for high-z clusters
- ★ Self-similar slopes for CC clusters
 - Similarity breaking driven by mergers?

What's Next?

- ★ Uncertainties on absolute calibration of X-ray masses
- ★ Sunyaev-Zel'dovich effect (SZE) surveys will detect 1000's high-z clusters
 - SZE flux predicted to be good mass proxy
- ★ Gravitational lensing probes projected mass along line of sight
 - Systematic uncertainties
- ★ Combine all 3 methods on complete sample of 35 clusters
 - Cross-calibrate mass estimators

Ben Maughan - Using X-ray Vision to Weigh Clusters of Galaxies

