STIL - Starlink TablesInfrastructureLibrary

Version 1.1-1

Sarlink User Note 252
Mark Taylor
11 May 2004

Abstract

STIL isaset of Java class libraries which alow input, manipulation and output of tabular data. As
well as an abstract and format-independent definition of what constitutes a table, and an extensible
framework for "pull-model" table processing, it provides a number of format-specific handlers
which know how to seridlize/deserialize tables, amongst others handlers are provided for the
VOTable and FITS formats. The framework for interaction between the core table manipulation
facilities and the format-specific handlers is open and pluggable, so that handlers for new formats
can easily be added.

The VOTable handling in particular is provided by classes which perform efficient XML parsing
and can read and write VOTablesin any of the defined formats (TABLEDATA, BINARY or FITS).
It may be used on its own for VOTable 1/0O without much reference to the format-independent parts
of thelibrary.

Contents

N 1 =T PRSP RO 1
I oo B ot o] o USRS 4
I VL RS- N 7 o] =R 4
2 The Star TaDlE INTEITACE....... ot b et sre e 5
P R I o 1= Y= = o = - S 5
2.2 COIUMN MELAOELAL.........eceeeeeeeie e e te e e s e e teereesneesseeneesseeseeneesreensenneens 5
GBI o] 1= I - - S 5
2.3. 1 SEQUENTIAI ACCESS......cueiueeueeeeie sttt sttt ettt bbbt se et e e e e e st e b e sbe e bt e bt e st et e e e nbeseeebeneeeneeneens 6
2.3.2 RANUOM ACCESS......eeiteeuieiteerteeieseesseeeesseesseeseesseesseeeeaseesseassesseesseessesseesseensesseessessessensseessessensses 7
2.3.3 Adapting Sequential t0 RANAOM ACCESS........cccoiiiiririenieieee et 7
RN 1= o1 L 1L T TSSOSO RSP 8
3.1 EXtEnSIbIE /O FramEWOrK.........cooiviecieeee ettt enne e 8
3.2 GENENC TADI INPUL......eoeteie et bbbttt ettt e b bt ene e 9
3.3 GENENIC TADIE OULPUL.......cueeieenieeeie sttt sttt bbbttt et e na e b et e snenbenneas 9
3.4 SUPPlied INPUE HBNAIEIS........oiuiiiieeieeee ettt s sbenne s 10
3 1 PP PRS RSSO 10
A2V OTEDIE.... .ot bttt b bbbttt b b ne s 10
S | TSRS 11
K3 1Y 5 ST 12
3.5 Supplied OULPUL HBNAIEFS.........couiiiieieeee bbb 12
TR0t I N PP 13
Y @ 1 =o)L SSSRPPURPR R 13
T I TSSO 13
G o T T = SR 14
ST I 1Y ST 14
B I 1 = PSSP 14
O AV T =" [TSSO 14
3.6 1/O USING SQL dBLEDESES.........cveeeiiriesiieieeieee ettt bbb bbb 14
3.6.1 IDBC CONFIQUIALTON.cviitiriieiieiieeeee ettt se et s a e b e bt be st e e b et sbesbe b e e st e se e e s 14
3.6.2 Reading from @ DataDaSE.oieiuerierieeee e e 15
3.6.3WIitiNg t0 A DELADASE.ccueiueeieeieiee et 16

T L0 LIS U o] oo o TSR PRSP PR 17

4.1 Drag @N0 DIOP....coueeueeeeiesiese sttt sttt bbb e b e s st et s e e e e e et e b bt ebenbe e e e e 17

4.2 Table ChoOSEr COMPONENTS........coiiieieriertestesie sttt ss et e sbe st e e e e e saesbesbesbesreeseeanennas 18
4.3 SQL Database INTEIACHION.......ccueieerieeiesiesie e see e eeseeste e e steeeesseesseeseesseesseeneesreenseeneesseenses 18
S ProceSSING SEAr TADIES......cociecie ettt s e e b e e s e e e seesreeebeesnneereeas 19
LI R AT L= o Lo I o] =SS 19
A AT = o L o TSP PR PSPPSRSO 19
5.3 WIADPEN ClaSSES.......cuiitiiiiieitieieeie ettt sttt sttt b bbb e sb e e b e e st e se e e e s et e nbenbesbeebeeae e e eneens 20
5.4 EXBIMPIES......eeeete sttt b bbb a et E R Rt e bRttt n e b e nns 21
o S 0T (=0 I 1= o =SS 21
54.2Turnaset of arraySinto aStarTabIE........cvoiiii e 22
5.4.3 Add @NEW COIUMN.......coiiiiieiieeeeie ettt e st e et eeseesseeneesneesreenseaneenseeneas 23
LI R 1= o] 1N o 1 S 24
BV OT ADIE ACCESS.....cueiiieieeie ettt ettt et e st e s b e e atesaeesbeeaeesbeesbeenteseeenseeneenneentas 25
6.1 DATA ElEMENE FOIMMEES.......eiieieeeieeieesieeieestesieeiesseesteeaeseesseeaesseesseessesseesseessesseessesssesseessesnsens 25
6.2 REAAING VOTEDIES.......eeiiieee ettt e e b nre b nre s 26
6.2.1 Read asingle VOTable from @ file.........cooiiriieiieee e 27
6.2.2 Read VOTable dOCUMENE SEIUCIUIE...........coiuiiirieierierieeiee et 28
6.2.3 SITEAMEU GCCESS. ... veeueeeeeeeereesteetesseesseessesseesteesesseesseassesseesseaseesseenseanessseensesseesseensessenssennsessenns 29
6.3 WIITING VOTEDIES.....ccueiieeeeiesiest ettt bttt e e bbb b e 30
6.3.1 GENENIC TADIE OULPUL. ..ottt ettt et sr b b 30
6.3.2 SINGIE VOTEDIE OULPUL........eeueeieeiie sttt bbb e sne e 30
6.3.3 TABLE E&l@MENt OULPUL.........eiteriiieiriieiieeeeie et sttt sre b nre s 31
A= o1 1= 30 o TR 33
A R = o < oo o VOSSPSR 33
A O . O TP 33
8 ACKNOWIEOGEMENTS........eeeeee ettt ettt et b e et e e e s se et e e neesbeeneeeneenes 35
O REIEASE NOLES......ecueiciieiieie ettt e st et e st esbeeaeesse e beeneesseesbeeneesseeseeneenseees 36

O YA = o) i o TR (]SSR 36

SUN/252

SUN/252 4

1 Introduction

STIL is aset of class libraries which can do input, output and manipulation of tables. It has been
developed for use with astronomical tables, though it could be used for any kind of tabular data. It
has no "native" external table format. What it hasis a model of what atable looks like, a set of java
classes for manipulating such tables, an extensible framework for table 1/0, and a number of
format-specific I/0O handlers for dealing with several known table formats.

This document is a programmers overview of the abilities of the STIL libraries, including some
tutorial explanation and example code. Some parts of it may also be useful background reading for
users of applications built on STIL. Exhaustive descriptions of al the classes and methods are not
given here; that information can be found in the javadocs, which should be read in conjunction with
this document if you are actually using these libraries. Much of the information here is repeated in
the javadocs. The hypertext version of this document links to the relevant places in the javadocs
where appropriate.

1.1 What isa table?

In words, STIL'sidea of what constitutes a table is something which has the following:

Some per-table metadata (parameters)

A number of columns

Some per-column metadata

A number of rows, each containing one entry per column

This model is embodied in the st ar Tabl e interface, which is described in the next section. It maps
quite closely, though not exactly, onto the table model embodied in the VOTable definition, which
itself owes a certain amount to FITS tables. Thisis not coincidence.

SUN/252 5

2 The Star Tableinterface

The most fundamental type in the STIL package is uk.ac.starlink.table.StarTable; any time you are
using atable, you will use an object which implements this interface.

2.1 Table M etadata

A few items of the table metadata (name, URL) are available directly as values from the st ar Tabl e
interface. A general parameter mechanism is provided for storing other items, for instance
user-defined ones. The get Paranet ers method returns a list of Descri bedVal ue objects which
contain a scalar or array value and some metadata describing it (name, units, UCD). Thislist can be
read or altered as required.

The st ar Tabl e interface also contains the methods get Col unmmCount and get RowCount to determine
the shape of the table. Note however that for tables with sequential-only access, it may not be
possible to ascertain the number of rows - in this case get RowCount Will return -1. Random-acess
tables (see section 2.3) will always return a positive row count.

2.2 Column M etadata

Each column in a st ar Tabl e is assumed to contain the same sort of thing. More specifically, for
each table column there is a Col unml nf o Object associated with each column which holds metadata
describing all the values in that column (the value associated with that column for each row in the
table). A Col uml nf o contains information about the name, units, UCD, class etc of a column, as
well as a mechanism for storing additional (‘auxiliary’) user-defined metadata. It also provides
methods for rendering the values in the column under various circumstances.

The class associated with a column, obtained from the get Cont ent d ass method, is of particular
importance. Every object in the column described by that metadata should be an instance of the
C ass that get Cont ent O ass returns (or of one of its subtypes), or nul I . There is nothing in the
tables infrastructure which can enforce this, but a table which doesn't follow this rule is considered
broken, and application code is within its rights to behave unpredictably in this case. Such a broken
table might result from a bug in the 1/0O handler used to obtain the table in the first place, or a
badly-formed table that it has read, or a bug in one of the wrapper classes upstream from the table
instance being used. Because of the extensible nature of the infrastructure, such bugs are not
necessarily STIL's fault.

Any class can be used (with the exception the primitive types likei nt . cl ass), but most table 1/0
handlers can only cope with certain types of value - typically those corresponding to the java
primitive classes (numeric and boolean ones) and st ri ngs, so these are the most important ones to
deal with. The contents of atable cell must aways (as far as the access methods are concerned) be
an oj ect Or nul |, SO primitive values cannot be used directly. The general rule for primitive-like
(numeric or boolean) values is that a scalar should be represented by the appropriate wrapper class
(I nt eger, Fl oat, Bool ean €tc) and an array by an array of primitives (int[], fl oat[], bool ean[]
etc). Non-primitive-like objects (of which string is the most important example) should be
represented by their own class (for scalars) or an array of their own class (for arrays). Note that it is
not recommended to use multidimensional arrays (i.e. arrays of arrays like int[][]); a
1-dimensional java array should be used, and information about the dimensionality should be stored
in the Col uml nf 0's shape attribute. Thus to store a 3x2 array of integers, a 6-element array of type
int[] would be used, and the Col umni nf o's get Shape method would return a two-element array
(3,2).

2.3 Table Data

SUN/252 6

The actual data valuesin atable are considered to be a sequence of rows, each containing one value
for each of the table's columns. As explained above, each such value is an j ect , and information
about its class (as well as semantic metadata) is available from the column's Col unml nf o object.

St ar Tabl eS come in two flavours, random-acess and sequential-only; you can tell which one a
given table is by using itsi sRandommethod, and how its data can be accessed is determined by this.
In either case, most of the data access methods are declared to throw an | CExcept i on.

2.3.1 Sequential Access

It is always possible to access a table's data sequentially, that is starting with the first row and
reading forward a row at a time to the last row; it may or may not be possible to tell in advance
(using get RowCount) how many rows there are. To perform sequential access, use the
get RowSequence Method to get a RowSequence object, which is an iterator over the rows in the
table. The RowSequence's next method moves forward a row without returning any data; to obtain
the data use either getCell or getRow, the relative efficiencies of these depend on the
implementation, but in general if you want all or nearly all of the valuesin arow it isagood ideato
use get Row, if you just want one or two use get Cel I . You cannot move the iterator backwards.
When obtained, a RowSequence is positioned before the first row in the table, so (unlike an
I terator) itisnecessary to call next beforethefirst row isaccessed.

Here is an example of how to sum the values in one of the numeric columns of a table. Since only
one value isrequired from each row, get Cel | isused:

doubl e sunCol umm(StarTable table, int icol) throws | OException {

/'l Check that the colum contains values that can be cast to Nunber.
Col umlinfo col Info = tabl e. get Col umilnfo(icol);

Class col dass = col I nfo.getContentd ass();

if (! Nunber.class.isAssignabl eFrom colCass)) {

} t hrow new |11 egal Argunent Excepti on("Col umm not numeric");

/1l lterate over rows accunulating the total.

doubl e sum = 0.0;

for (RowSequence rseq = tabl e. get RowSequence(); rseq. hasNext();) {
rseq. next();
Nurber value = (Nunber) rseq.getCell(icol);
sum += val ue. doubl eVal ue() ;

return sum

The next example prints out every cell value. Since it needs all the values in each cell, it uses
get Row.

void witeTable(StarTable table) throws | OException {
int nCol = table. get Col umCount();
for (RowSequence rseq = tabl e. get RowSequence(); rseq. hasNext();) {
rseq. next();
bj ect[] row = rseq. get Row);
for (1nt icol = 0; icol < nCol; icol++) {
Systemout.print(row icol] + "\t");

Systemout. printin();
}
}

Note that atidier representation of the values might be given by replacing the pri nt call with:

Systemout. print(table.getColumlnfo(icol
.formatValue(rowf icol], 20) + "\t");

SUN/252 7

2.3.2 Random Access

If atable's i srandom method returns true, then it is possible to access the cells of a table in any
order. This is done using the get Cel I or get Row methods directly on the table itself (not on a
RowSequence). Similar comments about whether to use get Cel | Or get Row apply as in the previous
section.

If an attempt is made to call these random access methods on a non-random table (one for which
i sRandom() ==f al se), an Unsuppor t edQper at i onExcept i on iSthrown.

2.3.3 Adapting Sequential to Random Access

What do you do if you have a sequential-only table and you need to do random access on it? The
Tables.randomTable utility method takes any table and returns one which is guaranteed to provide
random access. If the original oneisrandom, it just returns it unchanged, otherwise it returns a table
which contains the same data as the submitted one, but for which i sRandomis guaranteed to return
true. It effectively does this by taking out a RowsSequence and reading all the data sequentially into
some kind of (memory- or disk-based) data structure which can provide random access, returning a
new StarTable object based on that data structure.

Clearly, this might be an expensive process. For this reason if you have an application in which
random access will be required at various points, it is usually a good idea to ensure you have a
random-access table at the application's top level, and for general-purpose utility methods to require
random-access tables (throwing an exception if they get a sequential-only one). The aternative
practice of utility methods converting argument tables to random-access when they are called might
result in this expensive process happening multiple times.

Note also that this method may fail from lack of resources when attempting to convert a large
sequential table to random access.

SUN/252 8

3Tablel/O

The table input and output facilities of STIL are handled by format-specific input and output
handlers; supplied with the package are, amongst others, a VOTable input handler and output
handler, and this means that STIL can read and write tablesin VOTable format. An input handler is
an object which can turn an external resource into a st ar Tabl e object, and an output handler is one
which can take a star Tabl e object and store it externally in some way. These handlers are
independent components of the system, and so new ones can be written, allowing all the STIL
features to be used on new table formats without having to make any changes to the core classes of
thelibrary.

There are two ways of using these handlers. You can either use them directly to read in/write out a
table using a particular format, or you can use the generic /O facilities which know about several of
these handlers and select an appropriate one a run time. The generic reader class is
St ar Tabl eFact ory, and will offer a given stream of bytes to all the handlers it knows about until
one of them can turn it into a table; the generic writer classis St ar Tabl eQut put , and will writein a
format determined by the filename or a format string which might be selected by the user at
runtime. The generic approach is more flexible in a multi-format environment, but if you know
what format you want to deal with then not much is gained by using it.

By way of example: here is how you can load a table which might be in any of the supported
formats:

Star Tabl e tabl e = new Star Tabl eFactory(). makeStar Tabl e(fil enanme);

and hereishow you can do it if you know that it'sin FITS format:

Dat aSource datsrc = new Fil eDat aSource(fil enane);
Star Tabl e tabl e = new Fi tsTabl eBui |l der (). makeSt ar Tabl e(datsrc, false);

The following sections describe in more detail the generic input and output facilities, followed by
descriptions of each of the format-specific I/0O handlers which are supplied with the package. There
Is an additional section (section 3.6) which deals with table reading and writing using an SQL
database.

3.1 Extensible |/O framework

STIL can deal with externally-stored tables in a number of different formats. It does this using a set
of handlers each of which knows about turning an external table into a java St ar Tabl e object or
turning a st ar Tabl e object into an externa table. Such an "external table" will typically be afile on
a local disk, but might also be a URL pointing to a file on a remote host, or an SQL query on a
remote database, or something else.

The core 1/0 framework of STIL itself does not know about any table formats, but it knows how to
talk to format-specific input or output handlers. A number of these (VOTable, FITS, ASCII and
others) are supplied as part of the STIL package, so for dealing with tables in these formats you
don't need to do any extra work. However, the fact that these are treated in a standard way means
that it is possible to add new format-specific handlers and the rest of the library will work with
tablesin that format just the same as with the supplied formats.

If you have atable format which is unsupported by STIL asit stands, you can do one or both of the
following:

SUN/252 9

Writea new input handler:
Implement the Tabl eBui | der interface to take a stream of data and return a St ar Tabl e object.
Install it in a St ar Tabl eFact ory, which will then be able to pick up tables in this format as
well as other known formats. Such a Tabl eBui | der can aso be used directly to read tables by
code which knows that it's dealing with datain that particular format.

Write a new output handler:
Implement the StarTabl ewiter interface to take a StarTable and write it to a given
destination. Install it in a St ar Tabl equt put , which will be then be able to write tables in this
format as well as others. Such a st ar Tabl ewi t er can aso be used directly to write tables by
code which wants to write data in that particular format.

This document does not currently offer a tutorial on writing new table I/O handlers; read the
javadocs for the relevant classes.

3.2 Generic Table I nput

Obtaining atable from a generic-format external source is done using a st ar Tabl eFact ory. The job
of this class is to keep track of which input handlers are registered and to offer an input stream to
each of them in turn, inviting them to turn it into a St ar Tabl e. The basic rule is that you use one of
the Star Tabl eFact ory's makeSt ar Tabl e methods to turn what you've got (e.g. String, URL,
Dat aSour ce) into a StarTable, and away you go. If no StarTable can be created (for instance
because the file named doesn't exist, or because it is not in any of the supported formats) then some
sort of 1 CException will be thrown. Note that if the target stream is compressed in one of the
supported formats (gzip, bzip2, Unix compress) it should get uncompressed automatically. (the
work for thisis done by the Dat aSour ce class).

When acquiring atable, you should decide whether you will need to do random access on it or only
sequential access (see section 2.3). A preference for one or other of these can be indicated to the
St ar Tabl eFact ory using its wantRandom attribute (or a construction time). This gives handlers an
opportunity to return different st ar Tabl e implementations which are efficient for different patterns
of access, but note it is only a hint and does not guarantee that tables generated by the factory will
be random-access; see section 2.3.3 for that.

Hereisatrivial example showing how to read atablefile:

public StarTable |oadTable(File file) throws | OException {
return new StarTabl eFactory().nakeStarTable(file.toString());
}

If you want to ensure that the table you get provides random access, (see section 2.3) you should do
something like this:

public StarTabl e | oadRandoniTable(File file) throws | OException {
St ar Tabl eFactory factory = new Star Tabl eFactory();
factory. set Want Randon{ true);
StarTabl e table = factory. nakeStarTabl e(file.toString());
return Tabl es.randonirabl e(table);

If you want detailed control over which kinds of tables can be loaded, you can use the relevant
methods of St ar Tabl eFactory to Set the exact list of handlers that it uses for table resolution.
Alternatively, you can always bypass StarTabl eFactory and use a particular Tabl eBui | der
directly.

3.3 Generic Table Output

Generic serialization of tables to external storage is done using a st ar Tabl eQut put object. This has

SUN/252 10

asimilar job to the st ar Tabl eFact ory described in the previous section; it mediates between code
which wants to output a table and a set of format-specific output handler objects. The
wri t eSt ar Tabl e method is used to write out a St ar Tabl e object. When invoking this method, you
specify the location to which you want to output the table (usually, but not necessarily, a filename)
and a string specifying the format you would like to write in. Thisis usually a short string like "fits"
associated with one of the registered output handlers, but can be other things (see the javadocs for
details).

Useisvery straightforward:

void witeTabl eAsFITS(StarTable table, File file) throws | OException {
new St ar Tabl eQut put (). witeStarTable(table, file.toString(), "fits");

If, asin this example, you know what format you want to write the table in, you could just as easily
use the relevant st ar Tabl ew i t er object directly (in this case Fi t sTabl eWi t er). However, doing
it with a st ar Tabl eQut put allows users to be offered the choice of which format to use.

3.4 Supplied Input Handlers

The table input handlers supplied with STIL are listed in this section, along with notes on any
peculiarities they have in turning a string into a Star Tabl e. As described in section 3.2, a
St ar Tabl eFact ory will under normal circumstances recognise atable in any one of these formats.

In most cases the string supplied to name the table that St ar Tabl eFact ory should read is afilename
or aURL, referencing a plain or compressed copy of the stream from which the file is available. In
some cases an additional specifier can be given after a'# character to give additional information
about where in that stream the table is located.

341FITS

The Fi tsTabl eBui | der class can read FITS binary (BINTABLE) and ASCIlI (TABLE) table
extensions. Unless told otherwise, the first table extension in the named FITS file will be used. If
the name supplied to the st ar Tabl eFact ory ends in a # sign followed by a number however, it
means that the requested table is in the indicated extension of a multi-extension FITS file. Hence
'spec23.fits#3' refers to the 3rd extension (4th HDU) in the file spec23.fits. The suffix '#0' is never
used in this context for alegal FITSfile, since the primary HDU cannot contain atable.

If the table is stored in a FITS binary table extension in afile on local disk in uncompressed form,
then the file will be mapped rather than read when the st ar Tabl e is constructed. This means that
constructing the StarTable is very fast, and a FITS table of any size can be examined, not limited by
available memory. Subsequent reads may take time, however, since a read from a mapped file is
done each time. To inhibit this behaviour, refer to the file as a URL, for instance using the
designation ‘file:spec23.fits rather than 'spec23.fits; this fools the handler into thinking that the file
cannot be mapped, and it readsit al into memory at once.

Currently, binary tables are read rather more efficiently than ASCII ones.

3.4.2V0OTable

The vorabl eBui | der class reads VOTables; with a very few exceptions, it ought to handle any
table which conforms to the VOTable 1.0 specification. In particular, it can deal with a DATA
element whose content is encoded using any of the formats TABLEDATA, BINARY or FITS.

While VOTable documents often contain a single table, the format describes a hierarchical structure
which can contain zero or more TABLE elements. By default, the st ar Tabl eFact ory will find the

SUN/252 11

first one in the document for you, which in the (common) case that the document contains only one
table is just what you want. If you're after one of the others, identify it with a zero-based index
number after a'# sign at the end of the table designation. So if the following document is called
‘cats.xml’:

<VOTABLE>
<RESOURCE>
<TABLE nane="Star Catal ogue"> ... </ TABLE>
<TABLE nane="CGal axy Catal ogue"> ... </ TABLE>
</ RESOURCE>
</ VOTABLE>
then ‘cats.xml’ or ‘cats.xmi#0' refers to the "Star Catalogue” and ‘cats.xml#1' refers to the "Galaxy

Catalogue'.

Much more detailed information about the VOTable 1/0 facilities, which can be used independently
of the generic 1/0 described in this section, are described in section 6.

3.4.3 ASCII

In many cases tables are stored in some sort of unstructured plain text format, with cells separated
by spaces or some other delimiters. The Text Tabl eBui | der class attempts to read these and
interpret what's there in sensible ways, but since there are so many possibilities of different
delimiters and formats for exactly how values are specified, it won't always succeed.

The way the text-format table reader is written currently makes it unsuitable for reading enormous
text-format tables (its scalability may be improved in future).

Here are the rules for how the ASCII-format table handler reads tables:

» Bytesinthefile areinterpreted as ASCII characters (UTF-8)

» Eachtablerow isrepresented by asingle line of text

* Lines are terminated by one or more contiguous line termination characters: line feed (Ox0A)
or carriage return (0x0D)

* Within a line, fields are separated by one or more whitespace characters. space (') or tab
(0x09)

* A field is either an unquoted sequence of non-whitespace characters, or a sequence of
non-newline characters between matching quote characters. either single quotes (') or double
guotes (")

» Within aquoted field, whitespace characters are permitted and are treated literally

* Within a quoted field, any character preceded by a backslash character ('\') is treated literally.
This allows quote characters to appear within a quoted string.

* Anempty quoted string represents the null value

» All data lines must contain the same number of fields (this is the number of columns in the
table)

» The datatype of a column is guessed according to the fields that appear in the table. If all the
fields in one column can be parsed as integers (or null values), then that column will turn into
an integer-type column. The types that are tried, in order of preference, are: Bool ean, | nt eger,
Fl oat , Doubl e, Long, Stri ng

* Empty linesareignored

* Anything after a hash character '# on alineisignored as far as table data goes. However, lines
which start with a '# at the start of the table (before any data lines) will be interpreted as
metadata as follows:

* Thelast '‘#-starting line before the first data line may contain the column names. If it has
the same number of fields as there are columns in the table, each field will be taken to be
the title of the corresponding column. Otherwise, it will be taken as a norma comment
line.

SUN/252 12

* Any comment lines before the first data line not covered by the above will be
concatenated to form the 'description’ parameter of the table.

If the list of rules above looks frightening, don't worry, in many cases it ought to make sense of a
table without you having to read the small print. Here is an example of a suitable ASCII-format
table:

#

Here is a list of sone aninals.

#

RECNO SPECI ES NANVE LEGS HElI GHT/ m
1 pi g "Pigling Bland" 4 0.8
2 cow Dai sy 4 2
3 gol dfi sh Dobbi n " 0. 05
4 ant " 6 0. 001
5 ant 6 0. 001
6 ant v 6 0. 001
7 "queen ant" "Ma\' am 6 2e-3
8 human " Mar k" 2 1.8

In this caseit will identify the following columns:

Nane Type

RECNO I nt eger
SPECI ES String
NANVE String
LEGS I nt eger

HEI GHT/ m Fl oat

It will also usethe text "Here is a list of some aninmals" asthe Description parameter of the
table. Without any of the comment lines, it would still interpret the table, but the columns would be
given the namescol 1..col 5.

If you understand the format of your files but they don't exactly match the criteria above, the best
thing is probably to write a ssmple free-standing program or script which will convert them into the
format described here. You may find Perl or awk suitable languages for this sort of thing.
Alternatively, you could write a new input handler as explained in section 3.1.

3.4.4WDC

Some support is provided for files produced by the World Data Centre for Solar Terrestrial Physics.
The format itself apparently has no name, but files in this format look something like the following:

Columm formats and units - (Fixed format col utmms which are single space seperated.)

Datetime (YYYY nm dd HHMVSS) %d 9%2d 9%2d %6d
%s
aa index - 3-HOURLY (Provisional) %3d nT

2000 01 01 000000 67
2000 01 01 030000 32

The handler class WbCTabl eBui | der iS experimental; it was reverse-engineered from looking at a
couple of datafilesin the target format, and may not be very robust.

3.5 Supplied Output Handlers

The table output handlers supplied with STIL are listed in this section, along with any peculiarities
they have in writing a StarTabl e t0o a destination given by a string (usualy a filename). As
described in section 3.3, a St ar Tabl ecut put Will under normal circumstances permit output of a

SUN/252 13

table in any of these formats. Which format is used is determined by the "format" string passed to
StarTableOutput.writeStarTable as indicated in the following table; if a null format string is
supplied, the name of the destination string may be used to select aformat (e.g. a destination ending
".fits" will, unless otherwise specified, result in writing FITS format).

Format string Format written Associ ated file extension
j dbc SQ. dat abase

fits FITS binary table fits

vot abl e-t abl edat a TABLEDATA- f or mat VOTabl e .xm, .vot

vot abl e-bi nary-inline Inline Bl NARY-format VOTabl e
vot abl e- bi nary- hr ef Ext er nal BI NARY-fornmat VOTabl e

votable-fits-inline Inline FITS-format VOTabl e

vot abl e-fits-href External FITS-format VOTabl e

t ext Human-r eadabl e pl ai n text Ltxt
asci i Machi ne-readabl e t ext

ht mi St andal one HTM. docunent .htm
ht m - el enent HTM. TABLE el enent

| at ex LaTeX tabul ar environnment .tex
| at ex- docunent LaTeX freestandi ng docunent

nmrage M rage input fornmat

More detail on al these formatsis given in the following sections.

In some cases, more control can be exercised over the exact output format by using the
format-specific table writers themselves (these are listed in the following sections), since they may
offer additional configuration methods. The only advantage of using a St ar Tabl eCut put to mediate
between them is to make it easy to switch between output formats, especialy if thisis being done
by the user at runtime.

351FITS

The FITS handler, Fi t sTabl ewi ter, will output a two-HDU FITS file; the first (primary) HDU
has no interesting content, and the second one (the first extension) is of type BINTABLE.

To write the FITS header for the table extension, certain things need to be known which may not be
available from the st ar Tabl e object being written; in particular the number of rows and the size of
any variable-sized arrays (including variable-length strings) in the table. This may necessitate two
passes through the data to do the write.

St ar Tabl equt put Will write in FITS format if a format string "fits' is used, or the format string is
null and the destination string endsin " fits'.

35.2V0OTable

The VOTable handler, vorabl ewiter, can write VOTables in a variety of flavours (see section
6.1). In all cases, a star Tabl ecut put Will write a well-formed VOTable document with a single
RESOURCE element holding a single TABLE element. The different output formats
(TABLEDATA/FITSBINARY, inline/href) are determined by configuration options on the handler
instance. The default handler writesto inline TABLEDATA format.

The href-type formats write a (short) XML file and a FITS or binary file with a similar name into
the same directory, holding the metadata and bulk data respectively. The reference from the one to
the other isarelative URL, so if oneis moved, they both should be.

For more control over writing VOTables, consult section 6.3.

3.5.3ASCII

The Ascii Tabl ewiter class writes to a ssmple text format which is intended to be machine

SUN/252 14

readable (and fairly human readable as well). It can be read in by the ASCII input handler, and is
described in more detail in section 3.4.3.

3.5.4 Plain Text

The Text Tabl ewi ter class writes to a simple text-based format which is designed to be read by
humans. According to configuration, this may or may not output table parameters as name:value
pairs at before the table data itself.

Hereis an example of a short table written in this format:

Fommm oo - Fommm o e oo - [S Homm oo - [S [S +
| index | Species | Nane | Legs | Height | Manmal |
- Fom e Fomm e o - S . o m e o - +
| 1 | pig | Bland | 4 | 0.8 | true |
| 2 | cow | Daisy | 4 | 2.0 | true |
| 3 | goldfish | Dobbin | O | 0.05 | false |
| 4 | ant | | 6 | 0.0010 | false |
| 5 | ant | | 6 | 0.0010 | false |
| 6 | human | Mark | 2 | 1.9 | true |
Fommm oo - Fommm e oo - Fom e - - - S +

355HTML

The HTM.Tabl ewiter class writes tables as HTML 3.2 TABLE elements. According to
configuration this may be a freestanding HTML document or the TABLE element on its own
(suitable for incorporation into larger HTML documents).

356LaTeX

The Lat exTabl ewi ter classwritestables asLaTleX tabul ar environments, either on their own or
wrapped in a LaTeX document. For obvious reasons, this isn't too suitable for tables with very
many columns.

3.5.7 Mirage

Mirage (see http://www.bell-labs.com/project/mirage/) is a powerful standalone tool developed at
Bell Labsfor interactive analysis of multidimensional data. It usesits own file format for input. The
M rageTabl eWi t er classcan writetablesin thisformat.

3.6 1/0 using SQL databases

With appropriate configuration, STIL can read and write tables from a relationa database such as
MySQL. You can obtain a st ar Tabl e which is the result of a given SQL query on a database table,
or store a St ar Tabl e as a new table in an existing database. Note that this does not allow you to
work on the database 'live. The classes that control these operations mostly live in the
uk. ac. starlink.tabl e. j dbc package.

If a username and/or password is required for use of the table, and thisis not specified in the query
URL, st ar Tabl eFact ory will arrange to prompt for it. By default this prompt is to standard output
(expecting a response on standard input), but some other mechanism, for instance a graphical one,
can be used by modifying the factory's JIDBCHandler. For more information on GUI-friendly use of
SQL databases, see section 4.3.

3.6.1 JDBC Configuration

SUN/252 15

JavalSTIL does not come with the facility to use any particular SQL database "out of the box";
some additional configuration must be done before it can work. This is standard JDBC practice, as
explained in the documentation of the java.sgl.DriverManager class. In short, what you need to do
IS define the "j dbc. dri vers" system property to include the name(s) of the JDBC driver(s) which
you wish to use. For instance to enable use of MySQL with the Connector/J database you might
start up your VM with acommand line like this:

java -classpath /ny/jars/mysql -connector-java-3.0.8-stabl e-bin.jar:mapp.jar
-Dj dbc. dri vers=com nmysql . j dbc. Dri ver
nmy. pat h. MyAppl i cation
One gotcha to note is that an invocation like this will not work if you are using 'java -jar' to
invoke your application; if the -j ar flag is used then any class path set on the command line or in
the CLASSPATH environment variable or elsewhere is completely ignored. Thisis a consequence
of Java's security model.

For both the reader and the writer described below, the string passed to specify the database
guery/table may or may not require additional authentication before the read/write can be carried
out. The general ruleisthat an attempt will be made to connect with the database without asking the
user for authentication, but if this fails the user will be queried for username and password,
following which a second attempt will be made. If username/password has aready been solicited,
thiswill be used on subsequent connection attempts. How the user is queried (e.g. whether it's done
graphically or on the command line) is controlled by the JDBCHand!I er 'S JDBCAut hent i cat or Object,
which can be set by application code if required. If generic I/O is being used, you can use the
get / set JDBCHandl er methods of the St ar Tabl eFact ory Or St ar Tabl eQut put being used.

To the author's knowledge, STIL has so far been used with the following RDBM Ss and drivers:

MySQL
MySQL 3.23.55 on Linux has been tested with the Connector/J driver version 3.0.8 and seems
to work, though tables with very many columns cannot be written owing to SQL statement
length restrictions. Note there is known to be a column metadata bug in version 3.0.6 of the
driver which can cause a ClassCastException error when tables are written.

PostgreSQL
PostgreSQL 7.4.1 apparently works with its own JDBC driver.

Other RDBMSs and drivers ought to work in principle - please let us know the results of any
experiments you carry out.

3.6.2 Reading from a Database

Y ou can view the result of an SQL query on arelational database as a table. This can be done either
by passing the query string directly to a JDBCHandler or by passing it to the generic
StarTableFactory.makeStar Table method (any string starting ‘'jdbc:’ in the latter case is assumed to
be an SQL query string). The form of this query string is as follows:

j dbc: <driver-specific-url >#<sql -query>
The exact form is dependent on the JIDBC driver which isinstalled. Here is an example for MySQL :

jdbc: nmysql :/ /1 ocal host/astrol?user=nbt #SELECT ra, dec FROM swaa WHERE vnmag<18

If the username and/or password are required for the query but are not specified in the query string,
they will be prompted for.

Note that the StarTable does not represent the JDBC table itself, but a query on table. You can get a
StarTable representing the whole JDBC table with a query like SELECT * from tabl e- nane, but

SUN/252 16

this may be expensive for large tables.

3.6.3 Writing to a Database

You can write out a St ar Tabl e as a new table in an SQL-compatible RDBMS. Note this will
require appropriate access privileges and may overwrite any existing table of the same name. The
general form of the string which specifies the destination of the table being written is:

j dbc: <driver-specific-url >#<newt abl e- nanme>

Hereis an example for MySQL with Connector/J:

j dbc: mysql ://1 ocal host/astrol?user=nbt #newt ab

which would write a new table called "newtab" in the MySQL database "astrol" on the local host
with the access privileges of user mbt.

SUN/252 17

4 GUI Support

STIL provides a number of facilities to make life easier if you are writing table-aware applications
with agraphical user interface. Most of these livein theuk. ac. starlink. t abl e. gui package.

4.1 Drag and Drop

From a user's point of view dragging is done by clicking down a mouse button on some visual
component (the "drag source") and moving the mouse until it is over a second component (the
"drop target") at which point the button is released. The semantics of this are defined by the
application, but it usualy signals that the dragged object (in this case a table) has been moved or
copied from the drag source to the drop target; it's an intuitive and user-friendly way to offer
transfer of an object from one place (application window) to another. STIL's generic I/O classes
provide methods to make drag and drop of tables very straightforward.

Dragging and dropping are handled separately but in either case, you will need to construct a new
javax.swing.TransferHandler object (subclassing TransferHandl er itself and overriding some
methods as below) and install it on the Swing JConponent which is to do be the drag source/drop
target using itsset Tr ansf er Handl er method.

To alow a Swing component to accept tables that are dropped onto it, implement
Tr ansf er Handl er 'Scanl nport and i nport Dat a methods like this:

cl ass Tabl eDragTransfer Handl er extends TransferHandl er {
St ar Tabl eFactory factory = new Star Tabl eFactory();

public bool ean canl nport(JConponent conp, DataFlavor[] flavors) {
return factory.canlnport(flavors);
}

publi c bool ean inportData(JConponent conp, Transferable dropped) {
try {
StarTabl e table = factory. makeSt ar Tabl e(dropped);
processDroppedTabl e(table);
return true;

}

catch (| OException e) {
e.printStackTrace();
return fal se;

}
}
}

Then any time a table is dropped on that window, your processDr oppedTabl e method will be
caled onit.

To alow tables to be dragged off of a component, implement the cr eat eTr ansf er abl e method like
this:

cl ass Tabl eDropTransfer Handl er extends TransferHandl er {
St ar Tabl eQut put witer = new Star Tabl eCut put () ;

protected Transferabl e createTransferabl e(JConponent conp) {
Star Tabl e table = get MyTabl e();
return witer.transferStarTable(table);

}
(you may want to override get Sour ceAct i ons and get Vi sual Represent ati on as well. For some
Swing components (see the Swing Data Transfer documentation for a list), this is al that is
required. For others, you will need to arrange to recognise the drag gesture and trigger the

SUN/252 18

Transf er Handl er 'S expor t AsDr ag method as well; you can use a Dr agLi st ener for this or see its
source code for an example of how to do it.

Because of the way that Swing's Drag and Drop facilities work, this is not restricted to transferring
tables between windows in the same application; if you incorporate one or other of these
capabilities into your application, it will be able to exchange tables with any other application that
does the same, even if it's running in a different VM or on a different host - it just needs to have
windows open on the same display device. TOPCAT is an example; you can drag tables off the
'save' toolbar button or drag them onto the 'load’ button.

4.2 Table Chooser Components

Some graphical components exist to make it easier to load or save tables. They are effectively
table-friendly alternativesto using a JFi | eChooser .

St ar Tabl eChooser
This is for loading tables, and is very much like a JFi | eChooser, but it handles turning
selected items into a st ar Tabl e for you.

St ar Tabl eNodeChooser
This loads tables as well, but it presents a more sophisticated interface to the user. It allows
hierarchical browsing of nodes beyond the directory/file level - for instance you can see the
hierarchical structure of RESOURCE and TABLE elements in a VOTable document, or the
list of HDUsin aFITS file, and pick the TABLE element that you are interested in. It uses the
same classes and appearance as the Treeview application to achieve this.

St ar Tabl eSaver
Thisis used for saving tables. As well as alowing the user to browse the filesystem and select
a filename as usual, it aso alows selection of the output file format from the list of those
which the st ar Tabl eCut put knows about.

4.3 SQL Database Interaction

As explained in section 3.6, tables can be read from and written to SQL databases using the JDBC
framework. Since quite a lot of information has to be specified to indicate the details of the table
source/destination (driver name, server host, database name, table name, user authentication
information...) in most cases this requires rather user-unfriendly URLSs to be entered. For graphical
applications, special dialogue components are supplied which makes this much easier for the user.
These contain one input field per piece of information, so that the user does not need to remember
or understand the JDBC-driver-specific URL. There are two of these components. SQLReadDi al og
for reading tables and sQLw i t eDi al og for writing them.

SUN/252 19

5 Processing Star Tables

The uk. ac. starlink.tabl e package provides many generic facilities for table processing. The
most straightforward one to use is the Rowti st St ar Tabl e, described in the next subsection, which
gives you a St ar Tabl e whose data are stored in memory, so you can set and get cells or rows
somewhat like atabular version of an ArraylLi st .

For more flexible and efficient table processing, you may want to look at the latter subsections
below, which make use of "pull-model” processing.

If all you want to do is to read tables in or write them out however, you may not need to read the
information in this section at all.

5.1 Writable Table

If you want to store tabular datain memory, possibly to output it using STIL's output facilities, the
easiest way to do it iS to use a Rowti st St ar Tabl e object. You construct it with information about
the kind of value which will be in each column, and then populate it with data by adding rows.
Normal read/write access is provided via a number of methods, so you can insert and delete rows,
set and get table cells, and so on.

The following code creates and populates a table containing some information about some
astronomical objects:

/1 Set up information about the col ums.

Col umminfo[] collnfos = new Columlinfo[3];

colInfos[O] new Col uml nfo("Nanme", String.class, "Object nane");
collnfos[1] new Col uml nfo("RA", Double.class, "Ri ght Ascension");
colInfos[2] new Col umml nfo("Dec", Double.class, "Declination");

/1l Construct a new, enpty table with these col ums.
RowLi st St ar Tabl e astro = new Rowli st Star Tabl e(col I nfos);

/1 Popul ate the rows of the table with actual data.
astro. addRow(new Cbject[] { "OuM nebula",

new Doubl e(168.63), new Double(55.03) });
astro. addRowm(new Object[] { "Wirlpool gal axy",

new Doubl e(202.43), new Double(47.22) });
astro. addRow(new Object[] { "MLO8",

new Doubl e(167.83), new Double(55.68) });

5.2Wrap It Up

The RowLi st St ar Tabl e described in the previous section is adequate for many table processing
purposes, but since it controls how storage is done (in a Li st of rows) it imposes a number of
restrictions - an obvious one is that all the data have to fit in memory at once.

A number of other classes are provided for more flexible table handling, which make heavy use of
the "pull-model" of processing, in which the work of turning one table to another is not done at the
time such a transformation is specified, but only when the transformed table data is actually
required, for instance to write it out to disk as a new table file or to display it in a GUI component
such as aJTabl e. One big advantage of thisis that calculations which are never used never need to
be done. Ancther is that in many cases it means you can process large tables without having to
allocate large amounts of memory. For multi-step processes, it is also often faster.

The central ideato get used to is that of a"wrapper” table. This is a table which wraps itself round
another one (its "base" table), using calls to the base table to provide the basic data/lmetadata but

SUN/252 20

making some some modifications before it returns it to the caller. Tables can be wrapped around
each other many layers deep like an onion. This is rather like the way that
javaio.FilterInputStreams work.

Although they don't have to, most wrapper table classes inherit from W apper St ar Tabl e. Thisis a
no-op wrapper, which ssimply delegates all its calls to the base table. Its subclasses generally leave
most of the methods alone, but override those which relate to the behaviour they want to change.
Hereis an example of avery smple wrapper table, which simply capitalizes its base table's name:

class CapitalizeStarTabl e extends Wapper Star Tabl e {
public CapitalizeStarTabl e(StarTable baseTable) {
super (baseTable);

public String getNane() {
return getBaseTabl e(). get Nane() .t oUpper Case();
}

}

As you can see, this has a constructor which passes the base table to the w apper St ar Tabl e
constructor itself, which takes the base table as an argument. Wrapper tables which do any
meaningful wrapping will have a constructor which takes a table, though they may take additional
arguments as well. More often it is the data which is modified and the metadata which is left the
same - some examples of this are given in section 5.4. Some wrapper tables wrap more than one
table, for instance joining two base tables to produce a third one which draws data and/or metadata
from both.

The idea of wrappers is used on some components other than st ar Tabl eS themselves: there are
W apper RowSequenceS and W apper Col ums as well. These can be useful in implementing wrapper
tables.

Working with wrappers can often be more efficient than, for instance, doing a calculation which
goes through all the rows of a table calculating new vaues and storing them in a
RowLi st St ar Tabl e. If you familiarise yourself with the set of wrapper tables supplied by STIL,
hopefully you will often find there are ones there which you can use or adapt to do much of the
work for you.

5.3 Wrapper Classes

Hereisalist of some of the wrapper classes provided, with brief descriptions:

Col umPer nmut edSt ar Tabl e
Views its base table with the columns in a different order.

RowPer nmut edSt ar Tabl e
Views its base table with the rows in a different order.

RowSubset St ar Tabl e
Views its base table with only some of the rows showing.

RandomW apper St ar Tabl e
Caches a snapshot of its base table's datain a (fast?) random-access structure.

Pr ogr essBar St ar Tabl e
Behaves exactly like its base table, but any RowSequence taken out on it controls a
JProgr essBar , SO the user can monitor progress in processing atable.

Progr essLi neSt ar Tabl e
Like ProgressBar StarTabl e, but controls an animated line of text on the terminal for
command-line applications.

Joi nSt ar Tabl e

SUN/252

Glues a number of tablestogether side-by-side.

5.4 Examples

This section gives afew examples of how STIL's wrapper classes can be used or adapted to perform
useful table processing. If you follow what's going on here, you should be able to write table

processing classes which fit in well with the existing STIL infrastructure.

5.4.1 Sorted Table

This example shows how you can wrap a table to provide a sorted view of it. It subclasses
RowPer mut edSt ar Tabl e, which is a wrapper that presents its base table with the rows in a different

order.

cl ass SortedStarTabl e ext ends RowPer nut edSt ar Tabl e {

/1l Constructs a new table froma base table, sorted on a given col um.
SortedSt ar Tabl e(Star Tabl e baseTable, int sortCol) throws | OException {

}
/
/
c

/1 Call the superclass constructor - this will throw an exception
/1 if baseTabl e does not have random access.

super (baseTable);

assert baseTabl e. | sRandom() ;

/1 Check that the colum we are being asked to sort on has
/1 a defined sort order.
O ass clazz = baseTabl e. get Col uml nfo(sort Col).getContentd ass();
if (! Conparable.class.isAssignableFrom clazz)) {

throw new I |1 egal Argunent Exception(clazz + " not Conparable");
}

/1 Fill an array with objects which contain both the index of each
/1l row, and the object in the selected colum in that row.
int nrow = (int) getRowCount();
RowKey[] keys = new RowKey[nrow];
for (int irow=0; irow < nrow, |rowt+)
Obj ect val ue = baseTable.getCell (irow, sortCol);
keys[irow] new RowKey((Conparable) value, irow);

}
/1 Sort the array on the values of the objects in the col um;

/1l the row indices will get sorted into the right order too.
Arrays.sort(keys);

/! Read out the values of the rowindices into a pernutation array.
long[] rowMap = new |long[nrow];
for (int irow=0; irow < nrow, irow+) {

rowmvap[irow] = keys[irow].index_;

/1l Finally set the row permnmutation map of this table to the one
/1 we have just worked out.
set Rowivap(rowivap);

Defines a class (just a structure really) which can hold
a row i ndex and a value (fromour selected colum).
ass RowKey i mpl enents Conparable {

Conpar abl e val ue_;

int index_;

RowKey(Conparabl e value, int index) {
val ue_ = val ue;
i ndex_ = index;

}
public int conpareTo(Object o) {
Rowkey ot her = (RowKey) o;
return this.value_. conpareTo(other.value_);

SUN/252 22

5.4.2 Turn aset of arraysinto a Star Table

Suppose you have three arrays representing a set of points on the plane, giving an index number and
an x and y coordinate, and you would like to manipulate them as a StarTable. One way is to use the
Col urmSt ar Tabl e class, which gives you a table of a specified number of rows but initially no
columns, to which you can add data a column at a time. Each added column is an instance of
Col urmbat a; the Ar r ayCol urm class provides a convenient implementation which wraps an array of
objects or primitives (one element per row).

St ar Tabl e nakeTabl e(int[] index, double[] x, double[] y) {
i nt nRow = index. | engt h;
Col utmSt ar Tabl e tabl e = Col umsSt ar Tabl e. makeTabl eW t hRows(nRow) ;
t abl e. addCol um(ArrayCol umm. makeCol utm("I ndex", index));
t abl e. addCol um(ArrayCol umm. makeCol utm("x", x));
t abl e. addCol um(ArrayCol um. makeCol um("y", y));
return tabl e;

A more general way to approach thisis to write a new implementation of St ar Tabl e. For this you
will usually want to subclass one of the existing implementations, probably Abst ract St ar Tabl e,
RandonSt ar Tabl e OF W apper St ar Tabl e. Here is how it can be done:

cl ass Poi ntsStarTabl e extends Randontt ar Tabl e {

/1 Define the netadata object for each of the col ums.
Columlinfo[] collnfos_ = new Columlnfo[] {
new Col uml nfo("index", Integer.class, "point index"),
new Col uml nfo("x", Double.class, "x co-ordinate"),
new Col utmlinfo("y", Double.class, "y co-ordinate"),

/1 Menmber variables are arrays hol ding the actual data.
int[] index_;

doubl e[] x_;

doubl e[] y_;

| ong nRow_;

public PointsStarTable(int[] index, double[] x, double[] y) {
i ndex_ = index;
X_ = X;
y_ =Y, ,
nRow_ = (long) index_.Ilength;

public int getCol umCount () {
return 3;

public | ong get RowCount () {
return nRow_;

public Col uml nfo get Col umlnfo(int icol) {
return collnfos_[icol];

public Object getCell(long Irow, int icol) {
int irow = checkedLongTolnt(lrow);
switch (icol) {
case 0: return new Integer(index_[irow]);
case 1: return new Double(x_[irow]);
case 2: return new Double(y_[irow]);
default: throw new |11l egal Argunment Exception();

SUN/252 23

In this case it is only necessary to implement the get Cel I method; Randonst ar Tabl e implements
the other data access methods (get Row, get RowSequence) in terms of this.

5.4.3 Add a new column

In this example we will append to a table a new column in which each cell contains the sum of all
the other numeric cellsin that row.

First, we define a wrapper table class which contains only a single column, the one which we want
to add. We subclass Abst r act St ar Tabl e, implementing its abstract methods as well as the get Cel |
method which may be required if the base table is random-access.

cl ass SunmCol uimSt ar Tabl e ext ends Abstract Star Tabl e {

St ar Tabl e baseTabl e_;
Col umlinfo col InfoO_ =
new Col uml nfo("Suni, Double.class, "Sum of other colums");

/1 Constructs a new sunmation table froma base table.
SunCol umsSt ar Tabl e(St ar Tabl e baseTable) {

baseTabl e_ = baseTabl ¢;
}

/'l Has a single colum.
public int getCol umCount () {
return 1,

/1l The single colum is the sum of the other colums.

publ i c Col uml nfo get Col umlnfo(int icol
if (icol '=0) throw new Illegal Argument Exception();
return col I nfoO_;

/1 Has the same nunber of rows as the base table.
public | ong get RowCount ()
return baseTabl e_. get RowCount () ;

/'l Provides random access iff the base tabl e does.
public bool ean i sRandon() {

return baseTabl e_.i sRandom();
}

/'l Get the row fromthe base table, and sum el enents to produce val ue.
public Object getCell(long irow, int icol) throws | OException {

if (icol '=0) throw new Il|egal Argument Exception();

return cal cul ateSun{ baseTable_.getRow(irow));

Use a Wapper RowSequence based on the base table's RowSequence.
W appi ng a RowSequence is quite like wapping the table itself;
we just need to override the nmethods which require new behavi our.
i c RowSequence get RowSequence() throws | OException {

final RowSequence baseSeq = baseTabl e_. get RowSequence();

return new W apper RowSequence(baseSeq) {

=2

public Object getCell(int icol) throws |OException {
if (icol '=0) throw new IIIlegal Argunment Exception();
return cal cul ateSum baseSeq. get Rowm));

public Object[] getRow() throws | OException {
} return new Cbject[] { getCell(0) };
1

}
/1 This nethod does the arithnetic work, summing all the numeric
/1l colums in a row (array of cell value objects) and returning

SUN/252 24

/1 a Doubl e.
Doubl e cal cul ateSum(Object[] row) {
doubl e sum = 0.0;
for (int icol =0; icol <rowlength; icol++) {
bj ect value = row icol];
if (value instanceof Nunber
sum += ((Nunber) val ue). doubl eVal ue();

return new Doubl e(sum);

}
}
We could use this class on its own if we just wanted a 1-column table containing summed values.
The following snippet however combines an instance of this class with the table that it is summing
from, resulting in an n+1 column table in which the last column is the sum of the others:

St ar Tabl e get Conbi nedTabl e(StarTable inTable) {
StarTabl e[] tableSet = new StarTable[2];
tableSet[0] = inTable;
tableSet[1] = new SunCol umsSt ar Tabl e(i nTable);
St ar Tabl e combi nedTabl e = new Joi nStar Tabl e(tabl eSet);
return conbi nedTabl e;

5.5 Table Joins

Some fairly sophisticated classes for performing table joins (by matching values of columns
between tables) are available in the uk.ac.starlink.table.join package. These are mostly
working, but not fully supported or described in this document, and they are subject to changes in
future releases. Watch this space, or contact the author if you are keen to use this functionality.

SUN/252 25

6 VOTable Access

VOTable is an XML-based format for storage and transmission of tabular data, endorsed by the
International Virtual Observatory Alliance. The DTD and documentation are available from
http://cdsweb.u-strasbg.fr/doc/VOTable/. The current version of STIL supports version 1.0 of the
format (with avery few exceptions).

As with the other handlers tabular data can be read from and written to VOTable documents using
the generic facilities described in section 3. However if you know you're going to be dealing with
VOTables the VOTable-specific parts of the library can be used on their own; this may be more
convenient and it also allows access to some features specific to VOTables.

The VOTable functionality is provided in the package uk.ac.starlink.votable. It has the
following features:

Reads all VOTable data formats

Writes all VOTable data formats

Full access to document structure

Full handling of array types

Flexible table output

Hybrid (SAX/DOM) parsing
Largetables

Fast

Offline parsing

Resolution of relative URLs
Sequential/random access to tabular data
Best efforts parsing of non-conforming documents

Most of these are described in subsequent sections. Many of them, particularly handling of
BINARY and FITS format data, are at time of writing not believed to be available in any other
VOTablelibraries.

The following features of the VOTable format are not supported:

» |ID/ref referencing of TABLE, FIELD elements
* VOTable 1.1 format GROUP elements
* Null value handling for numeric array datatypesin BINARY/FITS encodings

Additionally the handling of variable-length fields in BINARY streams is done according to the
VOTable 1.1 specification not the VOTable 1.0 one (probably no table has ever been written using
the latter, so thisis a Good Thing).

6.1 DATA Element For mats

The actual table data (cell contents, as opposed to metadata) in a VOTable are stored in a TABLE's
DATA element. The VOTable standard allows it to be stored in a number of ways; It may be
present as XML elements in a TABLEDATA element, or as binary data in one of two formats,
BINARY or FITS; if binary the data may either be available externally from a given URL or
present in a STREAM element encoded as character data using the Base64 scheme (defined in
RFC2045).

To summarise, the possible formats are:

TABLEDATA

BINARY at external URL
BINARY inline (base64-encoded)
FITS at externa URL

SUN/252 26

* FHITSinline (base64-encoded)
and here are examples of what the different forms of the DATA element look like:

<!-- TABLEDATA format, inline -->
<DATA>
<TABLEDATA>
<TR> <TD>1.0</ TD> <TD>first</ TD> </ TR>
<TR> <TD>2. 0</ TD> <TD>second</ TD> </ TR>
<TR> <TD>3. 0</ TD> <TD>t hird</ TD> </ TR>
</ TABLEDATA>
</ DATA>

<l-- BINARY format, inline -->
<DATA>
<Bl NARY>
<STREAM encodi ng=' base64' >
PAAAAAAAAAVITEX] ZdEAAAAAAAAAGE 2V) b25k QEAAAAAAAAVOAG yZA==
</ STREAM>
</ Bl NARY>
</ DATA>

<!-- BINARY format, to external file -->
<DATA>
<Bl NARY>
<STREAM href="fil e:/ hone/ nbt/ Bl NARY. dat a"/ >
</ Bl NARY>
</ DATA>

External files may also be compressed using gzip. The FITS ones look pretty much like the binary
ones, though in the case of an externally referenced FITS file, the file in the URL is a fully
functioning FITS file with (at least) one BINTABLE extension.

At the time of writing, most VOTablesin the wild are written in TABLEDATA format. This has the
advantage that it is human-readable, and it's easy to write and read using standard XML tools.
However, it is not a very suitable format for large tables because of the high overheads of
processing time and storage/bandwidth, especially for numerical data. For efficient transport of
large tables therefore, one of the binary formats is recommended.

STIL can read and write VOTables in any of these formats. In the case of reading, you just need to
point the library at a document or TABLE element and it will work out what format the table data
are stored in and decode them accordingly - the user doesn't need to know whether it's
TABLEDATA or externa gzipped FITS or whatever. In the case of writing, you can choose which
format is used.

6.2 Reading VOTables

STIL offers a number of options for reading a VOTable document, described below. In all cases
they provide you with a way of obtaining the table data (contents of the cells) without having to
know how these were encoded. The API defines the contents of a cell only as an j ect, but to
make sense of them, you will need to have an idea what kind of object each is. In general, scalars
are represented by the corresponding primitive wrapper class, and arrays are represented by an array
of primitives of the corresponding type. Arrays are only ever one-dimensional - information about
any multidimensional shape they may have is supplied separately (use the get Shape method on the
corresponding Col umml nf 0). There are a couple of exceptions to this: arrays with dat at ype="char"
or "uni codeChar" are represented by String objects since that is almost always what is intended
(n-dimensional arrays of char are treated as if they were (n-1)-dimensional arrays of Strings), and
unsi gnedByt e types are represented as if they were short s, since in Java bytes are always signed.
Complex values are represented as if they were an array of the corresponding type but with an extra
dimension of size two (the most rapidly varying).

SUN/252 27

Hereishow all VOTable datatypes are represented then:

dat at ype Cl ass for scal ar Cl ass for arraysize>1
bool ean Bool ean bool ean[]

bi t bool ean[] bool ean[|

unsi gnedByt e Short short[]

short Short short][]

i nt I nt eger int[]

| ong Long | ong[]

char Char String or String[]
uni codeChar Char String or String[]
fl oat Fl oat float[]

doubl e Doubl e doubl e[]

f I oat Conpl ex float[] float[]

doubl eConpl ex doubl e[] doubl e[]

It is not, however, necessary to investigate the values of the dat at ype and arr aysi ze attributes to
work out what kinds of objects you are going to get as values of cellsin atable. Each column of the
table object that STIL gives you can report the class of object which will be found in it. In most
cases, you will receive a st ar Tabl e object which contains the table metadata. To find the class of
objects in the fourth column, you can do this:

O ass clazz = starTabl e. get Col uml nfo(3). get Contentd ass();

Every value obtained from a cell in that column can be cast to the class cl azz (though note such a
value might be nul 1'). Useful tip: for generic processing it is often handy to cast numeric scalar cell
contents to type Nunmber .

6.2.1 Read asingle VOTablefrom afile

The simplest way to read a VOTable is to use the generic table reading method described in section
3.2, in which you just submit the URL or filename of a document to a St ar Tabl eFact ory, and get
back a st ar Tabl e object. If you're after one of severa TABLE elements in a document, you can
specify this by giving its number as the URL's fragment ID (the bit after the '# sign).

The following code would give you st ar Tabl es read from the first and fourth TABLE elementsin
the file "tabledoc.xml":

St ar Tabl eFactory reader = new Star Tabl eFactory();
Star Tabl e tabl eA = reader. nakeSt ar Tabl e("tabl edoc. xm ");
Star Tabl e tabl eB = reader. makeSt ar Tabl e("t abl edoc. xm #3");

If you know it's going to be a VOTable (rather than, e.g., a FITS table) you could use a
VOTabl eBui | der instead of a st ar Tabl eFact ory, which works in much the same way, though you
need to supply a Dat aSour ce rather than a URL. In most cases there is no particular advantage to
this.

In either case, al the data and metadata from the TABLE in the VOTable document are available
from the resulting st ar Tabl e object, as table parameters, columninfos or the data itself. If you are
just trying to extract the data and metadata from a single TABLE element somewherein aVOTable
document, either of these procedures should be fine.

The parameters of the table which is obtained are taken from PARAM and INFO elements. Since
these cannot occur within a TABLE element itself, any PARAM or INFO in the RESOURCE
element which is the parent of agiven TABLE istaken to apply to that table. The value of these can

SUN/252 28

be obtained using the get Par amet er s method.

6.2.2 Read VOTable document structure

If you are interested in the structure of the VOTable document as opposed to just the tabular data,
you can obtain atree of VOEI enent objects representing all or part of the document (very much like
a DOM), which can be navigated using the get Chi | dren method and so on. Some of the nodes in
thistree are of specialised subclasses of VCEI enent ; these nodes provide extra functionality relevant
to their réle in a VOTable document. For instance a Par anEl enent object (which represents a
PARAM element in the XML document) has a get bj ect method, which returns the parameter's
value as a Java object - this may be an I nteger, Or afloat[] array, or some other type of item,
depending on not only the val ue attribute of the element, but on what its dat at ype and ar r aysi ze
attributes are too (its class follows the same rules as for table columns). The various VCEl enent

subclasses and their methods are not documented exhaustively here - see the javadocs.

The most important of the VOEI ement subclassses is Tabl eEl ement , which represents a TABLE
element. The best way to obtain the actual table data (values of the cells) from a Tabl eEl enent iSto
make a st ar Tabl e from it using the vost ar Tabl e adapter class; this can be interrogated for its data
and metadata as described in section 2. The resulting St ar Tabl e may or may not provide random
access (i sRandom may or not return true). This reflects how the data has been obtained - if it's a
binary stream from aremote URL it may only be possible to read the rows from start to finish arow
at atime, but if it's a set of DOM nodes it may be possible to read cells in any order. If you need
random access for a table and you dont have it (or don't know if you do), then use
Tables.randomTable as usual (see section 2.3.3).

It is also possible to access the table data directly (without making it into a st ar Tabl e) by using the
get Dat a method of the Tabl eEl enent , but in this case you need to work a bit harder to extract some
of the data and metadata in useful forms. See the Tabul ar Dat a documentation for details.

Where possible, STIL uses a hybrid SAX/DOM approach to constructing the tree of VOEl ement S
which represents the VOTable document. In general it builds a DOM of the whole document with
the exception of the children of STREAM or TABLEDATA elements, since these are the ones
which contain the actua table data cells, and would thus be likely to have large memory
requirements. When it gets to one of these, it works out how to turn the contents into a tabular data
object, and interprets the corresponding SAX events directly to do this. The effect of thisis that (for
al but the weirdest VOTable documents) the memory requirements of the DOM tree are very
modest, but all the information about the hierarchical structure of the document is available. What's
lost from the DOM s the representation of the cell values themselves, and you almost certainly
don't want to go poking around in that, since you can obtain it in ready-to-use form from the
Tabl eEl ement . Having said that, if for some reason you do want the DOM to represent the whole of
aVOTable document, bulk data and all, you can do that too - just parse the document to construct a
DOM yourself, and submit that full DOM to VOEl enent Fact ory.

Although the DOM tree will be small, in some cases the memory requirements for a table may be
large, since the data has to be stored somewhere. Currently, for table data which is supplied inline
(in any of the three formats) STIL will store it internally in some kind of memory structure (hence
random access is available). There are plans for a configurable flag to cause this data to be stored in
a scratch file instead, so that there is no large memory requirement. For href-referenced streamed
data, it just streams the data every time the corresponding Tabul ar Dat a's get RowSt epper method is
called, so in this case only sequential accessis available, and thereis no large memory requirement.

To read a VOTable document as described in this section, use one of VCEI erent Fact ory's several
makeVOEl enent methods to obtain a top-level vOEl enent object. You can then interrogate the
resulting tree using methods like get Chi | dren, get Parent, get Attri but e etc. When you get to a
TABLE element (Tabl eEl ement object), you can turn it into a St ar Tabl e using the Vost ar Tabl e

SUN/252 29

adapter class. The top-level element you get from the VOEl enent Fact ory will typically be a
VOTABLE element, since that is normally the top element of a VOTable document, but STIL does
not require this - for instance the XML document could start with a RESOURCE element, or you
could useit to investigate only a subtree of a DOM representing a document you parsed earlier.

Here is an example of using this approach to read the structure of a, possibly complex, VOTable
document. This program locates each TABLE element which is the immediate child of the first
RESOURCE element in the document, and prints out its column titles and table data.

void printFirstTable(File votFile) throws | OException, SAXException {

/'l Create a tree of VCElenents fromthe given XM. file.
VOE! enent top = VCElI enent Fact ory. makeVCEl enent (votFile);

/1 Find the first RESOURCE el ement.
VCEl enent[] resources = top. get Descendant sByNanme("RESOURCE");
VOE!l enent resl = resources[0];

/1 lterate over all its direct children which are TABLE el ements.
VCEl enent[] tables = resl. get Chil drenByNanme("TABLE");
for (int iTab = 0; iTab < tables.length; iTab++) {
Systemout.println("Table #' + iTab + "\n\n");
Tabl eEl enent tabl eEl = (Tabl eEl enent) tables[1 Tab];
St ar Tabl e starTabl e = new VOSt ar Tabl e(tabl eEl);

/1 Wite out the colum name for each of its col ums.

int nCol = starTabl e. get Col uimCount () ;

for (int iCol =0; iCol < nCol; iCol++) {
String col Name = star Tabl e. get Col umminfo(i Col).getNane();
Systemout.print(col Name + "\t");

}
Systemout. println();

/] lterate through its data rows, printing out each el ement.
for (RowSequence rSeq = starTabl e. get RowSequence(); rSeq. hasNext();) {
r Seq. next () ;
oj ect[] row = rSeq. get Row() ;
for (int iCol =0; i1Col < nCol; iCol++) {
Systemout.print(row iCol] + "\t");

}
Systemout. println();

6.2.3 Streamed access

If you only need one-shot access to the data in a single TABLE element, you can use instead the
streanst ar Tabl e method of vVOTabl eBui | der , which effectively turns a stream of bytes containing
a VOTable document into a stream of events representing a table's metadata and data. Y ou define
how these events are processed by writing an implementation of the Tabl eSi nk interface. The data
Is obtained using SAX parsing, so it should be fast and have a very small memory footprint. Since it
bails out as soon as it has transmitted the table it's after, it may even be able to pull table data out of
astream whichisnot valid XML.

The following code streams a table and prints out the name of the first column and the average of its
values (assumed numerical):

/1 Set up a class to handle table processing callback events.
cl ass Col umReader i npl enents Tabl eSi nk {

private |ong count_; /'l nunber of rows so far

private double sum; /1 running total of values fromfirst colum
doubl e average_; /1l first columm average

String title_; /'l first colum nane

SUN/252 30

/1 Handl e nmetadata by printing out the first colum nane.
public void accept Metadata(StarTable meta) {

title_ = meta.getColumminfo(0).getNane();
}

/1 Handl e a row by updating running totals.
public void accept Rowm(oject[] row) {
sum_ += ((Nunber) row O]).doubl eVal ue();
count _++;

}

/1 At end-of-table event calcul ate the average.
public void endRows() {
average_ = sum_/ count_;

b

/1l Streanms the naned file to the sink we have defined, getting the data
/1 fromthe first TABLE elenent in the file.
public void summari zeFirst Colum(URL votLocation) throws | OException {
Col unmmReader reader = new Col utmReader () ;
I nput Stream in = votLocati on. openStream();
new VOTabl eBui | der (). streanttar Tabl e(in, reader, "0");
in.close();
Systemout. println("Col um nane: " + reader.title_);
Systemout.println("Colum average: " + reader.average_);

}

Parameters are obtained from PARAM and INFO elements in the same way as described in section
6.2.1.

6.3 Writing VOTables

To write aVOTable using STIL you have to prepare a st ar Tabl e object which defines the output
table's metadata and data. The uk. ac. starl i nk. t abl e package provides a rich set of facilities for
creating and modifying these, as described in section 5 (see section 5.4.2 for an example of how to
turn a set of arraysinto a st ar Tabl e). In general the FIELD arr aysi ze and dat at ype attributes are
determined from column classes using the same mappings described in section 6.2.

A range of facilities for writing st ar Tabl es out as VOTables is offered, allowing control over the
data format and the structure of the resulting document.

6.3.1 Generic table output

Depending on your application, you may wish to provide the option of output to tables in arange of
different formats including VOTable. This can be easily done using the generic output facilities
described in section 3.3.

6.3.2 Single VOTable output

The simplest way to output atable in VOTable format isto use avorabl ewi t er, which will output
aVOTable document with the simplest structure capable of holding a TABLE element, namely:

<VOTABLE version="1.0">
<RESQURCE>
<TABLE>
<!-- .. FIELD el enents here -->
<DATA>
<!-- table data here -->
</ DATA>
</ TABLE>
</ RESOURCE>
</ VOTABLE>

SUN/252 31

The writer can be configured/constructed to write its output in any of the formats described in
section 6.1 (TABLEDATA, inline FITS etc) by using its DataFormat and inline attributes. In the
case of streamed output which is not inline, the streamed (BINARY or FITS) data will be written to
anew file with aname similar to that of the main XML outpuit file.

Assuming that you already have your st ar Tabl e to output, here is how you could write it out in all
the possible formats:

void outputAll Formats(StarTable table) throws | OException {
VOTabl eWiter voWiter = new VOTabl eWiter(DataFornat. TABLEDATA, true);
voWiter.witeStarTable(table, "tabledata-inline.xm");

voW i ter.setDataFormat (DataFormat.FI TS);
voWiter.witeStarTable(table, "fits-inline.xm");

voW i ter. setDat aFor mat (Dat aFor mat . Bl NARY) ;
voWiter.witeStarTabl e(table, "binary-inline. xm");

voWiter.setlnline(false);
voW i ter.setDataFormat(DataFormat.FI TS);
voWiter.witeStarTable(table, "fits-href.xm");

voW i ter. setDat aFor mat (Dat aFor mat . Bl NARY) ;
voWiter.witeStarTable(table, "binary-href.xm");

6.3.3 TABLE element output

You may wish to write a VOTable document with a more complicated structure than a simple
VOTABLE/RESOURCE/TABLE one. In this case you can use the VOSeri al i zer class which
handles only the output of TABLE elements themselves (the hard part), leaving you free to embed
these in whatever XML superstructure you wish.

Once you have obtained your VOSeri al i zer by specifying the table it will serialize and the data
format it will use, you should invoke its witeFields method followed by either
writelnlineDataEl ement OF writeHr ef Dat aEl ement . For inline output, the output should be sent
to the same stream to which the XML itself is written. In the latter case however, you can decide
where the streamed data goes, allowing possibilities such as sending it to a separate file in a
location of your choosing, creating a new MIME attachment to a message, or sending it down a
separate channel to a client. In this case you will need to ensure that the href associated with it
(written into the STREAM element's hr ef attribute) will direct areader to the right place.

Hereis an example of how you could write two inline tables in the same RESOURCE element:

void witeTables(StarTable t1, StarTable t2) throws | OException {
Buf feredWiter out =
new Buf feredWiter(new QutputStreanmWiter(Systemout));

out.wite("<VOTABLE version="1.0">\n");
out.write("<RESOURCE>\n");
out.wite("<DESCRI PTI ON>Two tabl es</ DESCRI PTI ON>\n") ;

out.wite("<TABLE>\n");

VOSerializer serl = VOSerializer.nmakeSerializer(DataFormat. TABLEDATA, t1);
serl.witeFields(out);

serl.witelnlineDataEl enent(out);

out.wite("</ TABLE>\n");

out.wite("<TABLE>\n");

VCOSeri alizer ser2 = VCSeri alizer.makeSeri alizer(DataFormat. TABLEDATA, t2);
ser2.witeFields(out);

ser2.writelnlineDataEl enent(out);

out.wite("</ TABLE>\n");

out.write("</ RESOURCE>\n");

out.wite("</VOTABLE>\n");

SUN/252 32

}

and here is how you could write a table with its data streamed to a binary file with a given name
(rather than the automatically chosen one selected by vOTabl ewi ter):

void witeTabl e(StarTable table, File binaryFile) throws | OException {
Buf feredWiter out =
new BufferedWiter(new QutputStreamiWiter(Systemout));

out.write("<VOTABLE version='"1.0">\n");
out.wite("<RESOURCE>\n");
out.wite("<TABLE>\n");
VCSeri alizer ser = VOSerializer.nakeSerializer(DataFornat. Bl NARY, table);
ser.witeFields(out);
Dat aCut put Stream bi nQut =
new Dat aQut put St rean{ new Fi |l eQut put Strean(binaryFile));
ser.witeHref Dat aEl enent(out, "file:" + binaryFile, binQut);
bi nQut . cl ose();
out.write("</ TABLE>\n");
out.wite("<RESOQURCE>\n");
out.write("<VOTABLE>\n");

SUN/252 33

7 Table Tools

A couple of applications using the STIL library currently exist, as listed below. More will be made
available in the future, either bundled with STIL or in separate application packages.

7.1 Tablecopy

Tablecopy copies a table from any of the (input-) supported formats into any of the (output-)
supported ones. This is pretty trivial, since all the hard work is done using the generic 1/0 facilities
described in section 3.

The application is the mai n method of Tabl eCopy, though it might get moved in future releases.
Invoking it with the "- hel p" flag will print a usage message. Assuming STIL ison your classpath:

Usage: Tabl eCopy [-of nmt <out-format>] <in-table> <out-table>

Known out-formats:
j dbc
fits
vot abl e-t abl edat a
vot abl e- bi nary-inline
vot abl e-fits-href
vot abl e- bi nary- hr ef
votabl e-fits-inline
t ext
asci
ht mi
ht m - el enent
| at ex
| at ex- docunent
nmrage

which should be fairly self-explanatory. According to how you have downloaded STIL you may
also be able to invoke it using the "t abl ecopy” script. For some, though not all, output formats,

using "-" asthe out - t abl e argument will write to standard output. Y ou can't use the same trick for
standard input I'm afraid.

Here are some examples of use:
* CopyaFITStabletoaVOTable:

tabl ecopy stars.fits stars. xn

* Print the contents of the fifth <TABLE> element in a compressed VOTable document at the
end of a URL to standard output in human-readable format:

tabl ecopy -ofnt text http://renote. host/data/vizier.xm.gz#4 -
* Writethe results of an SQL query on aMySQL database to aFITS binary table:

java -Djdbc.drivers=com nysql.jdbc.Driver

-classpath stil.jar:mysqgl-connector-java-3.0.6-stable-bin.jar

uk. ac. starlink.tabl e. Tabl eCopy

-ofmt fits

"jdbc: nysql://1ocal host/astrol#SELECT ra, dec, |Inag, Kmag FROM dqc”
wislist.fit

7.2 TOPCAT

TOPCAT (Tool for OPerations on Catalogues And Tables) is a graphical application for interactive

SUN/252 34

manipulation of tables, written by the same author as STIL. All its table 1/0 and processing is built
on STIL.

SUN/252 35

8 Acknowledgements

My thanks are due to a number of people who have contributed help to me in writing this document
and the STIL software, including:

Alasdair Allan (Starlink, Exeter)
Clive Davenhall (AstroGrid, RoE)
Pierre Didelon (CEA)

Peter Draper (Starlink, Durham)
David Giaretta (Starlink, RAL)
Jonathan Irwin (I0A)

Clive Page (AstroGrid, Leicester)

STIL is written in Java by Sun Microsysystems Inc. and contains code from the following
non-Starlink libraries:

» nom.tam.fitsis used for some parts of the FITS table handling.
* Ant's Bzip2 compression/decompression code
* HTM package is used when doing table joins with astronomical coordinates

SUN/252 36

9 Release Notes

Prior to version 1.0 of this release, these routines were available in the TABLE and VOTABLE
packages of the Starlink java set. Although much of the code remains the same, there have been
quite a number of incompatible API-level changes since that version. The author would be happy to
help people who used the old version and want help adapting their code to the current STIL release.

Since this is the first proper public release we hope that future releases will provide a much better
degree of API-level backward compatibility, but no guarantee is offered that no incompatible
changes will be made in the future.

9.1 Version History

Version 1.0 (30 Jan 2004)
Initial public release.

Version 1.0-2 (11 Feb 2004)
¢ Added RowLi st St ar Tabl e.

Version 1.0-3 (12 Feb 2004)

e Considerably improved performance of inline (base64-encoded) BINARY/FITS table
parsing.

Version 1.0-4 (17 Mar 2004)

e VOTable-derived StarTables now pick up parameters from INFO elements as well as
PARAM elements.

* Text format output handler now by default outputs table parameters as well as the table
data and column metadata.

Version 1.1 (29 Mar 2004)

* New ASCII format output handler can write tables in the same text-based format used by
the ASCII input handler.

* Joi nSt ar Tabl e can now deduplicate column names.

* New class Concat Star Tabl e permits adding the rows of one table after the rows of
another.

Version 1.1-1 (11 May 2004)
» Improved PostgreSQL compatibility

STIL is released under the terms of the GNU Genera Public License (see
http://www.gnu.org/copyleft/gpl.html).

