
STIL - Starlink Tables Infrastructure Library

Version 1.1-1

Starlink User Note 252
Mark Taylor
11 May 2004

Abstract

STIL is a set of Java class libraries which allow input, manipulation and output of tabular data. As
well as an abstract and format-independent definition of what constitutes a table, and an extensible
framework for "pull-model" table processing, it provides a number of format-specific handlers
which know how to serialize/deserialize tables; amongst others handlers are provided for the
VOTable and FITS formats. The framework for interaction between the core table manipulation
facilities and the format-specific handlers is open and pluggable, so that handlers for new formats
can easily be added.

The VOTable handling in particular is provided by classes which perform efficient XML parsing
and can read and write VOTables in any of the defined formats (TABLEDATA, BINARY or FITS).
It may be used on its own for VOTable I/O without much reference to the format-independent parts
of the library.

Contents
Abstract... 1
1 Introduction.. 4
1.1 What is a table?... 4
2 The StarTable interface... 5
2.1 Table Metadata..5
2.2 Column Metadata.. 5
2.3 Table Data... 5
2.3.1 Sequential Access...6
2.3.2 Random Access.. 7
2.3.3 Adapting Sequential to Random Access.. 7
3 Table I/O..8
3.1 Extensible I/O framework... 8
3.2 Generic Table Input...9
3.3 Generic Table Output.. 9
3.4 Supplied Input Handlers..10
3.4.1 FITS..10
3.4.2 VOTable... 10
3.4.3 ASCII... 11
3.4.4 WDC...12
3.5 Supplied Output Handlers... 12
3.5.1 FITS..13
3.5.2 VOTable... 13
3.5.3 ASCII... 13
3.5.4 Plain Text... 14
3.5.5 HTML...14
3.5.6 LaTeX...14
3.5.7 Mirage.. 14
3.6 I/O using SQL databases... 14
3.6.1 JDBC Configuration...14
3.6.2 Reading from a Database... 15
3.6.3 Writing to a Database...16
4 GUI Support..17

4.1 Drag and Drop...17
4.2 Table Chooser Components.. 18
4.3 SQL Database Interaction... 18
5 Processing StarTables.. 19
5.1 Writable Table...19
5.2 Wrap It Up...19
5.3 Wrapper Classes..20
5.4 Examples... 21
5.4.1 Sorted Table... 21
5.4.2 Turn a set of arrays into a StarTable.. 22
5.4.3 Add a new column..23
5.5 Table Joins...24
6 VOTable Access.. 25
6.1 DATA Element Formats... 25
6.2 Reading VOTables.. 26
6.2.1 Read a single VOTable from a file...27
6.2.2 Read VOTable document structure.. 28
6.2.3 Streamed access..29
6.3 Writing VOTables... 30
6.3.1 Generic table output... 30
6.3.2 Single VOTable output...30
6.3.3 TABLE element output.. 31
7 Table Tools.. 33
7.1 Tablecopy.. 33
7.2 TOPCAT... 33
8 Acknowledgements... 35
9 Release Notes...36
9.1 Version History... 36

SUN/252 3

1 Introduction

STIL is a set of class libraries which can do input, output and manipulation of tables. It has been
developed for use with astronomical tables, though it could be used for any kind of tabular data. It
has no "native" external table format. What it has is a model of what a table looks like, a set of java
classes for manipulating such tables, an extensible framework for table I/O, and a number of
format-specific I/O handlers for dealing with several known table formats.

This document is a programmers' overview of the abilities of the STIL libraries, including some
tutorial explanation and example code. Some parts of it may also be useful background reading for
users of applications built on STIL. Exhaustive descriptions of all the classes and methods are not
given here; that information can be found in the javadocs, which should be read in conjunction with
this document if you are actually using these libraries. Much of the information here is repeated in
the javadocs. The hypertext version of this document links to the relevant places in the javadocs
where appropriate.

1.1 What is a table?

In words, STIL's idea of what constitutes a table is something which has the following:

• Some per-table metadata (parameters)
• A number of columns
• Some per-column metadata
• A number of rows, each containing one entry per column

This model is embodied in the StarTable interface, which is described in the next section. It maps
quite closely, though not exactly, onto the table model embodied in the VOTable definition, which
itself owes a certain amount to FITS tables. This is not coincidence.

SUN/252 4

2 The StarTable interface

The most fundamental type in the STIL package is uk.ac.starlink.table.StarTable; any time you are
using a table, you will use an object which implements this interface.

2.1 Table Metadata

A few items of the table metadata (name, URL) are available directly as values from the StarTable

interface. A general parameter mechanism is provided for storing other items, for instance
user-defined ones. The getParameters method returns a list of DescribedValue objects which
contain a scalar or array value and some metadata describing it (name, units, UCD). This list can be
read or altered as required.

The StarTable interface also contains the methods getColumnCount and getRowCount to determine
the shape of the table. Note however that for tables with sequential-only access, it may not be
possible to ascertain the number of rows - in this case getRowCount will return -1. Random-acess
tables (see section 2.3) will always return a positive row count.

2.2 Column Metadata

Each column in a StarTable is assumed to contain the same sort of thing. More specifically, for
each table column there is a ColumnInfo object associated with each column which holds metadata
describing all the values in that column (the value associated with that column for each row in the
table). A ColumnInfo contains information about the name, units, UCD, class etc of a column, as
well as a mechanism for storing additional ('auxiliary') user-defined metadata. It also provides
methods for rendering the values in the column under various circumstances.

The class associated with a column, obtained from the getContentClass method, is of particular
importance. Every object in the column described by that metadata should be an instance of the
Class that getContentClass returns (or of one of its subtypes), or null. There is nothing in the
tables infrastructure which can enforce this, but a table which doesn't follow this rule is considered
broken, and application code is within its rights to behave unpredictably in this case. Such a broken
table might result from a bug in the I/O handler used to obtain the table in the first place, or a
badly-formed table that it has read, or a bug in one of the wrapper classes upstream from the table
instance being used. Because of the extensible nature of the infrastructure, such bugs are not
necessarily STIL's fault.

Any class can be used (with the exception the primitive types like int.class), but most table I/O
handlers can only cope with certain types of value - typically those corresponding to the java
primitive classes (numeric and boolean ones) and Strings, so these are the most important ones to
deal with. The contents of a table cell must always (as far as the access methods are concerned) be
an Object or null, so primitive values cannot be used directly. The general rule for primitive-like
(numeric or boolean) values is that a scalar should be represented by the appropriate wrapper class
(Integer, Float, Boolean etc) and an array by an array of primitives (int[], float[], boolean[]
etc). Non-primitive-like objects (of which String is the most important example) should be
represented by their own class (for scalars) or an array of their own class (for arrays). Note that it is
not recommended to use multidimensional arrays (i.e. arrays of arrays like int[][]); a
1-dimensional java array should be used, and information about the dimensionality should be stored
in the ColumnInfo's shape attribute. Thus to store a 3x2 array of integers, a 6-element array of type
int[] would be used, and the ColumnInfo's getShape method would return a two-element array
(3,2).

2.3 Table Data

SUN/252 5

The actual data values in a table are considered to be a sequence of rows, each containing one value
for each of the table's columns. As explained above, each such value is an Object, and information
about its class (as well as semantic metadata) is available from the column's ColumnInfo object.

StarTables come in two flavours, random-acess and sequential-only; you can tell which one a
given table is by using its isRandom method, and how its data can be accessed is determined by this.
In either case, most of the data access methods are declared to throw an IOException.

2.3.1 Sequential Access

It is always possible to access a table's data sequentially, that is starting with the first row and
reading forward a row at a time to the last row; it may or may not be possible to tell in advance
(using getRowCount) how many rows there are. To perform sequential access, use the
getRowSequence method to get a RowSequence object, which is an iterator over the rows in the
table. The RowSequence's next method moves forward a row without returning any data; to obtain
the data use either getCell or getRow; the relative efficiencies of these depend on the
implementation, but in general if you want all or nearly all of the values in a row it is a good idea to
use getRow, if you just want one or two use getCell. You cannot move the iterator backwards.
When obtained, a RowSequence is positioned before the first row in the table, so (unlike an
Iterator) it is necessary to call next before the first row is accessed.

Here is an example of how to sum the values in one of the numeric columns of a table. Since only
one value is required from each row, getCell is used:

double sumColumn(StarTable table, int icol) throws IOException {

// Check that the column contains values that can be cast to Number.
ColumnInfo colInfo = table.getColumnInfo(icol);
Class colClass = colInfo.getContentClass();
if (! Number.class.isAssignableFrom(colClass)) {

throw new IllegalArgumentException("Column not numeric");
}

// Iterate over rows accumulating the total.
double sum = 0.0;
for (RowSequence rseq = table.getRowSequence(); rseq.hasNext();) {

rseq.next();
Number value = (Number) rseq.getCell(icol);
sum += value.doubleValue();

}
return sum;

}

The next example prints out every cell value. Since it needs all the values in each cell, it uses
getRow:

void writeTable(StarTable table) throws IOException {
int nCol = table.getColumnCount();
for (RowSequence rseq = table.getRowSequence(); rseq.hasNext();) {

rseq.next();
Object[] row = rseq.getRow();
for (int icol = 0; icol < nCol; icol++) {

System.out.print(row[icol] + "\t");
}
System.out.println();

}
}

Note that a tidier representation of the values might be given by replacing the print call with:

System.out.print(table.getColumnInfo(icol)
.formatValue(row[icol], 20) + "\t");

SUN/252 6

2.3.2 Random Access

If a table's isRandom method returns true, then it is possible to access the cells of a table in any
order. This is done using the getCell or getRow methods directly on the table itself (not on a
RowSequence). Similar comments about whether to use getCell or getRow apply as in the previous
section.

If an attempt is made to call these random access methods on a non-random table (one for which
isRandom()==false), an UnsupportedOperationException is thrown.

2.3.3 Adapting Sequential to Random Access

What do you do if you have a sequential-only table and you need to do random access on it? The
Tables.randomTable utility method takes any table and returns one which is guaranteed to provide
random access. If the original one is random, it just returns it unchanged, otherwise it returns a table
which contains the same data as the submitted one, but for which isRandom is guaranteed to return
true. It effectively does this by taking out a RowSequence and reading all the data sequentially into
some kind of (memory- or disk-based) data structure which can provide random access, returning a
new StarTable object based on that data structure.

Clearly, this might be an expensive process. For this reason if you have an application in which
random access will be required at various points, it is usually a good idea to ensure you have a
random-access table at the application's top level, and for general-purpose utility methods to require
random-access tables (throwing an exception if they get a sequential-only one). The alternative
practice of utility methods converting argument tables to random-access when they are called might
result in this expensive process happening multiple times.

Note also that this method may fail from lack of resources when attempting to convert a large
sequential table to random access.

SUN/252 7

3 Table I/O

The table input and output facilities of STIL are handled by format-specific input and output
handlers; supplied with the package are, amongst others, a VOTable input handler and output
handler, and this means that STIL can read and write tables in VOTable format. An input handler is
an object which can turn an external resource into a StarTable object, and an output handler is one
which can take a StarTable object and store it externally in some way. These handlers are
independent components of the system, and so new ones can be written, allowing all the STIL
features to be used on new table formats without having to make any changes to the core classes of
the library.

There are two ways of using these handlers. You can either use them directly to read in/write out a
table using a particular format, or you can use the generic I/O facilities which know about several of
these handlers and select an appropriate one at run time. The generic reader class is
StarTableFactory, and will offer a given stream of bytes to all the handlers it knows about until
one of them can turn it into a table; the generic writer class is StarTableOutput, and will write in a
format determined by the filename or a format string which might be selected by the user at
runtime. The generic approach is more flexible in a multi-format environment, but if you know
what format you want to deal with then not much is gained by using it.

By way of example: here is how you can load a table which might be in any of the supported
formats:

StarTable table = new StarTableFactory().makeStarTable(filename);

and here is how you can do it if you know that it's in FITS format:

DataSource datsrc = new FileDataSource(filename);
StarTable table = new FitsTableBuilder().makeStarTable(datsrc, false);

The following sections describe in more detail the generic input and output facilities, followed by
descriptions of each of the format-specific I/O handlers which are supplied with the package. There
is an additional section (section 3.6) which deals with table reading and writing using an SQL
database.

3.1 Extensible I/O framework

STIL can deal with externally-stored tables in a number of different formats. It does this using a set
of handlers each of which knows about turning an external table into a java StarTable object or
turning a StarTable object into an external table. Such an "external table" will typically be a file on
a local disk, but might also be a URL pointing to a file on a remote host, or an SQL query on a
remote database, or something else.

The core I/O framework of STIL itself does not know about any table formats, but it knows how to
talk to format-specific input or output handlers. A number of these (VOTable, FITS, ASCII and
others) are supplied as part of the STIL package, so for dealing with tables in these formats you
don't need to do any extra work. However, the fact that these are treated in a standard way means
that it is possible to add new format-specific handlers and the rest of the library will work with
tables in that format just the same as with the supplied formats.

If you have a table format which is unsupported by STIL as it stands, you can do one or both of the
following:

SUN/252 8

Write a new input handler:
Implement the TableBuilder interface to take a stream of data and return a StarTable object.
Install it in a StarTableFactory, which will then be able to pick up tables in this format as
well as other known formats. Such a TableBuilder can also be used directly to read tables by
code which knows that it's dealing with data in that particular format.

Write a new output handler:
Implement the StarTableWriter interface to take a StarTable and write it to a given
destination. Install it in a StarTableOutput, which will be then be able to write tables in this
format as well as others. Such a StarTableWriter can also be used directly to write tables by
code which wants to write data in that particular format.

This document does not currently offer a tutorial on writing new table I/O handlers; read the
javadocs for the relevant classes.

3.2 Generic Table Input

Obtaining a table from a generic-format external source is done using a StarTableFactory. The job
of this class is to keep track of which input handlers are registered and to offer an input stream to
each of them in turn, inviting them to turn it into a StarTable. The basic rule is that you use one of
the StarTableFactory's makeStarTable methods to turn what you've got (e.g. String, URL,
DataSource) into a StarTable, and away you go. If no StarTable can be created (for instance
because the file named doesn't exist, or because it is not in any of the supported formats) then some
sort of IOException will be thrown. Note that if the target stream is compressed in one of the
supported formats (gzip, bzip2, Unix compress) it should get uncompressed automatically. (the
work for this is done by the DataSource class).

When acquiring a table, you should decide whether you will need to do random access on it or only
sequential access (see section 2.3). A preference for one or other of these can be indicated to the
StarTableFactory using its wantRandom attribute (or at construction time). This gives handlers an
opportunity to return different StarTable implementations which are efficient for different patterns
of access, but note it is only a hint and does not guarantee that tables generated by the factory will
be random-access; see section 2.3.3 for that.

Here is a trivial example showing how to read a table file:

public StarTable loadTable(File file) throws IOException {
return new StarTableFactory().makeStarTable(file.toString());

}

If you want to ensure that the table you get provides random access, (see section 2.3) you should do
something like this:

public StarTable loadRandomTable(File file) throws IOException {
StarTableFactory factory = new StarTableFactory();
factory.setWantRandom(true);
StarTable table = factory.makeStarTable(file.toString());
return Tables.randomTable(table);

}

If you want detailed control over which kinds of tables can be loaded, you can use the relevant
methods of StarTableFactory to set the exact list of handlers that it uses for table resolution.
Alternatively, you can always bypass StarTableFactory and use a particular TableBuilder

directly.

3.3 Generic Table Output

Generic serialization of tables to external storage is done using a StarTableOutput object. This has

SUN/252 9

a similar job to the StarTableFactory described in the previous section; it mediates between code
which wants to output a table and a set of format-specific output handler objects. The
writeStarTable method is used to write out a StarTable object. When invoking this method, you
specify the location to which you want to output the table (usually, but not necessarily, a filename)
and a string specifying the format you would like to write in. This is usually a short string like "fits"
associated with one of the registered output handlers, but can be other things (see the javadocs for
details).

Use is very straightforward:

void writeTableAsFITS(StarTable table, File file) throws IOException {
new StarTableOutput().writeStarTable(table, file.toString(), "fits");

}

If, as in this example, you know what format you want to write the table in, you could just as easily
use the relevant StarTableWriter object directly (in this case FitsTableWriter). However, doing
it with a StarTableOutput allows users to be offered the choice of which format to use.

3.4 Supplied Input Handlers

The table input handlers supplied with STIL are listed in this section, along with notes on any
peculiarities they have in turning a string into a StarTable. As described in section 3.2, a
StarTableFactory will under normal circumstances recognise a table in any one of these formats.

In most cases the string supplied to name the table that StarTableFactory should read is a filename
or a URL, referencing a plain or compressed copy of the stream from which the file is available. In
some cases an additional specifier can be given after a '#' character to give additional information
about where in that stream the table is located.

3.4.1 FITS

The FitsTableBuilder class can read FITS binary (BINTABLE) and ASCII (TABLE) table
extensions. Unless told otherwise, the first table extension in the named FITS file will be used. If
the name supplied to the StarTableFactory ends in a # sign followed by a number however, it
means that the requested table is in the indicated extension of a multi-extension FITS file. Hence
'spec23.fits#3' refers to the 3rd extension (4th HDU) in the file spec23.fits. The suffix '#0' is never
used in this context for a legal FITS file, since the primary HDU cannot contain a table.

If the table is stored in a FITS binary table extension in a file on local disk in uncompressed form,
then the file will be mapped rather than read when the StarTable is constructed. This means that
constructing the StarTable is very fast, and a FITS table of any size can be examined, not limited by
available memory. Subsequent reads may take time, however, since a read from a mapped file is
done each time. To inhibit this behaviour, refer to the file as a URL, for instance using the
designation 'file:spec23.fits' rather than 'spec23.fits'; this fools the handler into thinking that the file
cannot be mapped, and it reads it all into memory at once.

Currently, binary tables are read rather more efficiently than ASCII ones.

3.4.2 VOTable

The VOTableBuilder class reads VOTables; with a very few exceptions, it ought to handle any
table which conforms to the VOTable 1.0 specification. In particular, it can deal with a DATA
element whose content is encoded using any of the formats TABLEDATA, BINARY or FITS.

While VOTable documents often contain a single table, the format describes a hierarchical structure
which can contain zero or more TABLE elements. By default, the StarTableFactory will find the

SUN/252 10

first one in the document for you, which in the (common) case that the document contains only one
table is just what you want. If you're after one of the others, identify it with a zero-based index
number after a '#' sign at the end of the table designation. So if the following document is called
'cats.xml':

<VOTABLE>
<RESOURCE>

<TABLE name="Star Catalogue"> ... </TABLE>
<TABLE name="Galaxy Catalogue"> ... </TABLE>

</RESOURCE>
</VOTABLE>

then 'cats.xml' or 'cats.xml#0' refers to the "Star Catalogue" and 'cats.xml#1' refers to the "Galaxy
Catalogue".

Much more detailed information about the VOTable I/O facilities, which can be used independently
of the generic I/O described in this section, are described in section 6.

3.4.3 ASCII

In many cases tables are stored in some sort of unstructured plain text format, with cells separated
by spaces or some other delimiters. The TextTableBuilder class attempts to read these and
interpret what's there in sensible ways, but since there are so many possibilities of different
delimiters and formats for exactly how values are specified, it won't always succeed.

The way the text-format table reader is written currently makes it unsuitable for reading enormous
text-format tables (its scalability may be improved in future).

Here are the rules for how the ASCII-format table handler reads tables:

• Bytes in the file are interpreted as ASCII characters (UTF-8)
• Each table row is represented by a single line of text
• Lines are terminated by one or more contiguous line termination characters: line feed (0x0A)

or carriage return (0x0D)
• Within a line, fields are separated by one or more whitespace characters: space (' ') or tab

(0x09)
• A field is either an unquoted sequence of non-whitespace characters, or a sequence of

non-newline characters between matching quote characters: either single quotes (') or double
quotes (")

• Within a quoted field, whitespace characters are permitted and are treated literally
• Within a quoted field, any character preceded by a backslash character ('\') is treated literally.

This allows quote characters to appear within a quoted string.
• An empty quoted string represents the null value
• All data lines must contain the same number of fields (this is the number of columns in the

table)
• The data type of a column is guessed according to the fields that appear in the table. If all the

fields in one column can be parsed as integers (or null values), then that column will turn into
an integer-type column. The types that are tried, in order of preference, are: Boolean, Integer,
Float, Double, Long, String

• Empty lines are ignored
• Anything after a hash character '#' on a line is ignored as far as table data goes. However, lines

which start with a '#' at the start of the table (before any data lines) will be interpreted as
metadata as follows:

• The last '#'-starting line before the first data line may contain the column names. If it has
the same number of fields as there are columns in the table, each field will be taken to be
the title of the corresponding column. Otherwise, it will be taken as a normal comment
line.

SUN/252 11

• Any comment lines before the first data line not covered by the above will be
concatenated to form the 'description' parameter of the table.

If the list of rules above looks frightening, don't worry, in many cases it ought to make sense of a
table without you having to read the small print. Here is an example of a suitable ASCII-format
table:

#
Here is a list of some animals.
#
RECNO SPECIES NAME LEGS HEIGHT/m
1 pig "Pigling Bland" 4 0.8
2 cow Daisy 4 2
3 goldfish Dobbin "" 0.05
4 ant "" 6 0.001
5 ant "" 6 0.001
6 ant '' 6 0.001
7 "queen ant" 'Ma\'am' 6 2e-3
8 human "Mark" 2 1.8

In this case it will identify the following columns:

Name Type
---- ----
RECNO Integer
SPECIES String
NAME String
LEGS Integer
HEIGHT/m Float

It will also use the text "Here is a list of some animals" as the Description parameter of the
table. Without any of the comment lines, it would still interpret the table, but the columns would be
given the names col1..col5.

If you understand the format of your files but they don't exactly match the criteria above, the best
thing is probably to write a simple free-standing program or script which will convert them into the
format described here. You may find Perl or awk suitable languages for this sort of thing.
Alternatively, you could write a new input handler as explained in section 3.1.

3.4.4 WDC

Some support is provided for files produced by the World Data Centre for Solar Terrestrial Physics.
The format itself apparently has no name, but files in this format look something like the following:

Column formats and units - (Fixed format columns which are single space seperated.)

Datetime (YYYY mm dd HHMMSS) %4d %2d %2d %6d -

%1s
aa index - 3-HOURLY (Provisional) %3d nT

2000 01 01 000000 67
2000 01 01 030000 32

...

The handler class WDCTableBuilder is experimental; it was reverse-engineered from looking at a
couple of data files in the target format, and may not be very robust.

3.5 Supplied Output Handlers

The table output handlers supplied with STIL are listed in this section, along with any peculiarities
they have in writing a StarTable to a destination given by a string (usually a filename). As
described in section 3.3, a StarTableOutput will under normal circumstances permit output of a

SUN/252 12

table in any of these formats. Which format is used is determined by the "format" string passed to
StarTableOutput.writeStarTable as indicated in the following table; if a null format string is
supplied, the name of the destination string may be used to select a format (e.g. a destination ending
".fits" will, unless otherwise specified, result in writing FITS format).

Format string Format written Associated file extension
------------- -------------- -------------------------
jdbc SQL database
fits FITS binary table .fits
votable-tabledata TABLEDATA-format VOTable .xml, .vot
votable-binary-inline Inline BINARY-format VOTable
votable-binary-href External BINARY-format VOTable
votable-fits-inline Inline FITS-format VOTable
votable-fits-href External FITS-format VOTable
text Human-readable plain text .txt
ascii Machine-readable text
html Standalone HTML document .html
html-element HTML TABLE element
latex LaTeX tabular environment .tex
latex-document LaTeX freestanding document
mirage Mirage input format

More detail on all these formats is given in the following sections.

In some cases, more control can be exercised over the exact output format by using the
format-specific table writers themselves (these are listed in the following sections), since they may
offer additional configuration methods. The only advantage of using a StarTableOutput to mediate
between them is to make it easy to switch between output formats, especially if this is being done
by the user at runtime.

3.5.1 FITS

The FITS handler, FitsTableWriter, will output a two-HDU FITS file; the first (primary) HDU
has no interesting content, and the second one (the first extension) is of type BINTABLE.

To write the FITS header for the table extension, certain things need to be known which may not be
available from the StarTable object being written; in particular the number of rows and the size of
any variable-sized arrays (including variable-length strings) in the table. This may necessitate two
passes through the data to do the write.

StarTableOutput will write in FITS format if a format string "fits" is used, or the format string is
null and the destination string ends in ".fits".

3.5.2 VOTable

The VOTable handler, VOTableWriter, can write VOTables in a variety of flavours (see section
6.1). In all cases, a StarTableOutput will write a well-formed VOTable document with a single
RESOURCE element holding a single TABLE element. The different output formats
(TABLEDATA/FITS/BINARY, inline/href) are determined by configuration options on the handler
instance. The default handler writes to inline TABLEDATA format.

The href-type formats write a (short) XML file and a FITS or binary file with a similar name into
the same directory, holding the metadata and bulk data respectively. The reference from the one to
the other is a relative URL, so if one is moved, they both should be.

For more control over writing VOTables, consult section 6.3.

3.5.3 ASCII

The AsciiTableWriter class writes to a simple text format which is intended to be machine

SUN/252 13

readable (and fairly human readable as well). It can be read in by the ASCII input handler, and is
described in more detail in section 3.4.3.

3.5.4 Plain Text

The TextTableWriter class writes to a simple text-based format which is designed to be read by
humans. According to configuration, this may or may not output table parameters as name:value
pairs at before the table data itself.

Here is an example of a short table written in this format:

+-------+----------+--------+------+--------+--------+
| index | Species | Name | Legs | Height | Mammal |
+-------+----------+--------+------+--------+--------+
1	pig	Bland	4	0.8	true
2	cow	Daisy	4	2.0	true
3	goldfish	Dobbin	0	0.05	false
4	ant		6	0.0010	false
5	ant		6	0.0010	false
6	human	Mark	2	1.9	true
+-------+----------+--------+------+--------+--------+

3.5.5 HTML

The HTMLTableWriter class writes tables as HTML 3.2 TABLE elements. According to
configuration this may be a freestanding HTML document or the TABLE element on its own
(suitable for incorporation into larger HTML documents).

3.5.6 LaTeX

The LatexTableWriter class writes tables as LaTeX tabular environments, either on their own or
wrapped in a LaTeX document. For obvious reasons, this isn't too suitable for tables with very
many columns.

3.5.7 Mirage

Mirage (see http://www.bell-labs.com/project/mirage/) is a powerful standalone tool developed at
Bell Labs for interactive analysis of multidimensional data. It uses its own file format for input. The
MirageTableWriter class can write tables in this format.

3.6 I/O using SQL databases

With appropriate configuration, STIL can read and write tables from a relational database such as
MySQL. You can obtain a StarTable which is the result of a given SQL query on a database table,
or store a StarTable as a new table in an existing database. Note that this does not allow you to
work on the database 'live'. The classes that control these operations mostly live in the
uk.ac.starlink.table.jdbc package.

If a username and/or password is required for use of the table, and this is not specified in the query
URL, StarTableFactory will arrange to prompt for it. By default this prompt is to standard output
(expecting a response on standard input), but some other mechanism, for instance a graphical one,
can be used by modifying the factory's JDBCHandler. For more information on GUI-friendly use of
SQL databases, see section 4.3.

3.6.1 JDBC Configuration

SUN/252 14

Java/STIL does not come with the facility to use any particular SQL database "out of the box";
some additional configuration must be done before it can work. This is standard JDBC practice, as
explained in the documentation of the java.sql.DriverManager class. In short, what you need to do
is define the "jdbc.drivers" system property to include the name(s) of the JDBC driver(s) which
you wish to use. For instance to enable use of MySQL with the Connector/J database you might
start up your JVM with a command line like this:

java -classpath /my/jars/mysql-connector-java-3.0.8-stable-bin.jar:myapp.jar
-Djdbc.drivers=com.mysql.jdbc.Driver
my.path.MyApplication

One gotcha to note is that an invocation like this will not work if you are using 'java -jar' to
invoke your application; if the -jar flag is used then any class path set on the command line or in
the CLASSPATH environment variable or elsewhere is completely ignored. This is a consequence
of Java's security model.

For both the reader and the writer described below, the string passed to specify the database
query/table may or may not require additional authentication before the read/write can be carried
out. The general rule is that an attempt will be made to connect with the database without asking the
user for authentication, but if this fails the user will be queried for username and password,
following which a second attempt will be made. If username/password has already been solicited,
this will be used on subsequent connection attempts. How the user is queried (e.g. whether it's done
graphically or on the command line) is controlled by the JDBCHandler's JDBCAuthenticator object,
which can be set by application code if required. If generic I/O is being used, you can use the
get/setJDBCHandler methods of the StarTableFactory or StarTableOutput being used.

To the author's knowledge, STIL has so far been used with the following RDBMSs and drivers:

MySQL
MySQL 3.23.55 on Linux has been tested with the Connector/J driver version 3.0.8 and seems
to work, though tables with very many columns cannot be written owing to SQL statement
length restrictions. Note there is known to be a column metadata bug in version 3.0.6 of the
driver which can cause a ClassCastException error when tables are written.

PostgreSQL
PostgreSQL 7.4.1 apparently works with its own JDBC driver.

Other RDBMSs and drivers ought to work in principle - please let us know the results of any
experiments you carry out.

3.6.2 Reading from a Database

You can view the result of an SQL query on a relational database as a table. This can be done either
by passing the query string directly to a JDBCHandler or by passing it to the generic
StarTableFactory.makeStarTable method (any string starting 'jdbc:' in the latter case is assumed to
be an SQL query string). The form of this query string is as follows:

jdbc:<driver-specific-url>#<sql-query>

The exact form is dependent on the JDBC driver which is installed. Here is an example for MySQL:

jdbc:mysql://localhost/astro1?user=mbt#SELECT ra, dec FROM swaa WHERE vmag<18

If the username and/or password are required for the query but are not specified in the query string,
they will be prompted for.

Note that the StarTable does not represent the JDBC table itself, but a query on table. You can get a
StarTable representing the whole JDBC table with a query like SELECT * from table-name, but

SUN/252 15

this may be expensive for large tables.

3.6.3 Writing to a Database

You can write out a StarTable as a new table in an SQL-compatible RDBMS. Note this will
require appropriate access privileges and may overwrite any existing table of the same name. The
general form of the string which specifies the destination of the table being written is:

jdbc:<driver-specific-url>#<new-table-name>

Here is an example for MySQL with Connector/J:

jdbc:mysql://localhost/astro1?user=mbt#newtab

which would write a new table called "newtab" in the MySQL database "astro1" on the local host
with the access privileges of user mbt.

SUN/252 16

4 GUI Support

STIL provides a number of facilities to make life easier if you are writing table-aware applications
with a graphical user interface. Most of these live in the uk.ac.starlink.table.gui package.

4.1 Drag and Drop

From a user's point of view dragging is done by clicking down a mouse button on some visual
component (the "drag source") and moving the mouse until it is over a second component (the
"drop target") at which point the button is released. The semantics of this are defined by the
application, but it usually signals that the dragged object (in this case a table) has been moved or
copied from the drag source to the drop target; it's an intuitive and user-friendly way to offer
transfer of an object from one place (application window) to another. STIL's generic I/O classes
provide methods to make drag and drop of tables very straightforward.

Dragging and dropping are handled separately but in either case, you will need to construct a new
javax.swing.TransferHandler object (subclassing TransferHandler itself and overriding some
methods as below) and install it on the Swing JComponent which is to do be the drag source/drop
target using its setTransferHandler method.

To allow a Swing component to accept tables that are dropped onto it, implement
TransferHandler's canImport and importData methods like this:

class TableDragTransferHandler extends TransferHandler {
StarTableFactory factory = new StarTableFactory();

public boolean canImport(JComponent comp, DataFlavor[] flavors) {
return factory.canImport(flavors);

}

public boolean importData(JComponent comp, Transferable dropped) {
try {

StarTable table = factory.makeStarTable(dropped);
processDroppedTable(table);
return true;

}
catch (IOException e) {

e.printStackTrace();
return false;

}
}

}

Then any time a table is dropped on that window, your processDroppedTable method will be
called on it.

To allow tables to be dragged off of a component, implement the createTransferable method like
this:

class TableDropTransferHandler extends TransferHandler {
StarTableOutput writer = new StarTableOutput();

protected Transferable createTransferable(JComponent comp) {
StarTable table = getMyTable();
return writer.transferStarTable(table);

}
}

(you may want to override getSourceActions and getVisualRepresentation as well. For some
Swing components (see the Swing Data Transfer documentation for a list), this is all that is
required. For others, you will need to arrange to recognise the drag gesture and trigger the

SUN/252 17

TransferHandler's exportAsDrag method as well; you can use a DragListener for this or see its
source code for an example of how to do it.

Because of the way that Swing's Drag and Drop facilities work, this is not restricted to transferring
tables between windows in the same application; if you incorporate one or other of these
capabilities into your application, it will be able to exchange tables with any other application that
does the same, even if it's running in a different JVM or on a different host - it just needs to have
windows open on the same display device. TOPCAT is an example; you can drag tables off the
'save' toolbar button or drag them onto the 'load' button.

4.2 Table Chooser Components

Some graphical components exist to make it easier to load or save tables. They are effectively
table-friendly alternatives to using a JFileChooser.

StarTableChooser

This is for loading tables, and is very much like a JFileChooser, but it handles turning
selected items into a StarTable for you.

StarTableNodeChooser

This loads tables as well, but it presents a more sophisticated interface to the user. It allows
hierarchical browsing of nodes beyond the directory/file level - for instance you can see the
hierarchical structure of RESOURCE and TABLE elements in a VOTable document, or the
list of HDUs in a FITS file, and pick the TABLE element that you are interested in. It uses the
same classes and appearance as the Treeview application to achieve this.

StarTableSaver

This is used for saving tables. As well as allowing the user to browse the filesystem and select
a filename as usual, it also allows selection of the output file format from the list of those
which the StarTableOutput knows about.

4.3 SQL Database Interaction

As explained in section 3.6, tables can be read from and written to SQL databases using the JDBC
framework. Since quite a lot of information has to be specified to indicate the details of the table
source/destination (driver name, server host, database name, table name, user authentication
information...) in most cases this requires rather user-unfriendly URLs to be entered. For graphical
applications, special dialogue components are supplied which makes this much easier for the user.
These contain one input field per piece of information, so that the user does not need to remember
or understand the JDBC-driver-specific URL. There are two of these components: SQLReadDialog
for reading tables and SQLWriteDialog for writing them.

SUN/252 18

5 Processing StarTables

The uk.ac.starlink.table package provides many generic facilities for table processing. The
most straightforward one to use is the RowListStarTable, described in the next subsection, which
gives you a StarTable whose data are stored in memory, so you can set and get cells or rows
somewhat like a tabular version of an ArrayList.

For more flexible and efficient table processing, you may want to look at the latter subsections
below, which make use of "pull-model" processing.

If all you want to do is to read tables in or write them out however, you may not need to read the
information in this section at all.

5.1 Writable Table

If you want to store tabular data in memory, possibly to output it using STIL's output facilities, the
easiest way to do it is to use a RowListStarTable object. You construct it with information about
the kind of value which will be in each column, and then populate it with data by adding rows.
Normal read/write access is provided via a number of methods, so you can insert and delete rows,
set and get table cells, and so on.

The following code creates and populates a table containing some information about some
astronomical objects:

// Set up information about the columns.
ColumnInfo[] colInfos = new ColumnInfo[3];
colInfos[0] = new ColumnInfo("Name", String.class, "Object name");
colInfos[1] = new ColumnInfo("RA", Double.class, "Right Ascension");
colInfos[2] = new ColumnInfo("Dec", Double.class, "Declination");

// Construct a new, empty table with these columns.
RowListStarTable astro = new RowListStarTable(colInfos);

// Populate the rows of the table with actual data.
astro.addRow(new Object[] { "Owl nebula",

new Double(168.63), new Double(55.03) });
astro.addRow(new Object[] { "Whirlpool galaxy",

new Double(202.43), new Double(47.22) });
astro.addRow(new Object[] { "M108",

new Double(167.83), new Double(55.68) });

5.2 Wrap It Up

The RowListStarTable described in the previous section is adequate for many table processing
purposes, but since it controls how storage is done (in a List of rows) it imposes a number of
restrictions - an obvious one is that all the data have to fit in memory at once.

A number of other classes are provided for more flexible table handling, which make heavy use of
the "pull-model" of processing, in which the work of turning one table to another is not done at the
time such a transformation is specified, but only when the transformed table data is actually
required, for instance to write it out to disk as a new table file or to display it in a GUI component
such as a JTable. One big advantage of this is that calculations which are never used never need to
be done. Another is that in many cases it means you can process large tables without having to
allocate large amounts of memory. For multi-step processes, it is also often faster.

The central idea to get used to is that of a "wrapper" table. This is a table which wraps itself round
another one (its "base" table), using calls to the base table to provide the basic data/metadata but

SUN/252 19

making some some modifications before it returns it to the caller. Tables can be wrapped around
each other many layers deep like an onion. This is rather like the way that
java.io.FilterInputStreams work.

Although they don't have to, most wrapper table classes inherit from WrapperStarTable. This is a
no-op wrapper, which simply delegates all its calls to the base table. Its subclasses generally leave
most of the methods alone, but override those which relate to the behaviour they want to change.
Here is an example of a very simple wrapper table, which simply capitalizes its base table's name:

class CapitalizeStarTable extends WrapperStarTable {
public CapitalizeStarTable(StarTable baseTable) {

super(baseTable);
}
public String getName() {

return getBaseTable().getName().toUpperCase();
}

}

As you can see, this has a constructor which passes the base table to the WrapperStarTable

constructor itself, which takes the base table as an argument. Wrapper tables which do any
meaningful wrapping will have a constructor which takes a table, though they may take additional
arguments as well. More often it is the data which is modified and the metadata which is left the
same - some examples of this are given in section 5.4. Some wrapper tables wrap more than one
table, for instance joining two base tables to produce a third one which draws data and/or metadata
from both.

The idea of wrappers is used on some components other than StarTables themselves: there are
WrapperRowSequences and WrapperColumns as well. These can be useful in implementing wrapper
tables.

Working with wrappers can often be more efficient than, for instance, doing a calculation which
goes through all the rows of a table calculating new values and storing them in a
RowListStarTable. If you familiarise yourself with the set of wrapper tables supplied by STIL,
hopefully you will often find there are ones there which you can use or adapt to do much of the
work for you.

5.3 Wrapper Classes

Here is a list of some of the wrapper classes provided, with brief descriptions:

ColumnPermutedStarTable

Views its base table with the columns in a different order.

RowPermutedStarTable

Views its base table with the rows in a different order.

RowSubsetStarTable

Views its base table with only some of the rows showing.

RandomWrapperStarTable

Caches a snapshot of its base table's data in a (fast?) random-access structure.

ProgressBarStarTable

Behaves exactly like its base table, but any RowSequence taken out on it controls a
JProgressBar, so the user can monitor progress in processing a table.

ProgressLineStarTable

Like ProgressBarStarTable, but controls an animated line of text on the terminal for
command-line applications.

JoinStarTable

SUN/252 20

Glues a number of tables together side-by-side.

5.4 Examples

This section gives a few examples of how STIL's wrapper classes can be used or adapted to perform
useful table processing. If you follow what's going on here, you should be able to write table
processing classes which fit in well with the existing STIL infrastructure.

5.4.1 Sorted Table

This example shows how you can wrap a table to provide a sorted view of it. It subclasses
RowPermutedStarTable, which is a wrapper that presents its base table with the rows in a different
order.

class SortedStarTable extends RowPermutedStarTable {

// Constructs a new table from a base table, sorted on a given column.
SortedStarTable(StarTable baseTable, int sortCol) throws IOException {

// Call the superclass constructor - this will throw an exception
// if baseTable does not have random access.
super(baseTable);
assert baseTable.isRandom();

// Check that the column we are being asked to sort on has
// a defined sort order.
Class clazz = baseTable.getColumnInfo(sortCol).getContentClass();
if (! Comparable.class.isAssignableFrom(clazz)) {

throw new IllegalArgumentException(clazz + " not Comparable");
}

// Fill an array with objects which contain both the index of each
// row, and the object in the selected column in that row.
int nrow = (int) getRowCount();
RowKey[] keys = new RowKey[nrow];
for (int irow = 0; irow < nrow; irow++) {

Object value = baseTable.getCell(irow, sortCol);
keys[irow] = new RowKey((Comparable) value, irow);

}

// Sort the array on the values of the objects in the column;
// the row indices will get sorted into the right order too.
Arrays.sort(keys);

// Read out the values of the row indices into a permutation array.
long[] rowMap = new long[nrow];
for (int irow = 0; irow < nrow; irow++) {

rowMap[irow] = keys[irow].index_;
}

// Finally set the row permutation map of this table to the one
// we have just worked out.
setRowMap(rowMap);

}

// Defines a class (just a structure really) which can hold
// a row index and a value (from our selected column).
class RowKey implements Comparable {

Comparable value_;
int index_;
RowKey(Comparable value, int index) {

value_ = value;
index_ = index;

}
public int compareTo(Object o) {

RowKey other = (RowKey) o;
return this.value_.compareTo(other.value_);

}
}

SUN/252 21

}

5.4.2 Turn a set of arrays into a StarTable

Suppose you have three arrays representing a set of points on the plane, giving an index number and
an x and y coordinate, and you would like to manipulate them as a StarTable. One way is to use the
ColumnStarTable class, which gives you a table of a specified number of rows but initially no
columns, to which you can add data a column at a time. Each added column is an instance of
ColumnData; the ArrayColumn class provides a convenient implementation which wraps an array of
objects or primitives (one element per row).

StarTable makeTable(int[] index, double[] x, double[] y) {
int nRow = index.length;
ColumnStarTable table = ColumnStarTable.makeTableWithRows(nRow);
table.addColumn(ArrayColumn.makeColumn("Index", index));
table.addColumn(ArrayColumn.makeColumn("x", x));
table.addColumn(ArrayColumn.makeColumn("y", y));
return table;

}

A more general way to approach this is to write a new implementation of StarTable. For this you
will usually want to subclass one of the existing implementations, probably AbstractStarTable,
RandomStarTable or WrapperStarTable. Here is how it can be done:

class PointsStarTable extends RandomStarTable {

// Define the metadata object for each of the columns.
ColumnInfo[] colInfos_ = new ColumnInfo[] {

new ColumnInfo("index", Integer.class, "point index"),
new ColumnInfo("x", Double.class, "x co-ordinate"),
new ColumnInfo("y", Double.class, "y co-ordinate"),

};

// Member variables are arrays holding the actual data.
int[] index_;
double[] x_;
double[] y_;
long nRow_;

public PointsStarTable(int[] index, double[] x, double[] y) {
index_ = index;
x_ = x;
y_ = y;
nRow_ = (long) index_.length;

}

public int getColumnCount() {
return 3;

}

public long getRowCount() {
return nRow_;

}

public ColumnInfo getColumnInfo(int icol) {
return colInfos_[icol];

}

public Object getCell(long lrow, int icol) {
int irow = checkedLongToInt(lrow);
switch (icol) {

case 0: return new Integer(index_[irow]);
case 1: return new Double(x_[irow]);
case 2: return new Double(y_[irow]);
default: throw new IllegalArgumentException();

}
}

}

SUN/252 22

In this case it is only necessary to implement the getCell method; RandomStarTable implements
the other data access methods (getRow, getRowSequence) in terms of this.

5.4.3 Add a new column

In this example we will append to a table a new column in which each cell contains the sum of all
the other numeric cells in that row.

First, we define a wrapper table class which contains only a single column, the one which we want
to add. We subclass AbstractStarTable, implementing its abstract methods as well as the getCell

method which may be required if the base table is random-access.

class SumColumnStarTable extends AbstractStarTable {

StarTable baseTable_;
ColumnInfo colInfo0_ =

new ColumnInfo("Sum", Double.class, "Sum of other columns");

// Constructs a new summation table from a base table.
SumColumnStarTable(StarTable baseTable) {

baseTable_ = baseTable;
}

// Has a single column.
public int getColumnCount() {

return 1;
}

// The single column is the sum of the other columns.
public ColumnInfo getColumnInfo(int icol) {

if (icol != 0) throw new IllegalArgumentException();
return colInfo0_;

}

// Has the same number of rows as the base table.
public long getRowCount() {

return baseTable_.getRowCount();
}

// Provides random access iff the base table does.
public boolean isRandom() {

return baseTable_.isRandom();
}

// Get the row from the base table, and sum elements to produce value.
public Object getCell(long irow, int icol) throws IOException {

if (icol != 0) throw new IllegalArgumentException();
return calculateSum(baseTable_.getRow(irow));

}

// Use a WrapperRowSequence based on the base table's RowSequence.
// Wrapping a RowSequence is quite like wrapping the table itself;
// we just need to override the methods which require new behaviour.
public RowSequence getRowSequence() throws IOException {

final RowSequence baseSeq = baseTable_.getRowSequence();
return new WrapperRowSequence(baseSeq) {

public Object getCell(int icol) throws IOException {
if (icol != 0) throw new IllegalArgumentException();
return calculateSum(baseSeq.getRow());

}

public Object[] getRow() throws IOException {
return new Object[] { getCell(0) };

}
};

}

// This method does the arithmetic work, summing all the numeric
// columns in a row (array of cell value objects) and returning

SUN/252 23

// a Double.
Double calculateSum(Object[] row) {

double sum = 0.0;
for (int icol = 0; icol < row.length; icol++) {

Object value = row[icol];
if (value instanceof Number) {

sum += ((Number) value).doubleValue();
}

}
return new Double(sum);

}
}

We could use this class on its own if we just wanted a 1-column table containing summed values.
The following snippet however combines an instance of this class with the table that it is summing
from, resulting in an n+1 column table in which the last column is the sum of the others:

StarTable getCombinedTable(StarTable inTable) {
StarTable[] tableSet = new StarTable[2];
tableSet[0] = inTable;
tableSet[1] = new SumColumnStarTable(inTable);
StarTable combinedTable = new JoinStarTable(tableSet);
return combinedTable;

}

5.5 Table Joins

Some fairly sophisticated classes for performing table joins (by matching values of columns
between tables) are available in the uk.ac.starlink.table.join package. These are mostly
working, but not fully supported or described in this document, and they are subject to changes in
future releases. Watch this space, or contact the author if you are keen to use this functionality.

SUN/252 24

6 VOTable Access

VOTable is an XML-based format for storage and transmission of tabular data, endorsed by the
International Virtual Observatory Alliance. The DTD and documentation are available from
http://cdsweb.u-strasbg.fr/doc/VOTable/. The current version of STIL supports version 1.0 of the
format (with a very few exceptions).

As with the other handlers tabular data can be read from and written to VOTable documents using
the generic facilities described in section 3. However if you know you're going to be dealing with
VOTables the VOTable-specific parts of the library can be used on their own; this may be more
convenient and it also allows access to some features specific to VOTables.

The VOTable functionality is provided in the package uk.ac.starlink.votable. It has the
following features:

• Reads all VOTable data formats
• Writes all VOTable data formats
• Full access to document structure
• Full handling of array types
• Flexible table output
• Hybrid (SAX/DOM) parsing
• Large tables
• Fast
• Offline parsing
• Resolution of relative URLs
• Sequential/random access to tabular data
• Best efforts parsing of non-conforming documents

Most of these are described in subsequent sections. Many of them, particularly handling of
BINARY and FITS format data, are at time of writing not believed to be available in any other
VOTable libraries.

The following features of the VOTable format are not supported:

• ID/ref referencing of TABLE, FIELD elements
• VOTable 1.1 format GROUP elements
• Null value handling for numeric array data types in BINARY/FITS encodings

Additionally the handling of variable-length fields in BINARY streams is done according to the
VOTable 1.1 specification not the VOTable 1.0 one (probably no table has ever been written using
the latter, so this is a Good Thing).

6.1 DATA Element Formats

The actual table data (cell contents, as opposed to metadata) in a VOTable are stored in a TABLE's
DATA element. The VOTable standard allows it to be stored in a number of ways; It may be
present as XML elements in a TABLEDATA element, or as binary data in one of two formats,
BINARY or FITS; if binary the data may either be available externally from a given URL or
present in a STREAM element encoded as character data using the Base64 scheme (defined in
RFC2045).

To summarise, the possible formats are:

• TABLEDATA
• BINARY at external URL
• BINARY inline (base64-encoded)
• FITS at external URL

SUN/252 25

• FITS inline (base64-encoded)

and here are examples of what the different forms of the DATA element look like:

<!-- TABLEDATA format, inline -->
<DATA>

<TABLEDATA>
<TR> <TD>1.0</TD> <TD>first</TD> </TR>
<TR> <TD>2.0</TD> <TD>second</TD> </TR>
<TR> <TD>3.0</TD> <TD>third</TD> </TR>

</TABLEDATA>
</DATA>

<!-- BINARY format, inline -->
<DATA>

<BINARY>
<STREAM encoding='base64'>
P4AAAAAAAAVmaXJzdEAAAAAAAAAGc2Vjb25kQEAAAAAAAAV0aGlyZA==
</STREAM>

</BINARY>
</DATA>

<!-- BINARY format, to external file -->
<DATA>

<BINARY>
<STREAM href="file:/home/mbt/BINARY.data"/>

</BINARY>
</DATA>

External files may also be compressed using gzip. The FITS ones look pretty much like the binary
ones, though in the case of an externally referenced FITS file, the file in the URL is a fully
functioning FITS file with (at least) one BINTABLE extension.

At the time of writing, most VOTables in the wild are written in TABLEDATA format. This has the
advantage that it is human-readable, and it's easy to write and read using standard XML tools.
However, it is not a very suitable format for large tables because of the high overheads of
processing time and storage/bandwidth, especially for numerical data. For efficient transport of
large tables therefore, one of the binary formats is recommended.

STIL can read and write VOTables in any of these formats. In the case of reading, you just need to
point the library at a document or TABLE element and it will work out what format the table data
are stored in and decode them accordingly - the user doesn't need to know whether it's
TABLEDATA or external gzipped FITS or whatever. In the case of writing, you can choose which
format is used.

6.2 Reading VOTables

STIL offers a number of options for reading a VOTable document, described below. In all cases
they provide you with a way of obtaining the table data (contents of the cells) without having to
know how these were encoded. The API defines the contents of a cell only as an Object, but to
make sense of them, you will need to have an idea what kind of object each is. In general, scalars
are represented by the corresponding primitive wrapper class, and arrays are represented by an array
of primitives of the corresponding type. Arrays are only ever one-dimensional - information about
any multidimensional shape they may have is supplied separately (use the getShape method on the
corresponding ColumnInfo). There are a couple of exceptions to this: arrays with datatype="char"

or "unicodeChar" are represented by String objects since that is almost always what is intended
(n-dimensional arrays of char are treated as if they were (n-1)-dimensional arrays of Strings), and
unsignedByte types are represented as if they were shorts, since in Java bytes are always signed.
Complex values are represented as if they were an array of the corresponding type but with an extra
dimension of size two (the most rapidly varying).

SUN/252 26

Here is how all VOTable datatypes are represented then:

datatype Class for scalar Class for arraysize>1
-------- ---------------- ---------------------
boolean Boolean boolean[]
bit boolean[] boolean[]
unsignedByte Short short[]
short Short short[]
int Integer int[]
long Long long[]
char Char String or String[]
unicodeChar Char String or String[]
float Float float[]
double Double double[]
floatComplex float[] float[]
doubleComplex double[] double[]

It is not, however, necessary to investigate the values of the datatype and arraysize attributes to
work out what kinds of objects you are going to get as values of cells in a table. Each column of the
table object that STIL gives you can report the class of object which will be found in it. In most
cases, you will receive a StarTable object which contains the table metadata. To find the class of
objects in the fourth column, you can do this:

Class clazz = starTable.getColumnInfo(3).getContentClass();

Every value obtained from a cell in that column can be cast to the class clazz (though note such a
value might be null). Useful tip: for generic processing it is often handy to cast numeric scalar cell
contents to type Number.

6.2.1 Read a single VOTable from a file

The simplest way to read a VOTable is to use the generic table reading method described in section
3.2, in which you just submit the URL or filename of a document to a StarTableFactory, and get
back a StarTable object. If you're after one of several TABLE elements in a document, you can
specify this by giving its number as the URL's fragment ID (the bit after the '#' sign).

The following code would give you StarTables read from the first and fourth TABLE elements in
the file "tabledoc.xml":

StarTableFactory reader = new StarTableFactory();
StarTable tableA = reader.makeStarTable("tabledoc.xml");
StarTable tableB = reader.makeStarTable("tabledoc.xml#3");

If you know it's going to be a VOTable (rather than, e.g., a FITS table) you could use a
VOTableBuilder instead of a StarTableFactory, which works in much the same way, though you
need to supply a DataSource rather than a URL. In most cases there is no particular advantage to
this.

In either case, all the data and metadata from the TABLE in the VOTable document are available
from the resulting StarTable object, as table parameters, columnInfos or the data itself. If you are
just trying to extract the data and metadata from a single TABLE element somewhere in a VOTable
document, either of these procedures should be fine.

The parameters of the table which is obtained are taken from PARAM and INFO elements. Since
these cannot occur within a TABLE element itself, any PARAM or INFO in the RESOURCE
element which is the parent of a given TABLE is taken to apply to that table. The value of these can

SUN/252 27

be obtained using the getParameters method.

6.2.2 Read VOTable document structure

If you are interested in the structure of the VOTable document as opposed to just the tabular data,
you can obtain a tree of VOElement objects representing all or part of the document (very much like
a DOM), which can be navigated using the getChildren method and so on. Some of the nodes in
this tree are of specialised subclasses of VOElement; these nodes provide extra functionality relevant
to their rôle in a VOTable document. For instance a ParamElement object (which represents a
PARAM element in the XML document) has a getObject method, which returns the parameter's
value as a Java object - this may be an Integer, or a float[] array, or some other type of item,
depending on not only the value attribute of the element, but on what its datatype and arraysize

attributes are too (its class follows the same rules as for table columns). The various VOElement

subclasses and their methods are not documented exhaustively here - see the javadocs.

The most important of the VOElement subclassses is TableElement, which represents a TABLE
element. The best way to obtain the actual table data (values of the cells) from a TableElement is to
make a StarTable from it using the VOStarTable adapter class; this can be interrogated for its data
and metadata as described in section 2. The resulting StarTable may or may not provide random
access (isRandom may or not return true). This reflects how the data has been obtained - if it's a
binary stream from a remote URL it may only be possible to read the rows from start to finish a row
at a time, but if it's a set of DOM nodes it may be possible to read cells in any order. If you need
random access for a table and you don't have it (or don't know if you do), then use
Tables.randomTable as usual (see section 2.3.3).

It is also possible to access the table data directly (without making it into a StarTable) by using the
getData method of the TableElement, but in this case you need to work a bit harder to extract some
of the data and metadata in useful forms. See the TabularData documentation for details.

Where possible, STIL uses a hybrid SAX/DOM approach to constructing the tree of VOElements
which represents the VOTable document. In general it builds a DOM of the whole document with
the exception of the children of STREAM or TABLEDATA elements, since these are the ones
which contain the actual table data cells, and would thus be likely to have large memory
requirements. When it gets to one of these, it works out how to turn the contents into a tabular data
object, and interprets the corresponding SAX events directly to do this. The effect of this is that (for
all but the weirdest VOTable documents) the memory requirements of the DOM tree are very
modest, but all the information about the hierarchical structure of the document is available. What's
lost from the DOM is the representation of the cell values themselves, and you almost certainly
don't want to go poking around in that, since you can obtain it in ready-to-use form from the
TableElement. Having said that, if for some reason you do want the DOM to represent the whole of
a VOTable document, bulk data and all, you can do that too - just parse the document to construct a
DOM yourself, and submit that full DOM to VOElementFactory.

Although the DOM tree will be small, in some cases the memory requirements for a table may be
large, since the data has to be stored somewhere. Currently, for table data which is supplied inline
(in any of the three formats) STIL will store it internally in some kind of memory structure (hence
random access is available). There are plans for a configurable flag to cause this data to be stored in
a scratch file instead, so that there is no large memory requirement. For href-referenced streamed
data, it just streams the data every time the corresponding TabularData's getRowStepper method is
called, so in this case only sequential access is available, and there is no large memory requirement.

To read a VOTable document as described in this section, use one of VOElementFactory's several
makeVOElement methods to obtain a top-level VOElement object. You can then interrogate the
resulting tree using methods like getChildren, getParent, getAttribute etc. When you get to a
TABLE element (TableElement object), you can turn it into a StarTable using the VOStarTable

SUN/252 28

adapter class. The top-level element you get from the VOElementFactory will typically be a
VOTABLE element, since that is normally the top element of a VOTable document, but STIL does
not require this - for instance the XML document could start with a RESOURCE element, or you
could use it to investigate only a subtree of a DOM representing a document you parsed earlier.

Here is an example of using this approach to read the structure of a, possibly complex, VOTable
document. This program locates each TABLE element which is the immediate child of the first
RESOURCE element in the document, and prints out its column titles and table data.

void printFirstTable(File votFile) throws IOException, SAXException {

// Create a tree of VOElements from the given XML file.
VOElement top = VOElementFactory.makeVOElement(votFile);

// Find the first RESOURCE element.
VOElement[] resources = top.getDescendantsByName("RESOURCE");
VOElement res1 = resources[0];

// Iterate over all its direct children which are TABLE elements.
VOElement[] tables = res1.getChildrenByName("TABLE");
for (int iTab = 0; iTab < tables.length; iTab++) {

System.out.println("Table #" + iTab + "\n\n");
TableElement tableEl = (TableElement) tables[iTab];
StarTable starTable = new VOStarTable(tableEl);

// Write out the column name for each of its columns.
int nCol = starTable.getColumnCount();
for (int iCol = 0; iCol < nCol; iCol++) {

String colName = starTable.getColumnInfo(iCol).getName();
System.out.print(colName + "\t");

}
System.out.println();

// Iterate through its data rows, printing out each element.
for (RowSequence rSeq = starTable.getRowSequence(); rSeq.hasNext();) {

rSeq.next();
Object[] row = rSeq.getRow();
for (int iCol = 0; iCol < nCol; iCol++) {

System.out.print(row[iCol] + "\t");
}
System.out.println();

}
}

}

6.2.3 Streamed access

If you only need one-shot access to the data in a single TABLE element, you can use instead the
streamStarTable method of VOTableBuilder, which effectively turns a stream of bytes containing
a VOTable document into a stream of events representing a table's metadata and data. You define
how these events are processed by writing an implementation of the TableSink interface. The data
is obtained using SAX parsing, so it should be fast and have a very small memory footprint. Since it
bails out as soon as it has transmitted the table it's after, it may even be able to pull table data out of
a stream which is not valid XML.

The following code streams a table and prints out the name of the first column and the average of its
values (assumed numerical):

// Set up a class to handle table processing callback events.
class ColumnReader implements TableSink {

private long count_; // number of rows so far
private double sum_; // running total of values from first column

double average_; // first column average
String title_; // first column name

SUN/252 29

// Handle metadata by printing out the first column name.
public void acceptMetadata(StarTable meta) {

title_ = meta.getColumnInfo(0).getName();
}

// Handle a row by updating running totals.
public void acceptRow(Object[] row) {

sum_ += ((Number) row[0]).doubleValue();
count_++;

}

// At end-of-table event calculate the average.
public void endRows() {

average_ = sum_ / count_;
}

};

// Streams the named file to the sink we have defined, getting the data
// from the first TABLE element in the file.
public void summarizeFirstColumn(URL votLocation) throws IOException {

ColumnReader reader = new ColumnReader();
InputStream in = votLocation.openStream();
new VOTableBuilder().streamStarTable(in, reader, "0");
in.close();
System.out.println("Column name: " + reader.title_);
System.out.println("Column average: " + reader.average_);

}

Parameters are obtained from PARAM and INFO elements in the same way as described in section
6.2.1.

6.3 Writing VOTables

To write a VOTable using STIL you have to prepare a StarTable object which defines the output
table's metadata and data. The uk.ac.starlink.table package provides a rich set of facilities for
creating and modifying these, as described in section 5 (see section 5.4.2 for an example of how to
turn a set of arrays into a StarTable). In general the FIELD arraysize and datatype attributes are
determined from column classes using the same mappings described in section 6.2.

A range of facilities for writing StarTables out as VOTables is offered, allowing control over the
data format and the structure of the resulting document.

6.3.1 Generic table output

Depending on your application, you may wish to provide the option of output to tables in a range of
different formats including VOTable. This can be easily done using the generic output facilities
described in section 3.3.

6.3.2 Single VOTable output

The simplest way to output a table in VOTable format is to use a VOTableWriter, which will output
a VOTable document with the simplest structure capable of holding a TABLE element, namely:

<VOTABLE version='1.0'>
<RESOURCE>

<TABLE>
<!-- .. FIELD elements here -->
<DATA>
<!-- table data here -->

</DATA>
</TABLE>

</RESOURCE>
</VOTABLE>

SUN/252 30

The writer can be configured/constructed to write its output in any of the formats described in
section 6.1 (TABLEDATA, inline FITS etc) by using its DataFormat and inline attributes. In the
case of streamed output which is not inline, the streamed (BINARY or FITS) data will be written to
a new file with a name similar to that of the main XML output file.

Assuming that you already have your StarTable to output, here is how you could write it out in all
the possible formats:

void outputAllFormats(StarTable table) throws IOException {
VOTableWriter voWriter = new VOTableWriter(DataFormat.TABLEDATA, true);
voWriter.writeStarTable(table, "tabledata-inline.xml");

voWriter.setDataFormat(DataFormat.FITS);
voWriter.writeStarTable(table, "fits-inline.xml");

voWriter.setDataFormat(DataFormat.BINARY);
voWriter.writeStarTable(table, "binary-inline.xml");

voWriter.setInline(false);
voWriter.setDataFormat(DataFormat.FITS);
voWriter.writeStarTable(table, "fits-href.xml");

voWriter.setDataFormat(DataFormat.BINARY);
voWriter.writeStarTable(table, "binary-href.xml");

}

6.3.3 TABLE element output

You may wish to write a VOTable document with a more complicated structure than a simple
VOTABLE/RESOURCE/TABLE one. In this case you can use the VOSerializer class which
handles only the output of TABLE elements themselves (the hard part), leaving you free to embed
these in whatever XML superstructure you wish.

Once you have obtained your VOSerializer by specifying the table it will serialize and the data
format it will use, you should invoke its writeFields method followed by either
writeInlineDataElement or writeHrefDataElement. For inline output, the output should be sent
to the same stream to which the XML itself is written. In the latter case however, you can decide
where the streamed data goes, allowing possibilities such as sending it to a separate file in a
location of your choosing, creating a new MIME attachment to a message, or sending it down a
separate channel to a client. In this case you will need to ensure that the href associated with it
(written into the STREAM element's href attribute) will direct a reader to the right place.

Here is an example of how you could write two inline tables in the same RESOURCE element:

void writeTables(StarTable t1, StarTable t2) throws IOException {
BufferedWriter out =

new BufferedWriter(new OutputStreamWriter(System.out));

out.write("<VOTABLE version='1.0'>\n");
out.write("<RESOURCE>\n");
out.write("<DESCRIPTION>Two tables</DESCRIPTION>\n");

out.write("<TABLE>\n");
VOSerializer ser1 = VOSerializer.makeSerializer(DataFormat.TABLEDATA, t1);
ser1.writeFields(out);
ser1.writeInlineDataElement(out);
out.write("</TABLE>\n");

out.write("<TABLE>\n");
VOSerializer ser2 = VOSerializer.makeSerializer(DataFormat.TABLEDATA, t2);
ser2.writeFields(out);
ser2.writeInlineDataElement(out);
out.write("</TABLE>\n");
out.write("</RESOURCE>\n");
out.write("</VOTABLE>\n");

SUN/252 31

}

and here is how you could write a table with its data streamed to a binary file with a given name
(rather than the automatically chosen one selected by VOTableWriter):

void writeTable(StarTable table, File binaryFile) throws IOException {
BufferedWriter out =

new BufferedWriter(new OutputStreamWriter(System.out));

out.write("<VOTABLE version='1.0'>\n");
out.write("<RESOURCE>\n");
out.write("<TABLE>\n");
VOSerializer ser = VOSerializer.makeSerializer(DataFormat.BINARY, table);
ser.writeFields(out);
DataOutputStream binOut =

new DataOutputStream(new FileOutputStream(binaryFile));
ser.writeHrefDataElement(out, "file:" + binaryFile, binOut);
binOut.close();
out.write("</TABLE>\n");
out.write("<RESOURCE>\n");
out.write("<VOTABLE>\n");

}

SUN/252 32

7 Table Tools

A couple of applications using the STIL library currently exist, as listed below. More will be made
available in the future, either bundled with STIL or in separate application packages.

7.1 Tablecopy

Tablecopy copies a table from any of the (input-) supported formats into any of the (output-)
supported ones. This is pretty trivial, since all the hard work is done using the generic I/O facilities
described in section 3.

The application is the main method of TableCopy, though it might get moved in future releases.
Invoking it with the "-help" flag will print a usage message. Assuming STIL is on your classpath:

Usage: TableCopy [-ofmt <out-format>] <in-table> <out-table>

Known out-formats:
jdbc
fits
votable-tabledata
votable-binary-inline
votable-fits-href
votable-binary-href
votable-fits-inline
text
ascii
html
html-element
latex
latex-document
mirage

which should be fairly self-explanatory. According to how you have downloaded STIL you may
also be able to invoke it using the "tablecopy" script. For some, though not all, output formats,
using "-" as the out-table argument will write to standard output. You can't use the same trick for
standard input I'm afraid.

Here are some examples of use:

• Copy a FITS table to a VOTable:

tablecopy stars.fits stars.xml

• Print the contents of the fifth <TABLE> element in a compressed VOTable document at the
end of a URL to standard output in human-readable format:

tablecopy -ofmt text http://remote.host/data/vizier.xml.gz#4 -

• Write the results of an SQL query on a MySQL database to a FITS binary table:

java -Djdbc.drivers=com.mysql.jdbc.Driver
-classpath stil.jar:mysql-connector-java-3.0.6-stable-bin.jar
uk.ac.starlink.table.TableCopy
-ofmt fits
"jdbc:mysql://localhost/astro1#SELECT ra, dec, Imag, Kmag FROM dqc"
wfslist.fit

7.2 TOPCAT

TOPCAT (Tool for OPerations on Catalogues And Tables) is a graphical application for interactive

SUN/252 33

manipulation of tables, written by the same author as STIL. All its table I/O and processing is built
on STIL.

SUN/252 34

8 Acknowledgements

My thanks are due to a number of people who have contributed help to me in writing this document
and the STIL software, including:

• Alasdair Allan (Starlink, Exeter)
• Clive Davenhall (AstroGrid, RoE)
• Pierre Didelon (CEA)
• Peter Draper (Starlink, Durham)
• David Giaretta (Starlink, RAL)
• Jonathan Irwin (IoA)
• Clive Page (AstroGrid, Leicester)

STIL is written in Java by Sun Microsysystems Inc. and contains code from the following
non-Starlink libraries:

• nom.tam.fits is used for some parts of the FITS table handling.
• Ant's Bzip2 compression/decompression code
• HTM package is used when doing table joins with astronomical coordinates

SUN/252 35

9 Release Notes

Prior to version 1.0 of this release, these routines were available in the TABLE and VOTABLE
packages of the Starlink java set. Although much of the code remains the same, there have been
quite a number of incompatible API-level changes since that version. The author would be happy to
help people who used the old version and want help adapting their code to the current STIL release.

Since this is the first proper public release we hope that future releases will provide a much better
degree of API-level backward compatibility, but no guarantee is offered that no incompatible
changes will be made in the future.

9.1 Version History

Version 1.0 (30 Jan 2004)
Initial public release.

Version 1.0-2 (11 Feb 2004)

• Added RowListStarTable.

Version 1.0-3 (12 Feb 2004)

• Considerably improved performance of inline (base64-encoded) BINARY/FITS table
parsing.

Version 1.0-4 (17 Mar 2004)

• VOTable-derived StarTables now pick up parameters from INFO elements as well as
PARAM elements.

• Text format output handler now by default outputs table parameters as well as the table
data and column metadata.

Version 1.1 (29 Mar 2004)

• New ASCII format output handler can write tables in the same text-based format used by
the ASCII input handler.

• JoinStarTable can now deduplicate column names.
• New class ConcatStarTable permits adding the rows of one table after the rows of

another.

Version 1.1-1 (11 May 2004)

• Improved PostgreSQL compatibility

STIL is released under the terms of the GNU General Public License (see
http://www.gnu.org/copyleft/gpl.html).

SUN/252 36

