STIL - Starlink TablesInfrastructureLibrary

Version 3.0-3

VOTable \ Table metadata E';‘"‘:;.,..m VOTable

PARAMs/INFOs

FITS
/

FITS
|| Column metadata ™%, ___»SQL table

UCDs

SQL query — Ty ASCII
AS C” _» Cell values

Sarlink User Note252
Mark Taylor
27 October 2011

$ld: sun252.xml,v 1.126 2011/10/27 13:58:00 mbt Exp $

Abstract

STIL isaset of Java class libraries which allow input, manipulation and output of tabular data and
metadata. Among its key features are support for many tabular formats (including VOTable, FITS,
text-based formats and SQL databases) and support for dealing with very large tables in limited
memory.

As well as an abstract and format-independent definition of what constitutes a table, and an
extensible framework for "pull-model” table processing, it provides a number of format-specific
handlers which know how to serialize/deserialize tables. The framework for interaction between the
core table manipulation facilities and the format-specific handlers is open and pluggable, so that
handlers for new formats can easily be added, programmatically or at run-time.

The VOTable handling in particular is provided by classes which perform efficient XML parsing
and can read and write VOTablesin any of the defined formats (TABLEDATA, BINARY or FITS).
It supports table-aware SAX- or DOM-mode processing and may be used on its own for VOTable
[/0O without much reference to the format-independent parts of the library.

Contents

PN 01 - 1o PSRRI 1
O 1 0o [Tox (o SRR 5
I VAT T TSR N = o] (=R 5

2L TADIE MELAAALAL ... 6

2.2 COlUMN MELAOELA.........eeceeeeeieie ettt e st e be e eesreesteeneeeneeneeeneenreenes 6
PGB Ir o] 1= I - - 1SS 6
2.3. 1 SEQUENTIAI ACCESS......cuiitirieeieeieeeei ettt sttt a ettt e b et e b e sb e bt e ae s st e s e e e e e e s et e neeabesbeenenneeneas 7
2.3.2 RANUOM ACCESS......eeiteeueeeieesieeieeeesteestesseesseesteaeesseesseaseeaseesseassesseesseensesseesseensessesssennsessenssennsenn 8
2.3.3 Adapting Sequential t0 RANAOM ACCESS........ccoiiriiiiririeieee et nne s 8
G 1= o] 1 1L TSRS 9
3.1 EXIENSIDIE /O FramEWOTK........cc.eoieeeee et ee e nneeeenneen 9
3.2 Generic Table RESOUICE INPUL........ccereeieieiisesie sttt nre e 10
3.3 Generic Table Streamed INPUL..........coiiieieeeee et 11
3.4 GENENIC TADIE OULPUL. ...ttt bbb bbb snenneeneas 12
3.5 Supplied INPUE HBNAIEIS........couiiiiieeeeee e 13
ST A 1 SO 13
A @0 1W 0] 0 o 1= g1 =0 o N 14
ST A A O 1 =o)L= TSRS 14
I N 1 I PSSR 15
3.5.5 ComMME-SEPAALEA VEIUBS.........couiiiiiiiesie sttt sb e 16
3.5.6 TaD-Separated TabDIE........ooiiiieeeieeeee et 16
IS A 1 A PSS 17
KIS S N1 5 SRS 17
3.6 Supplied OULPUL HBNAIEXS.........ccoieieeeeeeeee bbb 17
3G 30 A 1 SRS 18
BB 2 FIT S PIUS.. .ttt bbbt bbbt ae e e e e b e be bt b e nbeeneeneeneas 18
3.6.3 ColuMN-0MENTEA FITS..... .ottt sre e ee e sreenseeneesneeneeenee e 19
G A O 1 =o)L= TSRS 19
BB 5 ASCI ettt Rt bt et Re R et e Rt Rt e e benbe e eneeaeneeneas 19
3.6.6 COMME-SEPAALEA VBIUBS.........couiiiiieiesie ettt se bbb i 19
3.6.7 TaD-Separated TabDIE........coiiieeeeiee et 19
G S =T T = S 19
13 G 30 o 8 I SRS 20
G 0 O - I = GRS 20
0 I 1Y = USSP 20
3.7 1/O USING SQL dBLEDESES.ccueeueeeeieiesiesie ettt e et b b snenne e 20
3.7.1 IDBC CONFIQUIALTON.evitirteeiieiieeeeesee sttt s bbb et e e e e e e e aesbeabenseeseeneeneas 20
3.7.2 Reading from @ DataDaSE.coeitirieeeeiee e 21
3.7.3WIiting tO @ DataDBSE.ccueiueeieeeeeee s 22
A SEOFAQE POIICIES. ...ttt sttt e b et e s ae e bt e be e st e s be et e e neesneebeeneas 23
Y o] = o] o =SS 23
4.2 DEFAUIT POLICYcveieeeeieieeee sttt st b ettt ettt b e ne e bt s ne e enes 24
Y €10 BT o] o Lo o ST U RO PP USROS 26
D =0 1= aTo [T o PR PSRS 26
5.2 Table LOad DIGIOQUES..........oouiiiieriiitieieeee ettt sttt sn e b nae s 27
5.3 TaDIE SAVE DIGIOQUES.........oiuiiiitiiiieiieee ettt bbbttt sa b e b 27
6 ProCessing SEar TADIES.......coiuiiiiiecie ettt ne et e eneennas 28
6.1 WIITADIE TN €. bbbttt bbb 28
YLV = o I L A O o PSPPSR OPRP PRI 28
RNV =T o] 0= O = LSS 29
5.4 EXAIMPIES. ... eeeeieieeesieeestee st s ettt et e st e e e s te e e e ase e s teeaeeseesseenteese e seenteereesseeneeeneenseaneenneenrenneans 30
6.4.1 SOMEA TADIE......ueeieeee bbbttt ettt b e b nae b nneas 30
6.4.2 Turn aset of arraySiNto aStArTabIe.........ccveeiieiiee e 31
6.4.3 Add A NEW COIUMN......otiiiiiiiiieie ettt e bbbttt et be e enas 32
6.5 TADIE JOINS.....coueiieiiiiiisiiee ettt b e a ettt bbbttt et e ae e nns 33
TV OT A ACCESS.....coueieieeeieeie ettt e sttt et e e eesaeesse e beeaeesbeentesseesseenseaneesbeeneesreensennsens 34
7.1 StarTable Representation Of VOTaDIES.........coieeiiieiicce e 34

0 0 U o (U 34

WA = = 1 1= (< £ TR 34

7.1.3 COlUMN MELAOELAL.ceveeeeieeesieeie st e e e s seetesreesseeneesneesseensesseensennenns 35
0 R D = = 1Y/ 0= PP 35
7.2 DATA EIEMENE FOMMEES......ceiieiieieeiesieesieeeesieesieeeessee e seesseesseeseesseesseensesseessesnsessesssesnsesnessns 36
7.3 REAAING VOTEDIES......ceeieieee ettt bbbttt b e ne e 37
7.3.1 Generic VOTEDIE REAA..........eoieieeceee ettt sreenenneens 37
7.3.2 Table-AWare DOM PrOCESSING......ccuerueruirieieriestesiesiessessesseeeesessessesse s ssessesse e s eseesseseesneses 38
7.3.3 Tahle-AWEAIE SAX PrOCESSING. .. cueeueeeertertertesserieeeeeessessessestessessesseessesessessessessessessessesnsensens 40
7.3.4 Standards CONFOMMANCE.........ccueiueeiereerieeeeseeseeeesee e eeesreesseeeesseesseeneesseesseensesseesseensesneenes 41
TAWIEING VOTEDIES.....cceeeeee ettt e e sn bbb nnenneas 42
7.4.1 GENEXiC taDI@ OULPUL.....cveeeieeieesie ettt et b e te e sreetesneesreeneeeneesreense e 42
7.4.2 SINQIE VOTADIE OULPUL. ..ottt ee s e steeneesneenseeneesreenes 42
7. 4.3 TABLE @@MENT OULPUL.......ceiiieiieeiisiiesie e siee e see e e stesseesseesesseesseesesseesseeneesseesseensesseessennenns 43
ApPPENdiX A: SYStEM ProPerti€S........cciiiiiieiie ettt ettt be e e e re e snee e 45
y N A= (V7= W0 1 1] o Lo |1 OSSPSR 45
F A Lo | ool | AV = TSR 45
F R 4 =T QLYo €= o 1H] o SRR 45
A4 SEAN .CONMNECLON ...ttt ettt ettt e s e e e be e e e b e e e s abe e e sabe e e aane e e anseesanseeeneeesnneesnneeeaaes 45
FN S o A =1 0] LY = Vo = S 45
ALB SLArtADIE.SION Q. ... et e e e n e nae s 45
F A =T =1 0] LT] = SO S 46
A .8 VOtabIE.NAMESPACING.ccueeueeneeierieste sttt sttt e et st e s bt sse e st e e e e e e e nbe e nnas 46
F NS Y 0] =] = & o SO 46
APPENdIX B: TADIE TOOIS.....cuiiieieiiiiiieee ettt sbe b nneas 47
APPENdiX C: REEASENOLES........coceeieiiesieeie e se st te e ste e e st e aesreesteeeesseesesneesreensennnnns 48
(O Yo 4 [0 11V =0 [7= 0T) 48
C.2 Package DEPENAENCIES.........ccoveieieerieeieseeseeste s e steeeesseesseeseeseesteessesseesseesesseesseesesseessennsens 48

(ORCAV= = To T o T (o] o OSSR 49

SUN/252

SUN/252 5

1 Introduction

STIL is a set of class libraries for the input, output and manipulation of tables. It has been
developed for use with astronomical tables, though it could be used for any kind of tabular data. It
has no "native" external table format. What it hasis a model of what atable looks like, a set of java
classes for manipulating such tables, an extensible framework for table 1/0, and a number of
format-specific I/0O handlers for dealing with several known table formats.

This document is a programmers overview of the abilities of the STIL libraries, including some
tutorial explanation and example code. Some parts of it may also be useful background reading for
users of applications built on STIL. Exhaustive descriptions of al the classes and methods are not
given here; that information can be found in the javadocs, which should be read in conjunction with
this document if you are actually using these libraries. Much of the information here is repeated in
the javadocs. The hypertext version of this document links to the relevant places in the javadocs
where appropriate. The latest released version of this document in several formats can be found at
http://www.starlink.ac.uk/stil/.

1.1 What isatable?

In words, STIL'sidea of what constitutes a table is something which has the following:

* Some per-table metadata (parameters)

* A number of columns

* Some per-column metadata

* A number of rows, each containing one entry per column

This model is embodied in the st ar Tabl e interface, which is described in the next section. It maps
quite closely, though not exactly, onto the table model embodied in the VOTable definition, which
itself owes a certain amount to FITS tables. Thisis not coincidence.

SUN/252 6

2 The Star Tableinterface

The most fundamental type in the STIL package is uk. ac. starlink. tabl e. Star Tabl e; any time
you are using atable, you will use an object which implements this interface.

2.1 Table M etadata

A few items of the table metadata (name, URL) are available directly as values from the st ar Tabl e
interface. A general parameter mechanism is provided for storing other items, for instance
user-defined ones. The get Paranet ers method returns a list of Descri bedVal ue objects which
contain a scalar or array value and some metadata describing it (name, units, Unified Content
Descriptor). Thislist can be read or altered as required.

The st ar Tabl e interface also contains the methods get Col unmmCount and get RowCount to determine
the shape of the table. Note however that for tables with sequential-only access, it may not be
possible to ascertain the number of rows - in this case get RowCount Will return -1. Random-access
tables (see Section 2.3) will always return a positive row count.

2.2 Column M etadata

Each column in a St ar Tabl e is assumed to contain the same sort of thing. More specifically, for
each table column there is a Col unml nf o Object associated with each column which holds metadata
describing the values contained in that column (the value associated with that column for each row
inthetable). A Col uml nf o contains information about the name, units, UCD, class etc of a column,
as well as a mechanism for storing additional (‘auxiliary”) user-defined metadata. It also provides
methods for rendering the values in the column under various circumstances.

The class associated with a column, obtained from the get Cont ent d ass method, is of particular
importance. Every object in the column described by that metadata should be an instance of the
C ass that get Cont ent O ass returns (or of one of its subtypes), or nul I . There is nothing in the
tables infrastructure which can enforce this, but a table which doesn't follow this rule is considered
broken, and application code is within its rights to behave unpredictably in this case. Such a broken
table might result from a bug in the 1/O handler used to obtain the table in the first place, or a badly
formed table that it has read, or a bug in one of the wrapper classes upstream from the table instance
being used. Because of the extensible nature of the infrastructure, such bugs are not necessarily
STIL'sfault.

Any (non-primitive) class can be used but most table I/O handlers can only cope with certain types
of value - typically the primitive wrapper classes (numeric oneslike I nt eger , Doubl e and Bool ean)
and strings, so these are the most important ones to deal with. The contents of a table cell must
always (as far as the access methods are concerned) be an bj ect or nul I, so primitive values
cannot be used directly. The general rule for primitive-like (numeric or boolean) values is that a
scalar should be represented by the appropriate wrapper class (I nt eger , Fl oat , Bool ean €tC) and an
array by an array of primitives (int[], float[], bool ean[] €tc). Non-primitive-like objects (of
which st ri ng is the most important example) should be represented by their own class (for scalars)
or an array of their own class (for arrays). Note that it is not recommended to use multidimensional
arrays (i.e. arrays of arrays like int[]1[]); a 1-dimensional Java array should be used, and
information about the dimensionality should be stored in the Col umni nf o's shape attribute. Thus to
store a 3x2 array of integers, a 6-element array of typeint[] would be used, and the Col umi nf 0's
get Shape method would return atwo-element array (3, 2) .

2.3 Table Data

The actual data valuesin atable are considered to be a sequence of rows, each containing one value

SUN/252 7

for each of the table's columns. As explained above, each such value is an j ect , and information
about its class (as well as semantic metadata) is available from the column's Col unml nf o object.

St ar Tabl es come in two flavours, random-access and sequential-only; you can tell which one a
given table is by using itsi sRandommethod, and how its data can be accessed is determined by this.
In either case, most of the data access methods are declared to throw an | OExcept i on to signal any
data access error.

2.3.1 Sequential Access

It is always possible to access a table's data sequentially, that is starting with the first row and
reading forward a row at a time to the last row; it may or may not be possible to tell in advance
(using get RowCount) how many rows there are. To perform sequential access, use the
get RowSequence Method to get a RowSequence object, which is an iterator over the rows in the
table. The RowSequence's next method moves forward a row without returning any data; to obtain
the data use either getCell or getRow, the relative efficiencies of these depend on the
implementation, but in general if you want all or nearly all of the valuesin arow it isagood ideato
use get Row, if you just want one or two use get Cel I . You cannot move the iterator backwards.
When obtained, a RowSequence is positioned before the first row in the table, so (unlike an
I terator) itisnecessary to call next beforethefirst row isaccessed.

Here is an example of how to sum the values in one of the numeric columns of a table. Since only
one value isrequired from each row, get Cel | isused:

doubl e sunCol umm(StarTable table, int icol) throws | OException {

/'l Check that the colum contains values that can be cast to Nunber.
Col umlinfo col Info = tabl e. get Col umilnfo(icol);

Class col dass = col I nfo.getContentd ass();

if (! Nunber.class.isAssignabl eFrom colCass)) {

} t hrow new |11 egal Argunent Excepti on("Col umm not numeric");

/1l lterate over rows accunulating the total.
doubl e sum = 0.0;
RowSequence rseq = tabl e. get RowSequence();
while (rseqg.next()) {
Nurmber value = (Nunber) rseq.getCell(icol);
sum += val ue. doubl eVal ue() ;

rseq. cl ose();
return sum

}

The next example prints out every cell value. Since it needs al the values in each cell, it uses
get Row.

void witeTable(StarTable table) throws | OException {
int nCol = table.getCol umCount ();
RowSequence rseq = tabl e. get RowSequence();
while (rseqg.next()) {
Obj ect[] row = rseq. get Row) ;
for (int icol =0; icol < nCol; icol++) {
Systemout.print(row icol] + "\t");

}
Systemout.println();

%seq. close();

In this case atidier representation of the values might be given by replacing the pri nt call with:

Systemout. print(table.getColumlnfo(icol)
.formatValue(rowf icol], 20) + "\t");

SUN/252 8

2.3.2 Random Access

If atable's i srandom method returns true, then it is possible to access the cells of a table in any
order. This is done using the get Cel I or get Row methods directly on the table itself (not on a
RowSequence). Similar comments about whether to use get Cel | or get Row apply as in the previous
section.

If an attempt is made to call these random access methods on a non-random table (one for which
i sRandon() returnsf al se), an Unsuppor t edOper at i onExcept i on Will be thrown.

2.3.3 Adapting Sequential to Random Access

What do you do if you have a sequential-only table and you need to perform random access on it?
The Tabl es. randonirabl e utility method takes any table and returns one which is guaranteed to
provide random access. If the original one is random, it just returns it unchanged, otherwise it
returns a table which contains the same data as the submitted one, but for which i sRandom is
guaranteed to return true. It effectively does this by taking out a RowSequence and reading all the
data sequentially into some kind of (memory- or disk-based) data structure which can provide
random access, returning a new StarTable object based on that data structure. Exactly what kind of
data structure is used for caching the data for later use is determined by the St oragePol i cy
currently in effect - thisis described in Section 4.

Clearly, this might be an expensive process. For this reason if you have an application in which
random access will be required at various points, it is usually a good idea to ensure you have a
random-access table at the application's top level, and for general-purpose utility methods to require
random-access tables (throwing an exception if they get a sequential-only one). The alternative
practice of utility methods converting argument tables to random-access when they are called might
result in this expensive process happening multiple times.

SUN/252 9

3Tablel/O

The table input and output facilities of STIL are handled by format-specific input and output
handlers; supplied with the package are, amongst others, a VOTable input handler and output
handler, and this means that STIL can read and write tablesin VOTable format. An input handler is
an object which can turn an external resource into a st ar Tabl e object, and an output handler is one
which can take a star Tabl e object and store it externally in some way. These handlers are
independent components of the system, and so new ones can be written, allowing all the STIL
features to be used on new table formats without having to make any changes to the core classes of
thelibrary.

There are two ways of using these handlers. You can either use them directly to read in/write out a
table using a particular format, or you can use the generic /O facilities which know about several of
these handlers and select an appropriate one a run time. The generic reader class is
St ar Tabl eFact ory which knows about input handlers implementing the Tabl eBui | der interface,
and the generic writer classis St ar Tabl ecut put which knows about output handlers implementing
the starTablewiter interface. The generic approach is more flexible in a multi-format
environment (your program will work whether you point it at a VOTable, FITS file or SQL query)
and is generally easier to use, but if you know what format you're going to be dealing with you may
have more control over format-specific options using the handler directly.

The following sections describe in more detail the generic input and output facilities, followed by
descriptions of each of the format-specific I/0O handlers which are supplied with the package. There
Is an additional section (Section 3.7) which deals with table reading and writing using an SQL
database.

3.1 Extensible |/O framework

STIL can deal with externally-stored tables in a number of different formats. It does this using a set
of handlers each of which knows about turning an external data source into one or more java
St ar Tabl e Objects or serializing one or more St ar Tabl e objects into an external form. Such an
"external table" will typically be afile on aloca disk, but might also be a URL pointing to afile on
aremote host, or an SQL query on aremote database, or something else.

The core 1/0 framework of STIL itself does not know about any table formats, but it knows how to
talk to format-specific input or output handlers. A number of these (VOTable, FITS, ASCII and
others, described in the following subsections) are supplied as part of the STIL package, so for
dealing with tables in these formats you don't need to do any extra work. However, the fact that
these are treated in a standard way means that it is possible to add new format-specific handlers and
therest of the library will work with tables in that format just the same as with the supplied formats.

If you have atable format which is unsupported by STIL asit stands, you can do one or both of the
following:

Write anew input handler:

Implement the Tabl eBui | der interface to take a stream of data and return a St ar Tabl e object.
Optionally, you can also implement the Ml ti Tabl eBui | der subinterface if the format can
contain multiple tables per file. Install it in a Star Tabl eFact ory, either programmatically
using the getDefaultBuilders Or getKnownBuilders methods, or by setting the
startabl e. readers System property. This factory will then be able to pick up tables in this
format as well as other known formats. Such a Tabl eBui | der can aso be used directly to read
tables by code which knows that it's dealing with data in that particular format.

Write a new output handler:
Implement the starTabl ewiter interface to take a StarTabl e and write it to a given

SUN/252 10

destination. Optionally, you can aso implement the Ml ti St ar Tabl eW i t er subinterface if the
format can contain multiple tables per file. Install it in a StarTabl eCutput either
programmatically using the set Handl er s method or by setting the st art abl e. wri t er s System
property. This StarTableOutput will be then be able to write tables in this format as well as
others. Such a st ar Tabl ewi t er can also be used directly to write tables by code which wants
to write datain that particular format.

Because setting the st art abl e. reader s/startabl e. wi t ers System properties can be done by the
user at runtime, an application using STIL can be reconfigured to work with new table formats
without having to rebuild either STIL or the application in question.

This document does not currently offer a tutorial on writing new table 1/0O handlers; refer to the
javadocs for the relevant classes.

3.2 Generic Table Resour ce Input

This section describes the usual way of reading atable or tables from an external resource such as a
file, URL, Dat aSour ce €tc, and converting it into a St ar Tabl e object whose data and metadata you
can examine as described in Section 2. These resources have in common that the data from them
can be read more than once; this is necessary in general since depending on the data format and
intended use it may require more than one pass to provide the table data. Reading atable in this way
may or may not require local resources such as memory or disk, depending on how the handler
works - see Section 4 for information on how to influence such resource usage.

The main class used to read atable in thisway is St ar Tabl eFact ory. Thejob of this classisto keep
track of which input handlers are registered and to use one of them to read data from an input
stream and turn it into one or more Star Tabl eS. The basic rule is that you use one of the
St ar Tabl eFact ory'sS makeSt ar Tabl e Or makeSt ar Tabl es methods to turn what you've got (e.g.
String, URL, Dat aSour ce) Into a St ar Tabl e Or & Tabl eSequence (which represents a collection of
St ar Tabl eS) and away you go. If no StarTable can be created (for instance because the file named
doesn't exist, or because it is not in any of the supported formats) then some sort of | CExcept i on or
Tabl eFor mat Excepti on will be thrown. Note that if the byte stream from the target resource is
compressed in one of the supported formats (gzip, bzip2, Unix compress) it will be uncompressed
automatically (the work for thisis done by the Dat aSour ce class).

There are two distinct modes in which st ar Tabl eFact ory can work: automatic format detection
and named format.

In automatic format detection mode, the type of data contained in an input stream is determined by
looking at it. What actually happens is that the factory hands the stream to each of the handlers in
its default handler list in turn, and the first one that recognises the format (usually based on looking
at the first few bytes) attempts to make a table from it. The filename is not used in any way to guess
the format. In this mode, you only need to specify the table location, like this:

public StarTable |oadTable(File file) throws | OException {
return new StarTabl eFactory().nakeStarTable(file.toString());

Thismode is available for formats such as FITS and VOTable that can be easily recognised, but not
for text-based formats such as comma-separated values. You can access and modify the list of
auto-detecting handlers using the get Def aul t Bui | ders method. By default it contains only the
FITS and VOTable handlers.

In named format mode, you have to specify the name of the format as well as the table location.
This can be solicited from the user if it's not known at build time; the known format names can be
got from the get KnownFor mat s method. The list of format handlers that can be used in this way can

SUN/252 11

be accessed or modified using the get KnownBui | der s method; it usually contains all the onesin the
default handler list, but doesn't have to. Table construction in named format mode might look like
this:

public StarTable |oadFitsTable(File file) throws | OException {
return new StarTabl eFactory().nakeStarTable(file.toString(), "fits");
}

If the table format is known at build time, you can aternatively use the nmakest ar Tabl e method of
the appropriate format-specific Tabl eBui | der . For instance you could replace the above example
with this:

return new FitsTabl eBuil der ()
. makeSt ar Tabl e(Dat aSour ce. makeDat aSource(file.toString()),
fal se, StoragePolicy.getDefaultPolicy());

This dlightly more obscure method offers more configurability but has much the same effect; it may
be dlightly more efficient and may offer somewhat more definite error messages in case of failure.
The various supplied Tabl eBui | der s (format-specific input handlres) are listed in Section 3.5.

The javadocs detail variations on these calls. If you want to ensure that the table you get provides
random access (see Section 2.3), you should do something like this:

public StarTabl e | oadRandonTable(File file) throws | OException {
St ar Tabl eFactory factory = new Star Tabl eFactory();
factory. set Requi reRandorr(true);
Star Tabl e table = factory. makeStarTable(file.toString());
return tabl e;

}
Setting the requi reRandom flag on the factory ensures that any table returned from its
makeSt ar Tabl e methods returns t r ue from its i sRandom method. (Note prior to STIL version 2.1
this flag only provided a hint to the factory that random tables were wanted - now it is enforced.)

3.3 Generic Table Streamed I nput

As noted in the previous section, in general to make a St ar Tabl e you need to supply the location of
a resource which can supply the table data stream more than once, since it may be necessary to
make multiple passes. In some cases however, depending on the format-specific handler being used,
it is possible to read a table from a non-rewindable stream such as Syst em i n. In particular both the
FITSand VOTableinput handlers permit this.

The most draightforward way of doing this is to use the StarTableFactory's
makeSt ar Tabl e(| nput St r eam Tabl eBui | der) method. The following snippet reads a FITS table
from standard input:

return new StarTabl eFactory().nakeStar Tabl e(Systemin, new FitsTabl eBuilder());

caching the table data as determined by the default storage policy (see Section 4).

It is possible to exercise more flexibility however if you don't need a stored st ar Tabl e object as the
result of the read. If you just want to examine the table data as it comes through the stream rather
than to store it for later use, you can implement a Tabl eSi nk object which will be messaged with
the input table's metadata and data as they are encountered, and pass it to the st r eanfst ar Tabl e
method of a suitable Tabl eBui | der. This of course is cheaper on resources than storing the data.
The following code prints the name of the first column and the average of its values (assumed
numerical):

SUN/252 12

/1 Set up a class to handl e table processing call back events.
cl ass Col umReader i npl enments Tabl eSi nk {

private |ong count; /'l nunber of rows so far
private double sum /1 running total of values fromfirst colum

/1 Handl e netadata by printing out the first colum nane.
public void accept Metadata(StarTable nmeta) {
String title = nmeta. getColumlinfo(0).getNane();
Systemout.printin("Title: " + title);

/1 Handl e a row by updating running totals.
public void accept Rowm Cbject[] row) {
sum += ((Nunber) row O]).doubl eVal ue();
count ++;

/'l At end-of-table event calculate and print the average.
public void endRows() {

doubl e average = sum/ count;

Systemout.println("Average: " + average);

}
b

/1l Streanms the naned file to the sink we have defined, getting the data
/1 fromthe first TABLE elenent in the file.
public void sumarizeFirstColum(InputStreamin) throws | CException {
Col unmmReader reader = new Col utmReader () ;
new VOTabl eBui | der (). streanttar Tabl e(in, reader, "0");
in.close();

Again, thisonly works with atable input handler which is capable of streamed input.

Writing multiple tables to the same place (for instance, to multiple extensions of the same
multi-extension FITS file) works in a similar way, but you use instead one of the wri t eSt ar Tabl es
methods of St ar Tabl eQut put . These take an array of tables rather than asingle one.

3.4 Generic Table Output

Generic serialization of tables to external storage is done using a St ar Tabl eQut put object. This has
asimilar job to the st ar Tabl eFact ory described in the previous section; it mediates between code
which wants to output a table and a set of format-specific output handler objects. The
wr it eSt ar Tabl e method is used to write out a St ar Tabl e object. When invoking this method, you
specify the location to which you want to output the table and a string specifying the format you
would like to write in. Thisis usually a short string like "fits" associated with one of the registered
output handlers - alist of known formats can be got using the get KnownFor mat s method.

Useis straightforward:

void witeTabl eAsFI TS(StarTable table, File file) throws | OException {
new Star Tabl eQutput().witeStarTable(table, file.toString(), "fits");
}

If, asin this example, you know what format you want to write the table in, you could equally use
therelevant st ar Tabl ew i t er object directly (inthiscaseaFit sTabl ewiter).

Asimplied in the above, the location string is usually a filename. However, it doesn't have to be - it
is turned into an output stream by the St ar Tabl eQut put 'S get Qut put St r eammethod. By default this
assumes that the location is a filename except when it has the special value "-" which is interpreted
as standard output. However, you can override this method to write to more exotic locations.

Alternatively, you may wish to output to an cut put Stream of your own. This can be done as
follows:

SUN/252 13

void witeTabl eAsFI TS(Star Tabl e table, QutputStreamout) throws | OException {
St ar Tabl eCQut put sto = new St ar Tabl eCut put () ;
Star Tabl eWiter outputHandl er = sto.getHandler("fits");
sto.witeStarTabl e(table, out, outputHandler);

3.5 Supplied Input Handlers

The table input handlers supplied with STIL are listed in this section, along with notes on any
peculiarities they have in turning a string into a st ar Tabl e. By default, any of these can be used in a
St ar Tabl eFact ory's named format mode, but only some of them in automatic format detection
mode.

In most cases the string supplied to name the table that st ar Tabl eFact ory should read is a filename
or aURL, referencing a plain or compressed copy of the stream from which the fileis available. In
some cases an additional specifier can be given after a'# character to give additional information
about where in that stream the table is located.

This table summarises which input handlers are available, what format strings they use, and
whether they are tried in automatic format detection mode.

Format string Format Read Automatic Format Mdde? Multiple Tabl e
FITS FI' TS BI NTABLE or ASCI| extension yes yes
FI TS- pl us FITS with VOTabl e nmetadata i n HDU#0 yes yes
VOrabl e VOTable 1.0/1.1/1.2 yes yes
colfits-plus Columm-oriented FITS with VOrabl e netadata yes no
colfits-basic Colum-oriented FITS no no
ASCl | Wi t espace- separ at ed ASCI | no no
csv Comma- separ at ed val ues no no
| PAC | PAC Tabl e For mat no no
WDC Wrld Data Centre fornmat no no
351FITS

The Fi tsTabl eBui | der class can read FITS binary (BINTABLE) and ASCIlI (TABLE) table
extensions. Unless told otherwise the St ar Tabl eFact ory. makeSt ar Tabl e method will find the first
table extension in the named FITS file. If the name supplied to the st ar Tabl eFactory endsin a#
sign followed by a number however, it means that the requested table is in the indicated extension
of a multi-extension FITS file. Hence 'spec23.fits#3' refers to the 3rd extension (4th HDU) in the
file spec23.fits. The suffix '#0' is never used in this context for alegal FITS file, since the primary
HDU cannot contain atable.

Toretrieve all the tablesin a multi-extension FITS files, use one of the makeSt ar Tabl es methods of
St ar Tabl eFact ory instead.

If the table is stored in a FITS binary table extension in afile on local disk in uncompressed form,
then the file will be mapped rather than read when the st ar Tabl e is constructed, which means that
constructing the StarTable is very fast. If you want to inhibit this behaviour, you can refer to the file
as a URL, for instance using the designation 'file:spec23.fits rather than 'spec23.fits; this fools the
handler into thinking that the file cannot be mapped.

Header cards in the tables HDU header will be made available as table parameters (see
get Par anet er s). Only header cards which are not used to specify the table format itself are visible
as parameters (e.g. NAXIS, TTYPE* etc cards are not). HISTORY and COMMENT cards are run
together as one multi-line value.

SUN/252 14

Currently, binary tables are read rather more efficiently than ASCII ones.

TheFi t sPl usTabl eBui | der handler also reads a variant of the FITS format - see Section 3.6.2.

3.5.2 Column-oriented FITS

As well as normal binary and ASCII FITS tables, STIL supports FITS files which contain tabular
data stored in column-oriented format. This means that the table is stored in a BINTABLE
extension HDU, but that BINTABLE has a single row, with each cell of that row holding a whole
column's worth of data. The final (slowest-varying) dimension of each of these cells (declared via
the TDIMn header cards) is the same, namely, the number of rows in the table that is represented.
The point of thisisthat all the cells of a given column are stored contiguously, which for very large,
and especially very wide tables means that certain access patterns (basically, ones which access
only asmall proportion of the columnsin atable) can be much more efficient since they require less
I/O overhead in reading data blocks.

Such tables are perfectly legal FITS files, but most non-STIL software will probably not recognise
them as tables in the usual way. This format is mostly intended for the case where you have alarge
table in some other format (possibly the result of an SQL query) and you wish to cache it in a way
which can be read efficiently by a STIL-based application.

Like norma FITS, there are two handlers for this format: Col Fit sPl usTabl eBui | der (like
FITS-plus) can read a VOTable as metadata from the primary HDU, and Col Fi t sTabl eBui | der
does not.

Colfits format is only available for data which stored as an uncompressed file in the file system
(not, for instance, from a URL).

3.5.3VOTable

The vOTabl eBui | der class reads VOTables; it should handle any table which conforms to the
VOTable 1.0, 1.1 or 1.2 specifications (as well as quite a few which violate them). In particular, it
can deal with a DATA element whose content is encoded using any of the formats TABLEDATA,
BINARY or FITS.

While VOTable documents often contain a single table, the format describes a hierarchica structure
which can contan zero or more TABLE €eements. By default, the
St ar Tabl eFact ory. makeSt ar Tabl e method will find the first one in the document for you, which
in the (common) case that the document contains only one table is just what you want. If you're
after one of the others, identify it with a zero-based index number after a'# sign at the end of the
table designation. So if the following document is called 'cats.xml':

<VOTABLE>
<RESOURCE>
<TABLE nane="Star Catal ogue"> ... </ TABLE>
<TABLE nane="Gal axy Catal ogue"> ... </ TABLE>
</ RESOURCE>
</ VOTABLE>

then ‘cats.xml’ or ‘cats.xmi#0' refers to the "Star Catalogue” and ‘cats.xml#1' refers to the "Galaxy
Catalogue'.

To retrieve al of the tables from a given VOTable document, use one of the makeSt ar Tabl es
methods of StarTableFactory instead.

Much more detailed information about the VOTable 1/0 facilities, which can be used independently
of the generic I/O described in this section, isgiven in Section 7.

SUN/252 15

3.5.4 ASCII

In many cases tables are stored in some sort of unstructured plain text format, with cells separated
by spaces or some other delimiters. The Ascii Tabl eBui | der class attempts to read these and
interpret what's there in sensible ways, but since there are so many possibilities of different
delimiters and formats for exactly how values are specified, it won't always succeed.

Here are the rules for how the ASCII-format table handler reads tables:

Bytesin thefile are interpreted as ASCII characters

Each table row is represented by a single line of text

Lines are terminated by one or more contiguous line termination characters. line feed (0xX0A)
or carriage return (0x0D)

Within a line, fields are separated by one or more whitespace characters. space (" ") or tab
(0x09)

A field is either an unquoted sequence of non-whitespace characters, or a sequence of
non-newline characters between matching single (') or double (") quote characters - spaces are
therefore allowed in quoted fields

Within a quoted field, whitespace characters are permitted and are treated literally

Within a quoted field, any character preceded by a backslash character ("\") is treated literally.
This allows quote characters to appear within a quoted string.

An empty quoted string (two adjacent quotes) or the string "nul I (unquoted) represents the
null value

All data lines must contain the same number of fields (this is the number of columns in the
table)

The data type of a column is guessed according to the fields that appear in the table. If all the
fields in one column can be parsed as integers (or null values), then that column will turn into
an integer-type column. The types that are tried, in order of preference, are: Bool ean, Short

I nt eger, Long, Fl oat , Doubl e, Stri ng

Empty lines areignored

Anything after a hash character "#" (except one in a quoted string) on alineisignored asfar as
table data goes; any line which starts with a "!" is also ignored. However, lines which start
with a"#" or "!" at the start of the table (before any data lines) will be interpreted as metadata
asfollows:

* Thelast "#'/"!"-starting line before the first data line may contain the column names. If it
has the same number of fields as there are columns in the table, each field will be taken to
be the title of the corresponding column. Otherwise, it will be taken as a normal comment
line.

« Any comment lines before the first data line not covered by the above will be
concatenated to form the "description” parameter of the table.

If the list of rules above looks frightening, don't worry, in many cases it ought to make sense of a
table without you having to read the small print. Here is an example of a suitable ASCII-format

table:

#

Here is a list of sone aninals.

#

RECNO SPECI ES NANVE LEGS HElI GHT/ m
1 pi g "Pigling Bland" 4 0.8
2 cow Dai sy 4 2
3 gol df i sh Dobbi n " 0. 05
4 ant " 6 0. 001
5 ant 6 0. 001
6 ant v 6 0. 001
7 "queen ant" "Ma\' am 6 2e-3
8 human " Mar k" 2 1.8

SUN/252 16

In this case it will identify the following columns:

Name Type

RECNO I nt eger
SPECI ES String
NAVE String
LEGS I nt eger

HEI GHT/ m Fl oat

It will also usethetext "Here is a list of some aninmals" asthe Description parameter of the
table. Without any of the comment lines, it would still interpret the table, but the columns would be
given the namescol 1..col 5.

If you understand the format of your files but they don't exactly match the criteria above, the best
thing is probably to write a simple free-standing program or script which will convert them into the
format described here. You may find Perl, awk or sed suitable languages for this sort of thing.
Alternatively, you could write a new input handler as explained in Section 3.1 - you may find it
easiest to subclassthe uk. ac. starlink. tabl e. for mats. St reanst ar Tabl e classin this case.

3.5.5 Comma-Separ ated Values

The csvTabl eBui | der handler can read data in the semi-standard CSV format. The intention is that
it understands the version of that format spoken by MS Excel amongst others, though the
documentation on which it is based was not obtained directly from Microsoft.

Therules for datawhich it understands are as follows:

» Each row must have the same number of comma-separated fields.

* Whitespace (space or tab) adjacent to acommaisignored.

* Adjacent commas, or acomma at the start or end of a line (whitespace apart) indicates a null
field.

* Lines are terminated by any sequence of carriage-return or newline characters (\r' or \n') (a
corollary of thisisthat blank lines are ignored).

» Cells may be enclosed in double quotes; quoted values may contain linebreaks (or any other
character); a double quote character within a quoted value is represented by two adjacent
double quotes.

* Thefirst line may be a header line containing column names rather than arow of data. Exactly
the same syntactic rules are followed for such arow as for datarows.

3.5.6 Tab-Separated Table

The Tst Tabl eBui | der class reads the Tab-Separated Table (TST) format, which is used by a
number of astronomical software packages including Starlink's GAIA, and ESO's SkyCat on which
it is based. A definition of the format can be found in Starlink Software Note 75. The
implementation here ignores all comment lines. special comments such as the "#col um-units:"
are not processed.

An example lookslike this:

Sinpl e TST exanple; stellar photonetry catal ogue.
A. C. Davenhal | (Edi nburgh) 26/7/00.

Cat al ogue of U, B,V col ours.

UBV photonetry from Mount Punpkin Observatory,
see Sage, Rosemary and Thyne (1988).

Start of paraneter definitions.

SUN/252 17

EQUI NOX: J2000. 0
EPOCH J1996. 35

id.col: -1
ra_col: O
dec_col: 1

End of paraneter definitions.

r a<t ab>dec<t ab>V<t ab>B_V<t ab>U B
--<tab>---<tab>-<tab>---<tab>---

5:09: 08. 7<t ab> -8: 45: 15<tab> 4.27<tab> -0.19<tab> -0.90
5:07:50.9<tab> -5:05: 11<tab> 2.79<tab> +0.13<tab> +0.10
5:01: 26. 3<tab> -7:10: 26<tab> 4.81<tab> -0.19<tab> -0.74
5:17: 36. 3<tab> -6:50:40<tab> 3.60<tab> -0.11l<tab> -0.47
[ECD]

35.71PAC

The | pacTabl eBui | der class reads tables in the text-based format used by CalTech's Infrared
Processing and Anaysis Center, which is defined at
http://irsa.ipac.caltech.edu/applications/ DDGEN/Doc/ipac_tbl.html. Tables can store column name,
type, units and null values, as well as table parameters. They typically have a filename extension
". tbl " and are used for Spitzer data amongst other things. An example looks like this:

\title=" Aninals'

\ This is a table with sonme animals in it.

| RECNO | SPECI ES | NAME | LEGS | HElI GHT

| char | char | char | int | double

I I I I | m I

| | N D TR | |
1 pig Pi gl ing Bl and 4 0.8
2 cow Dai sy 4 2
3 gol df i sh Dobbi n 0 0. 05
4 ant nul | 6 0.001

3.58WDC

Some support is provided for files produced by the World Data Centre for Solar Terrestrial Physics.
The format itself apparently has no name, but files in this format look something like the following:

Colum formats and units - (Fixed format columms which are single space seperated.)

Datetime (YYYY nm dd HHMVES) %d 92d 92d %6d -
%s
aa index - 3-HOURLY (Provisional) %3d nT

2000 01 01 000000 67
2000 01 01 030000 32

The handler class WbCTabl eBui | der IS experimental; it was reverse-engineered from looking at a
couple of datafilesin the target format, and may not be very robust.

3.6 Supplied Output Handlers

The table output handlers supplied with STIL are listed in this section, along with any peculiarities
they have in writing a Star Tabl e t0 a destination given by a string (usualy a filename). As
described in Section 3.4, a st ar Tabl ecut put Will under normal circumstances permit output of a
table in any of these formats. Which format is used is determined by the "format" string passed to
St ar Tabl eQut put . wri t eSt ar Tabl e as indicated in the following table; if a null format string is
supplied, the name of the destination string may be used to select aformat (e.g. a destination ending
".fits" will, unless otherwise specified, result in writing FITS format).

SUN/252 18

Format string Format written Associ ated file extension Miltiple Tat
j dbc SQ. dat abase no
fits, fits-plus FI TS-plus binary table Cfits, Jfit, .fts yes
fits-basic FITS binary table yes
fits-var FITS with var-length arrays yes
colfits Colum-oriented FITS .colfits no
vot abl e-t abl edat a TABLEDATA- f or mat VOTabl e .xm, .vot yes
vot abl e-bi nary-inline Inline Bl NARY-format VOTabl e yes
vot abl e- bi nary- hr ef Ext ernal Bl NARY-format VOTabl e yes
votable-fits-inline Inline FITS-format VOTabl e yes
votabl e-fits-href External FITS-fornmat VOTabl e yes
t ext Human-r eadabl e pl ai n text Ltxt yes
asci i Machi ne-readabl e t ext no
csv Comma- separ at ed val ue . CSV no
csv- noheader Comma- sep. val ues, no header no
ht m St andal one HTML docunent Lhtmd, htm yes
ht m - el enent HTML TABLE el enent yes
| at ex LaTeX tabul ar environnent .tex no
| at ex- docunent LaTeX freestandi ng docunent no
nrage M rage input fornat no

More detail on all these formatsis given in the following sections.

In some cases, more control can be exercised over the exact output format by using the
format-specific table writers themselves (these are listed in the following sections), since they may
offer additional configuration methods. The only advantage of using a st ar Tabl eQut put to mediate
between them is to make it easy to switch between output formats, especialy if this is being done
by the user at runtime.

36.1FITS

The FITS handler, Fi t sTabl eWi t er, will output a FITS file with N+1 HDUs for N tables; the first
(primary) HDU has no interesting content, and subsequent ones (the extensions) are of type
BINTABLE, one for each output table.

A variant handler, vari abl eFi t sTabl ewiter IS aso provided. This behaves in much the same
way, but in the case of columns which contain variable-shaped arrays (ones for which the last
element of Columnlnfo.getShape() is negative) it will store the array data in the ‘heap' following the
table datain the BINTABLE HDU, using the 'P or 'Q' data type specifiersin the relevant TFORMnN
header cards.

To write the FITS header for the table extension, certain things need to be known which may not be
available from the st ar Tabl e object being written; in particular the number of rows and the size of
any variable-sized arrays (including variable-length strings) in the table. This may necessitate two
passes through the data to do the write.

See the "Binary Table Extension” section of the FITS standard for more details of the FITS
BINTABLE format.

St ar Tabl equt put Will write in FITS format (without variable length array-valued columns) if a
format string "fits" isused, or the format string is null and the destination string endsin " .fits".

3.6.2 FITSplus

A variant form of FITSfileiswritten by the Fi t sPl usTabl ewi t er handler. Thisis the same as the
basic form, except that the primary HDU (HDU#0) contains a 1-d array of characters which form
the text of a DATA-less VOTable. The FITS tables in the subsequent extensions are understood to
contain the data. The point of this is that the VOTable can contain all the rich metadata about the
table(s), but the bulk data are in a form which can be read efficiently. Crucially, the resulting FITS

SUN/252 19

fileis a perfectly good FITS table on its own, so non-VOTable-aware readers can read it in just the
usual way, though of course they do not benefit from the additional metadata stored in the VOTable
header.

While the normal VOTable/FITS encoding has some of these advantages, it is inconvenient in that
either (for in-line data) the FITS file is base64-encoded and so hard to read efficiently, in particular
for random access or (for referenced data) the tableis split across two files.

3.6.3 Column-oriented FITS

As described in Section 3.5.2, STIL supports FITS files in which each column is stored as a single
cell of a onerow BINTABLE extension. Two writers are provided, Col FitsPl usTabl eWiter
which writes VOTable-format metadata as a byte array in the primary HDU as for FITS-plus, and
Col Fi t sTabl eW it er which writes ablank primary HDU.

3.6.4VOTable

The VOTable handler, vorabl ewi ter, can write VOTables in a variety of flavours (see Section
7.2). In @l cases, a st ar Tabl eQut put will write a well-formed VOTable document with a single
RESOURCE element holding one or more TABLE elements. The different output formats
(TABLEDATA/FITS/BINARY, inline/href) are determined by configuration options on the handler
instance. The default handler writesto inline TABLEDATA format.

The href-type formats write a (short) XML file and FITS or binary files with a similar name into the
same directory, holding the metadata and bulk data respectively. The reference from the one to the
other isarelative URL, so if one is moved, they both should be.

For more control over writing VOTables, consult Section 7.4.

3.6.5 ASCII
The Ascii Tabl ewiter class writes to a simple text format which is intended to be machine

readable (and fairly human readable as well). It can be read in by the ASCII input handler, and is
described in more detail in Section 3.5.4.

3.6.6 Comma-Separ ated Values
The CsvTabl ewi ter classwritesto the semi-standard CSV format, which may optionally including

an initial line containing column names. It can be read by the CSV input handler, and is described
in more detail in Section 3.5.5.

3.6.7 Tab-Separated Table

The Tst Tabl ewi t er classwritesto the text-based Tab-Separated Table format. It can be read in by
the TST input handler, and is described in more detail in Section 3.5.6.

3.6.8 Plain Text

The Text Tabl ewi ter class writes to a simple text-based format which is designed to be read by
humans. According to configuration, this may or may not output table parameters as name:value
pairs at before the table data themsel ves.

Hereis an example of a short table written in this format:

SUN/252 20

[R [- F S +o- oo - - F S f +
| index | Species | Nanme | Legs | Height | Manmal |
[N B - F - +o- oo - - F P N +
1	pig	Bland	4	0.8	true
2	cow	Daisy	4	2.0	true
3	goldfish	Dobbin	O	0.05	false
4	ant		6	0.0010	false
5	ant		6	0.0010	false
6	human	Mark	2	1.9	true
[N B F +o- oo - F F +

3.6.9HTML

The HTM.Tabl ewiter class writes tables as HTML 3.2 TABLE eements. According to
configuration this may be a freestanding HTML document or the TABLE element on its own
(suitable for incorporation into larger HTML documents).

3.6.10 LaTeX

The Lat exTabl ewi ter classwritestables asLaTleX tabul ar environments, either on their own or
wrapped in a LaTeX document. For obvious reasons, this isn't too suitable for tables with very
many columns.

3.6.11 Mirage

Mirage (http://www.bell-labs.com/project/mirage/index.html) is a powerful standalone tool
developed at Bell Labs for interactive analysis of multidimensional data. It has not however been
developed in recent years. It uses its own file format for input. The M rageTabl ewi ter class can
write tablesin this format.

3.71/0 using SQL databases

With appropriate configuration, STIL can read and write tables from a relational database such as
MySQL. You can obtain a st ar Tabl e which is the result of a given SQL query on a database table,
or store a St ar Tabl e as a new table in an existing database. Note that this does not allow you to
work on the database 'live. The classes that control these operations mostly live in the
uk. ac. starlink.tabl e.jdbc package.

If a username and/or password is required for use of the table, and thisis not specified in the query
URL, st ar Tabl eFact ory Will arrange to prompt for it. By default this prompt is to standard output
(expecting a response on standard input), but some other mechanism, for instance a graphical one,
can be used by modifying the factory's JDBCHandler.

3.7.1 JDBC Configuration

JavalSTIL does not come with the facility to use any particular SQL database "out of the box";
some additional configuration must be done before it can work. This is standard JDBC practice, as
explained in the documentation of the j ava. sql . Dri ver Manager class. In short, what you need to
do is define the "j dbc. drivers" system property to include the name(s) of the JDBC driver(s)
which you wish to use. For instance to enable use of MySQL with the Connector/J database you
might start up javawith acommand line like this:

java -classpath /my/jars/ nysql -connector-java-3.0.8-stabl e-bin.jar: myapp.jar
-Dj dbc. dri vers=com nysql . j dbc. Dri ver
ny. pat h. MyAppl i cati on

One gotcha to note is that an invocation like this will not work if you are using 'java -jar' to

SUN/252 21

invoke your application; if the -j ar flag is used then any class path set on the command line or in
the CLASSPATH environment variable or elsewhere is completely ignored. This is a consequence
of Java's security model.

For both the reader and the writer described below, the string passed to specify the database
guery/table may or may not require additional authentication before the read/write can be carried
out. The general ruleisthat an attempt will be made to connect with the database without asking the
user for authentication, but if this fails the user will be queried for username and password,
following which a second attempt will be made. If username/password has already been solicited,
this will be used on subsequent connection attempts. How the user is queried (e.g. whether it's done
graphically or on the command line) is controlled by the JDBCHand! er 'S JDBCAut hent i cat or Object,
which can be set by application code if required. If generic 1/0 is being used, you can use the
get / set JDBCHandl er methods of the St ar Tabl eFact ory Or St ar Tabl eCut put being used.

To the author's knowledge, STIL has so far been used with the following RDBM Ss and drivers:

MySQL
MySQL has been tested on Linux with the Connector/J driver and seems to work; tested
versions are server 3.23.55 with driver 3.0.8 and server 4.1.20 with driver 5.0.4. Sometimes
tables with very many (hundreds of) columns cannot be written owing to SQL statement length
restrictions. Note there is known to be a column metadata bug in version 3.0.6 of the driver
which can cause a ClassCastException error when tables are written.

PostgreSQL
PostgreSQL 7.4.1 apparently works with its own JDBC driver. Note the performance of this
driver appearsto be rather poor, at least for writing tables.

Oracle
You can use Oracle with the JDBC driver that comes as part of its Basic Instant Client
Package. URLs look something like
"j dbc: oracl e: thin: @/ host name: 1521/ dat abase#SELECT ... ".

SQL Server

There is more than one JDBC driver known to work with SQL Server, including jTDS and the
Microsoft JDBC driver. Some evidence suggests that jTDS may be the better choice, but your
mileage may vary.

Sybase ASE
There has been a successful use of Sybase 12.5.2 and jConnect (jconn3.jar) using a JDBC
URL like "j dbc: sybase: Tds: host nane: port / dbnane?user =XXX&passwor d=XXX#SELECT. . . ".
An earlier attempt using Sybase ASE 11.9.2 failed.

Other RDBMSs and drivers ought to work in principle - please let us know the results of any
experiments you carry out. Sun maintain a list of JDBC drivers for various databases; it can be
found at http://servlet.java.sun.com/products/jdbc/drivers.

3.7.2 Reading from a Database

Y ou can view the result of an SQL query on arelational database as a table. This can be done either
by passing the query string directly to a JDBCHandler or by passing it to the generic
St ar Tabl eFact ory. makeSt ar Tabl e method (any string starting ‘jdbc:" in the latter case is assumed
to be an SQL query string). The form of this query string is as follows:

jdbc: <driver-specific-url >#<sql - query>
The exact form is dependent on the JDBC driver which isinstalled. Here is an example for MySQL :

jdbc: mysql ://1ocal host/astrol?user=nbt #SELECT ra, dec FROM swaa WHERE vrmag<18

SUN/252 22

If the username and/or password are required for the query but are not specified in the query string,
they will be prompted for.

Note that the StarTable does not represent the JDBC table itself, but a query on table. You can get a
StarTable representing the whole JDBC table with a query like SELECT * from tabl e- nane, but
this may be expensive for large tables.

3.7.3 Writing to a Database

You can write out a St ar Tabl e as a new table in an SQL-compatible RDBMS. Note this will
require appropriate access privileges and may overwrite any existing table of the same name. The
general form of the string which specifies the destination of the table being written is:

j dbc: <driver-specific-url >#<newt abl e- nane>

Hereis an example for MySQL with Connector/J:

j dbc: mysql :/ /1 ocal host/astrol?user=nbt #newt ab

which would write a new table called "newtab" in the MySQL database "astrol" on the local host
with the access privileges of user mbt.

SUN/252 23

4 Storage Policies

Sometimes STIL needs to store the data from a table for later use. This is necessary for instance
when it creates a St ar Tabl e object by reading a VOTable document: it parses the XML by reading
through from start to finish, but must be able to supply the cell data through the st ar Tabl e's data
access methods without doing another parse later. Another example is when converting a
sequential-only access table to a random-access one (see the example below, and Section 2.3.3) -
the data must be stored somewhere they can be accessed in anon-sequential way at alater date.

The obvious thing to do is to store such data in object arrays or lists in memory. However, if the
tables get very large this is no longer appropriate because memory will fill up, and the application
will fail with an cut O Meror yEr ror (Java's garbage collection based memory management means it
Is not much good at using virtual memory). So sometimes it would be better to store the data in a
temporary disk file. There may be other decisions to make as well, for instance the location or
format (perhaps row- or column-oriented) to use for atemporary disk file.

Since on the whole you don't want to worry about these choices when writing an application, STIL
provides away of dealing with them which is highly configurable, but behavesin a'sensible’ way if
you don't take any special steps. Thisis based around the st or agePol i cy class.

A storagePol i cy IS afactory for Rowst or e Objects, and a Rowst or e iS an object to which you can
write the metadata and data of a table once, and perform random access reads on it at a later date.
Any of the STIL classes which need to do this sort of table data caching use a St or agePol i cy
object; they have policy get/set methods and usually constructors which take a st or agePol i cy too.
Application code which needs to stash table data away should follow the same procedure.

By way of example: the randonTabl e method takes a (possibly non-random-access) table and
returns a random-access one containing the same data. Here is roughly how it doesiit:

static StarTabl e randonirabl e(StarTabl e seqTabl e, StoragePolicy policy)
throws | CException {

/1l Get a new row store object fromthe policy.
RowSt ore rowStore = policy. nakeRowSt ore();

/1 Informthe row store about the table nmetadata - we do this by

/'l passing the table itself, but this could be a data-less StarTable
/1 object if the data were not avail able yet.

rowSt ore. accept Met adat a(seqTable);

/'l Loop over the rows in the input table, passing each one in turn
/1 to the row store.
RowSequence rowSeq = seqTabl e. get RowSequence() ;
while (rowSeqg.next()) {
rowst ore. accept Row(rowSeq. get Row());

// Informthe row store that there are no nore rows to cone.
rowSt ore. endRows() ;

/1l Extract and return a table fromthe row store. This consists of
/1 the netadata and data we've witten in there, but is guaranteed
/1 random access.

return rowStore. getStarTabl e();

}

Most times you won't have to write this kind of code since the STIL classes will be doing it behind
the scenes for you.

4.1 Available Policies

The storage policies currently supplied as static members of the St oragePolicy class are as

SUN/252 24

follows:

PREFER_MEMORY
Stores table data in memory. Currently implemented using an Arr ayLi st Of Qbj ect[] arrays.

PREFER_DI SK
Generally attempts to store data in a temporary disk file, using row-oriented storage (elements
of each row are mostly contiguous on disk).

ADAPTI VE
Stores table data in memory for relatively small tables, and in a temporary disk file for larger
ones. Storage is row-oriented.

S| DEWAYS
Generally attempts to store data in temporary disk files using column-oriented storage
(elements of each column are contiguous on disk). This may be more efficient for certain
access patterns for tables which are very large and, in particular, very wide. It's generally more
expensive on system resources than PREFER_DISK however, (it writes and maps one file per
column) so it is only the best choice in rather specialised circumstances.

DI SCARD
Metadata is retained, but the rows are ssimply thrown away. The table returned from the row
store has arow count of zero.

For the disk-based policies above (PREFER DISK and SIDEWAYYS), if storage on disk is
impossible (e.g. the security manager prevents access to local disk) then they will fall back to
memory-based storage. They may also decide to use memory-based storage for rather small tables.
Any temporary disk files are written to the default temporary directory (j ava. i o. t npdi r), and will
be deleted when the RowStore is garbage collected, or on normal termination of the VM. These
policies are currently implemented using mapped file access.

You are quite at liberty to implement and use your own St or agePol i cy objects, possibly on top of
existing ones. For instance you could implement one which stored only the first ten rows of any

array.

4.2 Default Policy

Any time a storage policy is required and has not been specified explicitly, STIL will get one by
calling the static method

St oragePol i cy. get Def aul t Pol i cy()

(application code should follow the same procedure). You can modify the value returned by this
method in two ways. you can use the St or agePol i cy. set Def aul t Pol i cy() Static method, or set
the system property st art abl e. st or age (this string is available as the constant PREF_PROPERTY).

The permissible valuesfor st art abl e. st or age are currently as follows:

memory

Use the PREFER_MEMORY policy
disk

Use the PREFER_DI SK policy
sideways

Use the sI DEWAYS policy

discard
Use the DI SCARD policy

SUN/252 25

Any other value is examined to see if it is the name of a loadable class which is a subclass of
St or agePol i cy and has a no-arg constructor. If it is, an instance of this class is constructed and
installed as the default.

This means that without any code modification you can alter how applications cache their table data
by setting a system property at runtime. The file . starjava. properties in the user's home
directory is examined during static initialization of StoragePol i cy for property assignments, so
adding the line

start abl e. st orage=di sk
in that file will have the same effect as specifying

-Dstartabl e. st orage=di sk
on the java command line.

If it has not been set otherwise, the 'default’ default storage policy is ADAPTI VE.

SUN/252 26

5 GUI Support

STIL provides a number of facilities to make life easier if you are writing table-aware applications
with agraphical user interface. Most of these livein theuk. ac. starlink. t abl e. gui package.

5.1 Drag and Drop

From a user's point of view dragging is done by clicking down a mouse button on some visual
component (the "drag source") and moving the mouse until it is over a second component (the
"drop target") at which point the button is released. The semantics of this are defined by the
application, but it usualy signals that the dragged object (in this case a table) has been moved or
copied from the drag source to the drop target; it's an intuitive and user-friendly way to offer
transfer of an object from one place (application window) to another. STIL's generic I/O classes
provide methods to make drag and drop of tables very straightforward.

Dragging and dropping are handled separately but in either case, you will need to construct a new
j avax. swi ng. Transf er Handl er object (subclassing Tr ansf er Handl er itself and overriding some
methods as below) and install it on the Swing JConponent which is to do be the drag source/drop
target using itsset Tr ansf er Handl er method.

To alow a Swing component to accept tables that are dropped onto it, implement
Tr ansf er Handl er 'Scanl nport and i nport Dat a methods like this:

cl ass Tabl eDragTransfer Handl er extends TransferHandl er {
St ar Tabl eFactory factory = new Star Tabl eFactory();

public bool ean canl nport(JConponent conp, DataFlavor[] flavors) {
return factory.canlnport(flavors);
}

publi c bool ean inportData(JConponent conp, Transferable dropped) {
try {
StarTabl e table = factory. makeSt ar Tabl e(dropped);
processDroppedTabl e(table);
return true;

}

catch (| OException e) {
e.printStackTrace();
return fal se;

}
}
}

Then any time a table is dropped on that window, your processDr oppedTabl e method will be
caled onit.

To alow tables to be dragged off of a component, implement the cr eat eTr ansf er abl e method like
this:

cl ass Tabl eDropTransfer Handl er extends TransferHandl er {
St ar Tabl eQut put witer = new Star Tabl eCut put () ;

protected Transferabl e createTransferabl e(JConponent conp) {
Star Tabl e table = get MyTabl e();
return witer.transferStarTable(table);

}
(you may want to override get Sour ceAct i ons and get Vi sual Represent ati on as well. For some
Swing components (see the Swing Data Transfer documentation for a list), this is al that is
required. For others, you will need to arrange to recognise the drag gesture and trigger the

SUN/252 27

Transf er Handl er 'S expor t AsDr ag method as well; you can use a Dr agLi st ener for this or see its
source code for an example of how to do it.

Because of the way that Swing's Drag and Drop facilities work, this is not restricted to transferring
tables between windows in the same application; if you incorporate one or other of these
capabilities into your application, it will be able to exchange tables with any other application that
does the same, even if it's running in a different Java Virtual Machine or on a different host - it just
needs to have windows open on the same display device. TOPCAT is an example; you can drag
tables off of or onto the Table List in the Control Window.

5.2 Table L oad Dialogues

Some graphical components exist to make it easier to load or save tables. They are effectively
table-friendly alternativesto using a JFi | eChooser .

In earlier versions of the library, there was a drop-in component which gave you a ready-made
dialogue to load tables from a wide range of sources (local file, JIDBC database, VO services, €tc).
However, this was not widely used and imposed some restrictions (dialogue modality) on the client
application, so at STIL version 3.0 they have been withdrawn. There is still a pluggable framework
for implementing and using source-specific load dialogues, but client code now has to do a bit more
work to incorporate these into an actual application. Thisiswhat TOPCAT does.

The main interface for this functionality is Tabl eLoadDi al og. Implementations of this interface
provide a GUI component which allows the user to specify what table will be loaded, and performs
the load of one or more tables based on this specification when requested to do so. An application
can embed instances of this into user-visible windows in order to provide load functionality. A
number of Tabl eLoadDi al og implementations are provided within STIL for access to local disk,
JDBC databases etc. The starjava set contains more, including access to virtual observatory
services. Further custom load types can be provided at runtime by providing additional
implementations of this interface. The partial implementation Abstract Tabl eLoadDi al og IS
provided for the convenience of implementors.

5.3 Table Save Dialogues

Tabl eSaveChooser IS used for saving tables. As well as alowing the user to select the table's
destination, it also allows selection of the output file format from the list of those which the
St ar Tabl eQut put knows about.

Like the load dialogue, it provides a pluggable framework for destination-specific GUI components.
These are provided by implementations of the Tabl eSaveDi al og class, which can be plugged in as
required. Implementations for saving to local and remote filesystems and JDBC databases are
provided within STIL.

SUN/252 28

6 Processing Star Tables

The uk. ac. starlink.tabl e package provides many generic facilities for table processing. The
most straightforward one to use is the Rowti st St ar Tabl e, described in the next subsection, which
gives you a St ar Tabl e whose data are stored in memory, so you can set and get cells or rows
somewhat like atabular version of an ArraylLi st .

For more flexible and efficient table processing, you may want to look at the later subsections
below, which make use of "pull-model” processing.

If all you want to do is to read tables in or write them out however, you may not need to read the
information in this section at all.

6.1 Writable Table

If you want to store tabular datain memory, possibly to output it using STIL's output facilities, the
easiest way to do it iS to use a Rowti st St ar Tabl e object. You construct it with information about
the kind of value which will be in each column, and then populate it with data by adding rows.
Normal read/write access is provided via a number of methods, so you can insert and delete rows,
set and get table cells, and so on.

The following code creates and populates a table containing some information about some
astronomical objects:

/1 Set up information about the col ums.

Col umminfo[] collnfos = new Columlinfo[3];

colInfos[O] new Col uml nfo("Nanme", String.class, "Object nane");
collnfos[1] new Col uml nfo("RA", Double.class, "Ri ght Ascension");
colInfos[2] new Col umml nfo("Dec", Double.class, "Declination");

/1l Construct a new, enpty table with these col ums.
RowLi st St ar Tabl e astro = new Rowli st Star Tabl e(col I nfos);

/1 Popul ate the rows of the table with actual data.
astro. addRow(new Cbject[] { "OuM nebula",

new Doubl e(168.63), new Double(55.03) });
astro. addRowm(new Object[] { "Wirlpool gal axy",

new Doubl e(202.43), new Double(47.22) });
astro. addRow(new Object[] { "MLO8",

new Doubl e(167.83), new Double(55.68) });

6.2Wrap It Up

The RowLi st St ar Tabl e described in the previous section is adequate for many table processing
purposes, but since it controls how storage is done (in a Li st of rows) it imposes a number of
restrictions - an obvious one is that all the data have to fit in memory at once.

A number of other classes are provided for more flexible table handling, which make heavy use of
the "pull-model" of processing, in which the work of turning one table to another is not done at the
time such a transformation is specified, but only when the transformed table data are actually
required, for instance to write out to disk as a new table file or to display in a GUI component such
as aJTabl e. One big advantage of this is that calculations which are never used never need to be
done. Another isthat in many cases it means you can process large tables without having to allocate
large amounts of memory. For multi-step processes, it is also often faster.

The central ideato get used to is that of a"wrapper” table. This is a table which wraps itself round
another one (its "base" table), using calls to the base table to provide the basic data/lmetadata but

SUN/252 29

making some some modifications before it returns it to the caller. Tables can be wrapped around
each other many layers deep like an onion. This is rather like the way that
java.io.FilterlnputStreanswork.

Although they don't have to, most wrapper table classes inherit from W apper St ar Tabl e. Thisis a
no-op wrapper, which ssimply delegates all its calls to the base table. Its subclasses generally leave
most of the methods alone, but override those which relate to the behaviour they want to change.
Hereis an example of avery smple wrapper table, which simply capitalizes its base table's name:

class CapitalizeStarTabl e extends Wapper Star Tabl e {
public CapitalizeStarTabl e(StarTable baseTable) {
super (baseTable);

public String getNane() {
return getBaseTabl e(). get Nane() .t oUpper Case();
}

}

As you can see, this has a constructor which passes the base table to the w apper St ar Tabl e
constructor itself, which takes the base table as an argument. Wrapper tables which do any
meaningful wrapping will have a constructor which takes a table, though they may take additional
arguments as well. More often it is the data part which is modified and the metadata which is left
the same - some examples of this are given in Section 6.4. Some wrapper tables wrap more than one
table, for instance joining two base tables to produce a third one which draws data and/or metadata
from both (e.g. Concat St ar Tabl e, Joi nSt ar Tabl e).

The idea of wrappers is used on some components other than st ar Tabl eS themselves: there are
W apper RowSequenceS and W apper Col ums as well. These can be useful in implementing wrapper
tables.

Working with wrappers can often be more efficient than, for instance, doing a calculation which
goes through all the rows of a table calculating new vaues and storing them in a
RowLi st St ar Tabl e. If you familiarise yourself with the set of wrapper tables supplied by STIL,
hopefully you will often find there are ones there which you can use or adapt to do much of the
work for you.

6.3 Wrapper Classes

Hereisalist of some of the wrapper classes provided, with brief descriptions:

Col umPer nmut edSt ar Tabl e
Views its base table with the columns in a different order.

RowPer nmut edSt ar Tabl e
Views its base table with the rows in a different order.

RowSubset St ar Tabl e
Views its base table with only some of the rows showing.

RandomW apper St ar Tabl e
Caches a snapshot of its base table's datain a (fast?) random-access structure.

Pr ogr essBar St ar Tabl e
Behaves exactly like its base table, but any RowSequence taken out on it controls a
JProgr essBar , SO the user can monitor progress in processing atable.

Progr essLi neSt ar Tabl e
Like ProgressBar StarTabl e, but controls an animated line of text on the terminal for
command-line applications.

Joi nSt ar Tabl e

SUN/252

Glues a number of tablestogether side-by-side.

Concat St ar Tabl e
Glues a number of tables together top-to-bottom.

6.4 Examples

This section gives afew examples of how STIL's wrapper classes can be used or adapted to perform
useful table processing. If you follow what's going on here, you should be able to write table

processing classes which fit in well with the existing STIL infrastructure.

6.4.1 Sorted Table

This example shows how you can wrap a table to provide a sorted view of it. It subclasses
RowPer mut edSt ar Tabl e, which is a wrapper that presents its base table with the rows in a different

order.

cl ass SortedStarTabl e ext ends RowPer nut edSt ar Tabl e {

/1l Constructs a new table froma base table, sorted on a given col um.
Sort edSt ar Tabl e(St ar Tabl e baseTabl e, int sortCol) throws | OException {

}
/
/
c

/1 Call the superclass constructor - this will throw an exception
/1 if baseTabl e does not have random access.

super (baseTable);

assert baseTabl e. | sRandom() ;

/1 Check that the colum we are being asked to sort on has
/1 a defined sort order.
O ass clazz = baseTabl e. get Col uml nfo(sortCol).getContentd ass();
if (! Conparable.class.isAssignableFrom clazz)) {

t hrow new |11 egal Argunent Exception(clazz + " not Conparable");
}

/1 Fill an array with objects which contain both the index of each
/1l row, and the object in the selected colum in that row.
int nrow = (int) getRowCount();
RowKey[] keys = new RowKey[nrow];
for (int irow = irow < nrow, irowt+)
oj ect val ue baseTabl e.getCel I (irow, sortCol);
keys[irow] new RowKey((Conparable) value, irow);

nno

/1 Sort the array on the values of the objects in the col um,;
/1l the row indices will get sorted into the right order too.
Arrays.sort(keys);

/! Read out the values of the rowindices into a pernutation array.
long[] rowvap = new |l ong[nrow];
for (int irow=0; irow < nrow, irow+) {

rowmvap[irow] = keys[irow].index_;

/1l Finally set the row permutation map of this table to the one
/1 we have just worked out.
set RowMvap(rowvap);

Defines a class (just a structure really) which can hold
a row index and a value (fromour selected colum).
ass RowKey i nmpl enents Conparable {

Conpar abl e val ue_;

int index_;

Rowkey(Conparable value, int index) {
val ue_ = val ue;
i ndex_ = index;

}
public int conpareTo(Object o) {
RowKey ot her = (RowKey) o;

SUN/252 31

return this.value_.conpareTo(other.value_);

6.4.2 Turn a set of arraysinto a StarTable

Suppose you have three arrays representing a set of points on the plane, giving an index number and
an x and y coordinate, and you would like to manipulate them as a StarTable. One way isto use the
Col umsSt ar Tabl e class, which gives you a table of a specified number of rows but initially no
columns, to which you can add data a column at a time. Each added column is an instance of
Col unmDat a; the Ar r ay Col unm class provides a convenient implementation which wraps an array of
objects or primitives (one element per row).

St ar Tabl e nakeTabl e(int[] index, double[] x, double[] vy) {
i nt nRow = index. | engt h;
Col umsSt ar Tabl e tabl e = Col umSt ar Tabl e. makeTabl eW t hRows(nRow) ;
tabl e. addCol um(ArrayCol um. makeCol utm("I ndex", index));
t abl e. addCol um(ArrayCol um. makeCol utm("x", x));
t abl e. addCol um(ArrayCol um. makeCol um("y", vy));
return table;

A more general way to approach this is to write a new implementation of st ar Tabl e; thisis like
what happens in Swing if you write your own Tabl eMbdel to provide data for a JTabl e. In order to
do this you will usually want to subclass one of the existing implementations, probably
Abst ract St ar Tabl e, RandonSt ar Tabl e OF W apper St ar Tabl e. Here is how it can be done:

cl ass Poi ntsStarTabl e extends Randontt ar Tabl e {

/1 Define the netadata object for each of the col ums.

Col umlinfo[] collnfos_ = new Columlnfo[] {
new Col uml nfo("Index", Integer.class, "point index"),
new Col utml nfo("X', Double.class, "x co-ordinate"),
new Col umlnfo("Y', Double.class, "y co-ordinate"),

/1 Menmber variables are arrays hol ding the actual data.
int[] index_;

doubl e[] x_;
double[] y_;
| ong nRow_;
public PointsStarTable(int[] index, double[] x, double[] vy) {
i ndex_ = index;
X_ = X;
y_ =Y, _
nRow_ = (long) index_.length;

public int getColumCount () {
return 3,
}

public | ong get RowCount () {
return nRow_;

public Col uml nfo get Columinfo(int icol) {
return colInfos_[icol];
}

public Cbject getCell(long Irow, int icol) {

int irow = checkedLongTolnt(lrow);
switch (icol) {

case 0: return new Integer(inde

case 1: return new Double(x_[i

case 2: return new Double(y_[i

= = X

SUN/252 32

default: throw new Il egal Argunent Exception();

}
}

In this case it is only necessary to implement the get Cel | method; Randonst ar Tabl e implements
the other data access methods (get Row, get RowSequence) in terms of this.

6.4.3 Add a new column

In this example we will append to a table a new column in which each cell contains the sum of all
the other numeric cellsin that row.

First, we define a wrapper table class which contains only a single column, the one which we want
to add. We subclass Abst r act St ar Tabl e, implementing its abstract methods as well as the get Cel |
method which may be required if the base table is random-access.

cl ass SuntCol umsSt ar Tabl e ext ends Abstract Star Tabl e {

St ar Tabl e baseTabl e_;
Col umlinfo col I nfoO_ =
new Col uml nfo("Suni, Double.class, "Sum of other colums");

// Constructs a new sunmation table froma base table.
SunmCol umsSt ar Tabl e(St ar Tabl e baseTable) {
baseTabl e_ = baseTabl ¢;

/1 Has a single colum.
public int getCol umCount () {
return 1;

/1 The single colum is the sumof the other col ums.
public Col uml nfo get Col umlnfo(int icol
if (icol '=0) throw new III|egal Argunent Exception();
return col I nfoO_;

}

/1l Has the sanme nunber of rows as the base table.
public | ong get RowCount () {
return baseTabl e_. get RowCount () ;

/1 Provides random access iff the base table does.
public bool ean i sRandon() {
return baseTabl e_. i sRandom();

/1 Get the row fromthe base table, and sumelements to produce val ue.
public Object getCell(long irow, int icol) throws |OException {

if (1col '=0) throw new |II|egal Argunent Exception();

return cal cul ateSum baseTable_.getRow(irow));

Use a W apper RowSequence based on the base table's RowSequence.
W appi ng a RowSequence is quite |ike wapping the table itself;
we just need to override the nmethods which require new behaviour.
bl i c RowSequence get RowSequence() throws | OException {
final RowSequence baseSeq = baseTabl e_. get RowSequence() ;
return new Wapper RowSequence(baseSeq) {

}
/1
/1
/1
pu

public Object getCell(int icol) throws | OException {
if (icol '=0) throw new Il|egal Argument Exception();
return cal cul ateSum baseSeq. get Row());

}

public Object[] getRow() throws | OException {
return new Cbject[] { getCell(0) };

SUN/252 33

/ This method does the arithmetic work, summing all the nuneric
/ colums in a row (array of cell value objects) and returning
/ a Doubl e.
Doubl e cal cul ateSun{ oject[] row) {
doubl e sum = 0.0;
for (int icol =0; icol <rowlength; icol++) {

bj ect value = row icol];

if (value instanceof Number) {

sum += ((Nunber) val ue). doubl eVal ue();

}
/
/
/

return new Doubl e(sum);

}

We could use this class on its own if we just wanted a 1-column table containing summed values.
The following snippet however combines an instance of this class with the table that it is summing
from, resulting in an n+1 column table in which the last column is the sum of the others:

St ar Tabl e get Conbi nedTabl e(StarTable inTable) {
Star Tabl e[] tableSet = new StarTable[2];
tableSet[O] = inTable;
tableSet][1] = new SumCol uimSt ar Tabl e(i nTable);
St ar Tabl e conbi nedTabl e = new Joi nStar Tabl e(tabl eSet);
return conbi nedTabl e;

6.5 Table Joins

Some fairly sophisticated classes for performing table joins (by matching values of columns
between tables) are available in the uk. ac. starlink.table.join package. These work and are
used in TOPCAT, but are not described further in this document, and they are subject to changesin
future releases. Read the javadocs for the uk. ac. starlink.table.join package, or watch this
space, or contact the author if you are keen to use this functionality.

SUN/252 34

7 VOTable Access

VOTable is an XML-based format for storage and transmission of tabular data, endorsed by the
International Virtual Observatory Alliance, who make avallable the schema
(http://lwww.ivoa.net/xml/VOTable/v1.1) and documentation
(http://www.ivoa.net/Documents/latest/VOT.html). The current version of STIL provides full
support for versions 1.0, 1.1 and 1.2 of the format.

As with the other handlers tabular data can be read from and written to VOTable documents using
the generic facilities described in Section 3. However if you know you're going to be dealing with
VOTables the VOTable-specific parts of the library can be used on their own; this may be more
convenient and it also allows access to some features specific to VOTables.

The VOTable functionality is provided in the package uk.ac.starlink.votable. It has the
following features:

Reads all VOTable dataformats (TABLEDATA/FITS/BINARY)
Writes all VOTable data formats

Full access to document structure asa DOM

Full handling of array types

Flexible table output

Hybrid (SAX/DOM) parsing for memory & CPU efficiency
Large table access (not limited by memory)

Fast

Resolution of relative URLS

Sequential/random access to tabular data

Best efforts parsing of non-conforming documents

Optional disk-based caching of table data when read

Most of these are described in subsequent sections.

7.1 Star Table Representation of VOTables

As for other table formats, STIL represents a VOTable TABLE element to the programmer as a
St ar Tabl e Object, in this case a vost ar Tabl e. Since the data models used by the star Tabl e
interface and the VOTable definition of a TABLE are pretty similar, it's mostly obvious how the
one maps onto the other. However, for those who want a detailed understanding of exactly how to
interpret or control one from the other, the following subsections go through these mappings in
detail.

7.1.1 Structure

It isimportant to understand that when STIL readsin aaVOTable document, it creates one or more
StarTables from one or all of the TABLE elements and then discards the document. This means that
information in the document's structure which does not map naturally onto the StarTable model
may be lost. Such information currently includes COOSYS elements, GROUPiIng of
PARAMETERs and FIELDs, and the hierarchical relationship between tables arranged in
RESOURCE elements. It is possible that some of these will be stored in some way in VOTable-type
StarTables in the future, but some loss of information is an inevitable consequence of the fact that
STIL's model of a table is designed to provide a generic rather than a VOTable-specific way of
describing tabular data.

If you want to avoid this kind of data loss, you should use the custom VOTable document parser
described in Section 7.3.2, which retains the entire structure of the document.

SUN/252 35

7.1.2 Parameters

When a st ar Tabl e is created by reading a TABLE element, its parameter list (as accessed using
get Par anet er s) is assembled by collecting al the PARAM elementsin the TABLE element and all
the PARAM and INFO elements in its parent RESOURCE. When a VOTable is written, all the
parameters are written as PARAMsin the TABLE.

7.1.3 Column M etadata

There is a one-to-one correspondence between a St ar Tabl e's Col urmi nf o Objects (accessed using
get Col unml nf o) and the FIELD elements contained in the corresponding TABLE. The attributes of
each fields are interpreted (for reading) or determined (for writing) in a number of different ways:

* datatype andarraysi ze values depend on the class and shape of objects held in the column.

* nanme, unit ucd and U ype values can be accessed using the corresponding methods on the
Col umml nf o object (get / set Name(), Unit String(), UCD() and Ut ype() respectively).

* IDwdth, precision and type are held as String-type auxiliary metadata items in the
Col unmi nfo oObject, keyed by constants defined by the vostarTable class (1 D_I NFO,
W DTH_I NFO, PRECI SI ON_I NFOand TYPE_I NFO respectively).

* LINK €eements are represented by URL-type auxiliary metadata items in the Col urmi nfo
object, keyed by their ti t1 e or, if it doesn't have one, | D attribute.

So if you have read a VOTable and want to determine the name, ucd and | D attributes of the first
column, you can do it like this:

Star Tabl e tabl e = readVOrabl e();

Col uminfo col 0 = tabl e. get Col uml nfo(0);

String nane0 = col 0. get Narre()'

String ucd0 = col 0. get

String id0 = (String) colO. get AuxDat unVal ue(VCOSt ar Tabl e. I D_I NFO, String. cl ass);

And if you are preparing a table to be written as a VOTable and want to set the nane, ucd and I D
attributes of a certain column, and have it contain an element <LI NK title='docs' href="..."'>"
you can set its Col unml nf o up like this:

Col uml nfo configureColum(String nane, String ucd, String id, URL docURL) {
Col umlinfo info = new Col uml nf o(nane) ;
i nfo.set UCD(ucd);
i nf o. set AuxDat urr(new Descri bedVal ue(VOSt ar Tabl e. ID_INFQ, id));
i nf 0. set AuxDat un(new Descri bedVal ue(new URLVal uel nfo("docs", null), docURL));
return info;

7.1.4 Data Types

The class and shape of each column in a St ar Tabl e (accessed using the get / set Cont ent O ass()
and get / set Shape() methods of Col unnl nf o) correspond to the dat at ype and ar r aysi ze attributes
of the corresponding FIELD element in the VOTable. You are not expected to access the dat at ype
and ar r aysi ze elements directly.

How Java classes map to VOTable data types for the content of columnsis similar to elsewhere in
STIL. In general, scalars are represented by the corresponding primitive wrapper class (I nt eger,
Doubl e, Bool ean €tc), and arrays are represented by an array of primitives of the corresponding type
(int[], double[], bool ean[]). Arrays are only ever one-dimensional - information about any
multidimensional shape they may have is supplied separately (use the get Shape method on the

SUN/252 36

corresponding Col unml nf o). There are a couple of exceptions to this: arrays with dat at ype="char"

or "uni codeChar" are represented by String objects since that is almost always what is intended
(n-dimensional arrays of char are treated as if they were (n-1)-dimensional arrays of Strings), and
unsi gnedByt e types are represented as if they were short s, since in Java bytes are always signed.
Complex values are represented as if they were an array of the corresponding type but with an extra
dimension of size two (the most rapidly varying).

The following table summarises how all VOTable datatypes are represented:

dat at ype Cl ass for scal ar Cl ass for arraysize>1
bool ean Bool ean bool ean[]

bi t bool ean[] bool ean[|

unsi gnedByt e Short short[]

short Short short][]

i nt I nt eger int[]

| ong Long | ong[]

char Char String or String[]
uni codeChar Char String or String[]
fl oat Fl oat float[]

doubl e Doubl e doubl e[]

f I oat Conpl ex float[] float[]

doubl eConpl ex doubl e[] doubl e[]

7.2 DATA Element Formats

The actual table data (the cell contents, as opposed to metadata such as column names and
characteristics) in a VOTable are stored in a TABLE's DATA element. The VOTable standard
alows it to be stored in a number of ways; It may be present as XML elementsin a TABLEDATA
element, or as binary datain one of two formats, BINARY or FITS; if binary the data may either be
available externally from a given URL or present in a STREAM element encoded as character data
using the Base64 scheme (Base64 is defined in RFC2045).

To summarise, the possible formats are:

« TABLEDATA

* BINARY at external URL

* BINARY inline (base64-encoded)
» HTSat externa URL

* FITSinline (base64-encoded)

and here are examples of what the different forms of the DATA element look like:

<!-- TABLEDATA format, inline -->
<DATA>
<TABLEDATA>
<TR> <TD>1.0</ TD> <TD>first</ TD> </ TR>
<TR> <TD>2. 0</ TD> <TD>second</ TD> </ TR>
<TR> <TD>3.0</ TD> <TD>t hird</ TD> </ TR>
</ TABLEDATA>
</ DATA>

<!-- BINARY format, inline -->
<DATA>
<BI NARY>
<STREAM encodi ng=' base64' >
P4 AAAAAAAAVITEXI ZdEAAAAAAAAAGE 2V) b25k QEAAAAAAAAVOad yZA==
</ STREAM>
</ Bl NARY>
</ DATA>

<!-- BINARY format, to external file -->
<DATA>
<BI NARY>
<STREAM href="fil e:/ hone/ nbt/ Bl NARY. dat a"/ >

SUN/252 37

</ Bl NARY>
</ DATA>

External files may also be compressed using gzip. The FITS ones look pretty much like the binary
ones, though in the case of an externally referenced FITS file, the file in the URL is a fully
functioning FITS file with (at least) one BINTABLE extension.

In the case of FITS data the VOTable standard leaves it up to the application how to resolve
differences between metadata in the FITS stream and in the VOTable which references it. For a
legal VOTable document STIL behaves as if it uses the metadata from the VOTable and ignores
any in FITS headers, but if they are inconsistent to the extent that the FIELD elements and FITS
headers describe different kinds of data, results may be unpredictable.

At the time of writing, most VOTablesin the wild are writtenin TABLEDATA format. This has the
advantage that it is human-readable, and it's easy to write and read using standard XML tools.
However, it is not a very suitable format for large tables because of the high overheads of
processing time and storage/bandwidth, especially for numerical data. For efficient transport of
large tables therefore, one of the binary formats is recommended.

STIL can read and write VOTables in any of these formats. In the case of reading, you just need to
point the library at a document or TABLE element and it will work out what format the table data
are stored in and decode them accordingly - the user doesn't need to know whether it's
TABLEDATA or externa gzipped FITS or whatever. In the case of writing, you can choose which
format is used.

7.3 Reading VOTables

STIL offers a number of options for reading a VOTable document, described in the following
sections. If you just want to read one table or all of the tables stored in a VOTable document,
obtaining the result as one or more StarTable, the most convenient way is to use the VOTable
handler's versions of the STIL generic table reading methods, as described in Section 7.3.1. If you
need access to the structure of the VOTable document however, you can use the DOM or SAX-like
facilites described in the sections Section 7.3.2 and Section 7.3.3 below.

7.3.1 Generic VOTable Read

The simplest way to read tables from a VOTable document is to use the generic table reading
method described in Section 3.2 (or Section 3.3 for streaming) in which you just submit the location
of a document to a St ar Tabl eFact ory, and get back one or more st ar Tabl e objects. If you're after
one of severa TABLE elements in a document, you can specify this by giving its number as the
URL's fragment ID (the bit after the # sign, or the third argument of streanstar Tabl e for
streaming).

The following code would give you st ar Tabl es read from the first and fourth TABLE elementsin
the file "tabledoc.xml":

St ar Tabl eFactory factory = new Star Tabl eFactory();
StarTabl e tabl eA = factory. makeSt ar Tabl e("tabl edoc. xm ", "votable");
Star Tabl e tabl eB = factory. nakeSt ar Tabl e("t abl edoc. xm #3", "votable");

or equivalently

VQOTabl eBui | der vot Bui | der = new VOTabl eBui | der () ;
bool ean want Random = f al se;
St oragePol i cy policy = StoragePolicy. getDefaul tPolicy();

SUN/252 38

Star Tabl e tabl eA =
vot Bui | der. makeSt ar Tabl e(Dat aSour ce. makeDat aSour ce("t abl edoc. xm "),
want Random policy);
Star Tabl e tabl eB =
vot Bui | der. makeSt ar Tabl e(Dat aSour ce. makeDat aSour ce("t abl edoc. xm #3"),
want Random policy);

Note thiswill perform two separate parses of the document, one for each table built.

If you want all the tables in the document, do this:

VOTabl eBui | der vot Bui | der = new VOTabl eBui | der () ;

Dat aSour ce datsrc = Dat aSour ce. makeDat aSource("tabl edoc. xm ");

St oragePol i cy policy = StoragePolicy. get Defaul tPolicy();

Tabl eSequence tseq = votBuil der. nakeSt ar Tabl es(datsrc, policy);

List tList = new ArraylList();

for (StarTable table; (table = tseq.nextTable()) != null;) {
tList.add(table);

which only performs a single pass and so is more efficient.

All the data and metadata from the TABLESs in the VOTable document are available from the
resulting st ar Tabl e objects, as table parameters, Col unml nf oS or the data themselves. If you are
just trying to extract the data and metadata from a single TABLE element somewherein aVOTable
document, this procedure is probably all you need.

7.3.2 Table-Aware DOM Processing

VOTable documents consist of a hierarchy of RESOURCE, DEFINITIONS, COOSY S, TABLE
elements and so on. The methods described in the previous subsection effectively approximate this
asaflat list of TABLE elements. If you are interested in the structure of the VOTable document in
more detail than the table items that can be extracted from it, you will need to examine it in a
different way, based on the XML. The usual way of doing this for an XML document in Javaisto
obtain a DOM (Document Object Model) based on the XML - thisis an API defined by the W3C
representing a tree-like structure of elements and attributes which can be navigated by using
methods like get Fi r st Chi | d and get Par ent Node.

STIL provides you with aDOM which can be viewed exactly like a standard one (it implements the
DOM API) but has some special features.

* All elements in it are instances of the VoEl enent class (which itself implements the DOM
El ement interface). This provides a few convenience methods such as get Chi | dr enByNane
which can be useful but don't do anything that you couldnt do with the El ement interface
alone.

* Some of the elements, according to their name, are instances of specialised subclasses of
VOE! enent which provide methods specific to their role in a VOTable document. For instance
every GROUP element in the tree is represented by a Gr oupE! enent ; this class has a method
get Fi el ds which returns al the FIELD elements associated with that group (this method
examinesits FIEL Dref children and locates their FIELD elements elsewhere in the DOM). The
various specific element types are not considered in detail here - see the javadocs for the
subclasses of VOEl enent .

» The most important of these special element subclasses is Tabl eEl enent . A Tabl eEl enent can
provide the table data stored within it; to access these data you don't need to know whether it is
stored in TABLEDATA, FITS or BINARY form etc.

* Full ID/ref cross-referencing is supported for elements which have ID attributes in the
VOTable specification - this is required so that for instance FIELDref elements can access
their FIELDs, and TABLE elements can define their structure by reference to previousy

SUN/252 39

defined ones. If you need to locate cross-references by hand you can use the get El enent Byl d
method.

* In most cases, the DOM you acquire will not contain the bulk data in the VOTable XML.
Specifically, the children of TABLEDATA elements (alot of TR and TDs) and of STREAM
elements (long Base64-encoded strings containing FITS/binary data) will be absent. User code
inspecting the DOM s rarely interested in these elements, only in the table data they represent,
and this can be obtained from the corresponding TABLE element.

« The DOM is modifiable - that is you can add, remove and relocate nodes within it in the
standard ways permitted by the DOM API.

To acquire this DOM you will use a VOEl enent Factory, usually feeding a File, URL oOr
| nput St ream to one of its nakeVCEl enent methods. The bulk data-less DOM mentioned above is
possible because the VOE! enent Fact ory processes the XML document using SAX, building a DOM
as it goes along, but when it gets to the bulk data-bearing elements it interprets their data on the fly
and stores it in aform which can be accessed efficiently later rather than inserting the elements into
the DOM. SAX (Simple API for XML) is an event driven processing model which, unlike DOM,
does not imply memory usage that scales with the size of the document. In this way any but the
weirdest VOTable documents can be turned into a DOM of very modest size. This means you can
have all the benefits of a DOM (full access to the hierarchical structure) without the disadvantages
usually associated with DOM-based VOTable processing (potentially huge memory footprint). Of
course in order to be accessed later, the data extracted from a stream of TR elements or from the
inline content of a STREAM element has to get stored somewhere. Where it gets put is determined
by the VOEI enent Fact ory'S St or agePol i cy (See Section 4).

If for some reason you want to work with a full DOM containing the TABLEDATA or STREAM
children, you can parse the document to produce a DOM Docunent or El ement as usual (e.g. using a
Docunent Bui | der) and feed that to one of the the VOEI enent Fact ory's makeVCEl ement methods
instead.

Having obtained your DOM, the easiest way to access the data of a TABLE element isto locate the
relevant Tabl eEl enent inthetree and turn it into a st ar Tabl e using the VoSt ar Tabl e adapter class.
You can interrogate the resulting object for its data and metadata in the usual way as described in
Section 2. This st ar Tabl e may or may not provide random access (i sRandom may or may not
return true), according to how the data were obtained. If it's a binary stream from a remote URL it
may only be possible to read rows from start to finish arow at atime, but if it wasin TABLEDATA
form it will be possible to access cells in any order. If you need random access for a table and you
don't haveit (or don't know if you do) then use the methods described in Section 2.3.3.

It is possible to access the table data directly (without making it into a St ar Tabl e) by using the
get Dat a method of the Tabl eEl enent , but in this case you need to work a bit harder to extract some
of the data and metadata in useful forms. See the Tabul ar Dat a documentation for details.

One point to note about VOEI enent Fact or y's parsing is that it is not restricted to elements named in
the VOTable standard, so a document which does not conform to the standard can still be processed
asaVOTableif partsof it contain VOTable-like structures.

Here is an example of using this approach to read the structure of a, possibly complex, VOTable
document. This program locates the third TABLE child of the first RESOURCE element and prints
out its column titles and table data.

void printThirdTable(File votFile) throws | OException, SAXException {

/'l Create a tree of VCElenents fromthe given XM file.
VCE! enent top = new VOEl enent Factory() . makeVCEl enent(votFile);

/1 Find the first RESOURCE el enent using standard DOM net hods.
NodeLi st resources = top. get El enent sByTagNanme(" RESOURCE");

SUN/252 40

El enent resource = (Elenent) resources.iten(0);

/1 Locate the third TABLE child of this resource using one of the
/1 VCEl enent conveni ence net hods.

VOE!l ement vResource = (VOEl enent) resource;

VCEl enent[] tables = vResource. get Chil drenByName(" TABLE");

Tabl eEl enent tabl eEl = (Tabl eEl enent) tables[2];

// Turn it into a StarTable so we can access its data.
St ar Tabl e starTabl e = new VOSt ar Tabl e(tabl eEl);

/1 Wite out the colum name for each of its col ums.

int nCol = starTabl e. get Col uimCount ();

for (int iCol =0; iCol < nCol; iCol++) {
String col Name = starTabl e. get Col uminfo(i Col).getNane();
Systemout.print(col Name + "\t");

}
Systemout.printlin();

/'l lterate through its data rows, printing out each el enent.
for (RowSequence rSeq = starTabl e. get RowSequence(); rSeq.next();) {
oj ect[] row = rSeq. get Row() ;
for (int iCol =0; 1Col < nCol; iCol++) {
Systemout.print(row iCol] + "\t");

}
Systemout. println();
}

Versions of STIL prior to V2.0 worked somewhat differently to this - they produced a tree structure
representing the VOTable document which resembled, but wasn't, a DOM (it didn't implement the
W3C DOM API). The current approach is more powerful and in some cases less fiddly to use.

7.3.3 Table-Aware SAX Processing

SAX (Simple API for XML) is an event-based model for processing XML streams, defined in the
org.xm .sax package. While generally a bit more effort to use than DOM, it provides more
flexibility and possibilities for efficiency, since you can decide what to do with each element rather
than always store it in memory. Although a DOM built using the mechanism described in the
previous section will usualy itself be pretty small, it will normaly have to store table data
somewhere in memory or on disk, so if you don't need, and wish to avoid, this overhead, you'd
better use event-based processing directly. This section describes how to do that.

The basic tool to use for VOTable-aware SAX-based processing is a Tabl eCont ent Handl er , which
is a SAX Cont ent Handl er implementation that monitors al the SAX events and when it comes
across a TABLE element containing DATA it passes SAX-like messages to a user-supplied
Tabl eHandl er which can do what it likes with them. Tabl eHandl er is a callback interface for
dealing with table metadata and data events defined by STIL in the spirit of the existing SAX
callback interfaces such as Cont ent Handl er, Lexi cal Handl er etc. You define a Tabl eHandl er by
implementing the methods st ar t Tabl e, r owDat a and endTabl e.

For full details of how to use this, see the appropriate javadocs, but here is a simple example which
counts therowsin each TABLE in aVOTable stream.

i mport javax.xm . parsers. SAXPar ser Factory;

i mport org.xmn .sax. Content Handl er;

i mport org.xm .sax. | nput Source;

i mport org.xm .sax. XM_Reader ;

i mport uk.ac.starlink.table. StarTabl e;

i mport uk.ac. starlink.votabl e. Tabl eCont ent Handl er;
i mport uk.ac.starlink.votabl e. Tabl eHandl er;

voi d sunmari seVot abl eDocunment (I nputStreamin) throws Exception {

SUN/252 41

/1 Set up a handler which responds to TABLE-triggered events in
/'l a suitable way.
Tabl eHandl er tabl eHandl er = new Tabl eHandl er () {

I ong rowCount; // Nunmber of rows seen in this table.

/1l Start of table: print out the table name.
public void startTable(StarTable neta) {
rowCount = 0O;
Systemout.println("Table: " + neta.getNanme());

/1 New row. increment the running total of rows in this table.
public void rowbata(Object[] row) {

rowCount ++;
}

/!l End of table: print out the sunmary.
public void endTabl e() {
Systemout. println(rowCount + " rows");

}s

/1 Install it into a Tabl eContentHandl er ready for use.
Tabl eCont ent Handl er vot Cont ent Handl er = new Tabl eContent Handl er (true);
vot Cont ent Handl er . set Tabl eHandl er (t abl eHandl er);

/]l CGet a SAX parser in the usual way.
XMLReader parser = SAXParser Factory. newl nstance(). newSAXPar ser ()
. get XMLReader () ;

/1 Install our table-aware content handler in it.
par ser. set Cont ent Handl er (vot Cont ent Handl er);

/1 Performthe parse; this will go through the XM. stream sendi ng

/1 SAX events to votContentHandler, which in turn will forward

/1l table events to tabl eHandl er, which responds by printing the summary.
parser.parse(new I nputSource(in));

7.3.4 Standar ds Confor mance

The VOTable parser provided is believed to be able to parse correctly any VOTable document
which conforms to the 1.0, 1.1 or 1.2 VOTable recommendations. In addition, it will happily cope
with documents which violate the standard in that they contain extra elements or attributes; such
elements or attributes will be inserted into the resulting DOM but ignored as far as producing
St ar Tabl eS goes. In generd, if there is something obvious that the parser can do to make sense of a
document outside of the letter of the standard, then it tries to do that.

There is currently one instance in which it can be useful for the parser deliberately to violate the
standard, as a workaround for an error commonly encountered in VOTable documents. According
to the standard, if aFIELD (or PARAM) element is declared like this:

<FI ELD dat at ype="char"/ > (1)
it is considered equivalent to

<FI ELD dat at ype="char" arraysi ze="1"/> (2)

that is, it describes a column in which each cell contains a single character (the same remarks apply
to dat at ype="uni codeChar"). In fact, when people (or machines) write (1) above, what they often
mean to say is

<FI ELD dat at ype="char" arraysi ze="*"/> (3)

that is, it describes a column in which each cell contains a variable length string. In particular, some
tables returned from the service have contained this defect. Working to the letter of the standard,

SUN/252 42

this can lead to columns in which only the first character of the string in cell is visible. By default
STIL interprets (1) above, in accordance with the standard, to mean (2). However, if you want to
work around the problem and interpret (1) to mean (3), by using VCEI enent Fact ory'S set Stri ct
method or STRI CT_DEFAULT variable, or from outside the program by setting the system property
votabl e. strict="fal se".

7.4 Writing VOTables

To write aVOTable using STIL you have to prepare a st ar Tabl e object which defines the output
table's metadata and data. The uk. ac. starli nk. t abl e package provides a rich set of facilities for
creating and modifying these, as described in Section 6 (see Section 6.4.2 for an example of how to
turn a set of arraysinto a st ar Tabl e). In general the FIELD arr aysi ze and dat at ype attributes are
determined from column classes using the same mappings described in Section 7.1.4.

A range of facilities for writing St ar Tabl es out as VOTables is offered, allowing control over the
data format and the structure of the resulting document.

7.4.1 Generic table output

Depending on your application, you may wish to provide the option of output to tables in arange of
different formats including VOTable. This can be easily done using the generic output facilities
described in Section 3.4.

7.4.2 Single VOT able output

The simplest way to output atable in VOTable format isto use aVvorabl ewi t er, which will output
aVOTable document with the simplest structure capable of holding a TABLE element, namely:

<VOTABLE version="'"1.0">
<RESQURCE>
<TABLE>
<!-- .. FIELD el enents here -->
<DATA>
<!-- table data here -->
</ DATA>
</ TABLE>
</ RESOURCE>
</ VOTABLE>

The writer can be configured/constructed to write its output in any of the formats described in
Section 7.2 (TABLEDATA, inline FITS etc) by using its set Dat aFor mat and set I nl i ne methods.
In the case of streamed output which is not inline, the streamed (BINARY or FITS) data will be
written to awith a name similar to that of the main XML output file.

Assuming that you have your st ar Tabl e ready to output, here is how you could write it out in two
of the possible formats:

void output All Formats(StarTable table) throws | OException {

/]l Create a default StarTabl eQutput, used for turning location
/1 strings into output streans.
St ar Tabl eQut put sto = new Star Tabl eCut put () ;

[/ Cbtain a witer for inline TABLEDATA out put.
VOTabl eWiter voWiter = new VOTabl eWiter(DataFornat. TABLEDATA, true);

/Il Use it to wite the table to a naned file.
voWiter.witeStarTable(table, "tabledata-inline.xm", sto);

/1 Modify the witer's characteristics to use it for referenced FITS output.
voW i ter.setDataFormat (DataFormat.FI TS);
voWiter.setlnline(false);

SUN/252 43

/] Use it to wite the table to a different naned file.

/Il The wwiter will choose a nane |ike "fits-href-data.fits" for the
// actual FITS file referenced in the XM.

voWiter.witeStarTable(table, "fits-href.xm", sto);

7.4.3 TABLE element output

You may wish for more flexibility, such as the possibility to write a VOTable document with a
more complicated structure than a ssimple VOTABLE/RESOURCE/TABLE one, or to have more
control over the output destination for referenced STREAM data. In this case you can use the
VvOSeri al i zer class which handles only the output of TABLE elements themselves (the hard part),
leaving you free to embed these in whatever XML superstructure you wish.

Once you have obtained your voseri al i zer by specifying the table it will serialize and the data
format it will use, you should invoke its witeFields method followed by either
wri telnlineDataEl enent OF writeHref Dat aEl ement . For inline output, the output should be sent
to the same stream to which the XML itself is written. In the latter case however, you can decide
where the streamed data go, alowing possibilities such as sending them to a separate file in a
location of your choosing, creating a new MIME attachment to a message, or sending it down a
separate channel to a client. In this case you will need to ensure that the href associated with it
(written into the STREAM element's hr ef attribute) will direct areader to the right place.

Here is an example of how you could write a number of inline tables in TABLEDATA format in
the same RESOURCE element:

void witeTables(StarTable[] tables) throws | OException {
Buf feredWiter out =
new Buf feredWiter(new QutputStreamiNiter(Systemout));

out.wite("<VOTABLE version='1.1">\n");
out.write("<RESOURCE>\n");
out.wite("<DESCRIPTI ON>Sone tabl es</ DESCRI PTI ON>\ n") ;
for (int i =0; i <tables.length; i++)
VCSeri al i zer. makeSeri al i zer (Dat aFor mat . TABLEDATA, tables[i])
| .writelnlineTabl eEl enent (out);
out.wite("</RESOURCE>\n");
out.write("</VOTABLE>\n");
out. flush();

}

and here is how you could write a table with its data streamed to a binary file with a given name
(rather than the automatically chosen one selected by vorabl ewi t er):

void witeTable(StarTable table, File binaryFile) throws | OException {
Buf feredWiter out =
new Buf feredWiter(new QutputStreamNiter(Systemout));

out.wite("<VOTABLE version='1.1">\n");
out.write("<RESOURCE>\n");
out.wite("<TABLE>\n");
Dat aQut put St r eam bi nQut =
new Dat aQut put Stream(new Fil eQut put Strean(binaryFile));
VCSeri al i zer. nakeSeri al i zer (Dat aFor mat . BI NARY, table)
.wWriteHref Tabl eEl enent(out, "file:" + binaryFile, binQut);
bi nQut . cl ose();
out.write("</ TABLE>\n");
out.wite("<RESOURCE>\n");
out.wite("<VOTABLE>\n");
out.flush();

}

VOSerializer contains some more fine-grained methods too which can be used if you want still

SUN/252 44

further control over the output, for instance to insert some GROUP elements after the FIELDs in a
table. Here is an example of that:

Buf feredWiter out =
new BufferedWiter(new QutputStreanmWViter(Systemout));

out.wite("<VOTABLE version="1.1">\n");
out.write("<RESOURCE>\n");
out.wite("<TABLE>\n");

VCSeri alizer ser = VOSerializer

. makeSeri al i zer (Dat aFor mat . TABLEDATA, table);
ser.witeFields(out);
out.wite("<GROUP><FIELDref ref="RA' /><FlIELDref ref="DEC /></GROUP>");
ser.writelnlineTabl eEl enent(out);

out.write("</ TABLE>\n");
out.wite("</RESOURCE>\n");
out.wite("</VOTABLE>");

SUN/252 45

A System Properties

This section contains a list of system properties which influence the behaviour of STIL. You don't
have to set any of these; the relevant components will use reasonable defaults if they are undefined.
Note that in certain security contexts it may not be possible to access system properties; in this case
STIL will silently ignore any such settings.

A.ljava.io.tmpdir

java.io.tnpdir is a standard Java system property which is used by the disk-based storage
policies. It determines where the JVM writes temporary files, including those written by these
storage policies (see Section 4 and Appendix A.6). The default value is typicaly "/tnp" on
Unix-like platforms.

A.2jdbc.drivers

Thej dbc. dri vers property isastandard JDBC property which names JDBC driver classes that can
be used to talk to SQL databases. See Section 3.7.1 for more details.

A.3 mark.workaround

The mar k. wor kar ound determines whether a workaround is employed to fix bugs in which certain
| nput St r eamimplementations lie about their abiilty to do mar k/ r eset operations (mar k returns true
when it should return false). Several classes in various versions of Sun's J2SE do this. It can result
in an error with a message like "Resetting to invalid mark”. Setting this property true works around
it. By default it is set false.

A.4 star .connectors

The star. connect ors property names additional remote filestore implementations. Its value is a
colon-separated list of class names, where each element of the list must be the name of a class on
the classpath which implements the Connect or interface. It is used in the graphical filestore
browsersin Section 5.2 and Section 5.3. See Connect or Manager for more details.

A5 startablereaders

The startabl e. reader s property provides additional input handlers which st ar Tabl eFact ory can
use for loading tables in named format mode. Its value is a colon-separated list of class names,
where each element of the list must be the name of a class on the classpath which implements the
Tabl eBui | der interface and has a no-arg constructor. When a new Star Tabl eFactory IS
constructed, an instance of each such named class is created and added to its known handler list.
Users of the library can therefore read tables in the format that the new handler understands by
giving its format name when doing the load.

A.6 startable.storage

The startabl e. storage property sets the initial value of the default storage policy, which
influences where bulk table data will be cached. The recognised values are:

* nenory: table datawill normally be stored in memory (St or agePol i cy. PREFER_MEMORY)

» disk: table datawill normally be stored in temporary disk files (St or agePol i cy. PREFER_DI SK)

* adaptive: table data will be stored in memory for small tables and on disk for larger ones
(St or agePol i cy. ADAPTI VE)

SUN/252 46

* sideways: table data will normally be stored in temporary disk files using a column-oriented
arrangement (St or agePol i cy. S| DEWAYS)

 discard: table data will normally be thrown away, leaving only metadata
(St or agePol i cy. DI SCARD)

The default setting is equivalent to "adapt i ve".

You may aso give the name of a subclass of storagePol i cy which has a no-arg constructor, in
which case an instance of this class will be used as the default policy. See Section 4 for further
discussion.

See Section 4 for further discussion of storage policies.

A.7 startablewriters

Thestartabl e. witers property provides additional output handlers which st ar Tabl eCut put can
use for writing tables. Its value is a colon-separated list of class names, where each element of the
list must be the name of a class on the classpath which implements the st ar Tabl ew i t er interface
and has a no-arg constructor. When a new st ar Tabl eQut put IS constructed, an instance of each
such named class is created and added to its handler list. Users of the library can therefore write
tables in the format that the new handler knows how to write to by giving its format name when
performing the write.

A.8 votable.namespacing

The vot abl e. namespaci ng property determines how XML namespacing is handled in VOTable
documents. It may take one of the following fixed values:

* none: No namespace handling is done. If the VOTable document contains xni ns declarations,
the parser will probably become confused. (Namespaci ng. NONE)

* lax: Anything that looks like it is probably a VOTable element is treated as a VOTable
element, regardless of whether the namespacing has been declared correctly or not.
(Nanmespaci ng. LAX)

* strict: Only elements declared to be in one of the official VOTable namespaces are treated as
VOTable elements. If the VOTable document does not contain appropriate xm ns declarations,
the parser may not treat it asa VOTable. (Nanespaci ng. STRI CT)

Alternatively, the property value may be the fully qualified classname of an implementation of the
Namespaci ng class which has a no-arg constructor; in this case that class will be instantiated and it
will be used for VOTable namespace handling.

If no value is given, the default is currently 1 ax handling. In versions of STIL prior to 2.8, the

behaviour was not configurable, and corresponded approximately to a value for this property of
none.

A.9 votable.strict

The votabl e. strict property determines whether VOTable parsing is done strictly according to
the letter of the standard. See Section 7.3.4 for details.

SUN/252 47

B Table Tools

Some user applications based on STIL are available in the following packages:

STILTS
STIL Tool Set, contains command-line tools for generic table and V OTable manipulation.

TOPCAT
Tool for OPerations on Catalogues And Tables, an interactive GUI application for table
visualisation and manipulation.

SUN/252 48

C Release Notes

STIL is released under the terms of the GNU Lesser Generd Public License
(http://www.gnu.org/copyleft/igpl.html). It has been developed and tested under Sun's Java
J2SE1.5.0 but is believed to run under other 1.5/5.0 or later versions of the J2SE.

An attempt is made to keep backwardly-incompatible changes to the public API of this library to a
minimum. However, rewrites and improvements may to lead to API-level incompatibilities in some
cases, as described in Appendix C.3. The author would be happy to advise people who have used
previous versions and want help adapting their code to the current STIL release.

C.1 Acknowledgements

My thanks are due to a number of people who have contributed help to me in writing this document
and the STIL software, including:

Alasdair Allan (Starlink, Exeter)
Malcolm Currie (Starlink, RAL)
Clive Davenhall (AstroGrid, RoE)
Pierre Didelon (CEA)

Peter Draper (Starlink, Durham)
David Giaretta (Starlink, RAL)
Paul Harrison (ESO)

Jonathan Irwin (10A)

Nickolai Kouropatkine (Fermilab)
Clive Page (AstroGrid, Leicester)
Chris Stoughton (Fermilab)

STIL is written in Java by Sun Microsysystems Inc. and contains code from the following
non-Starlink libraries:

nom.tam.fitsis used for some parts of the FITS table handling.

Ant's Bzip2 compression/decompression code

PixToolsis used for HEAL Pix-based table joins with astronomical coordinates
HTM isused for HTM-based table joins with astronomical coordinates

C.2 Package Dependencies

STIL is currently available in severa forms; you may have the stil . jar file which contains most
of the important classes, or afull starjava installation, or a standalone TOPCAT jar file, or in some
other form. None of these is definitive; different packages are required for different usages. If you
are keen to prepare a small class library you can identify functionality you are not going to need and
prepare a class library omitting those classes. In most cases, STIL classes will cope with absence of
such packages without falling over.

Thefollowing isalist of what packages are required for what functions:

uk.ac.starlink.table

uk.ac.starlink.table.formats

uk.ac. starlink.table.jdbc

uk. ac. starlink.tabl e. storage

uk. ac.starlink.table.text

uk. ac.starlink.table. uti
Core table processing.

SUN/252 49

uk.ac.starlink.fits
nomtam*
FITS table processing.

uk. ac. starlink.votabl e
uk. ac. starlink. vot abl e. dom

VOTable processing.

uk. ac. starlink. vot abl e. soap
St ar Tabl e <-> VOTable serialization/deserialization for use with SOAP RPC methods.

or g. apache. t ool s. bzi p2
Decompressing streams in BZIP2 format

uk. ac. starlink.mrage
Mirage-format table output

uk.ac.starlink.table.join
Cross-matching (not fully documented).

edu. j hu. *

HTM-based (sky) cross-matching

gov. f nal . eag. heal pi x
j avax. vecnat h

HEALPix-based (sky) cross-matching

uk.ac.starlink.ttools.*
gnu.jel.*

Table tools from the STILTS package.

uk.ac.starlink.table.gu
Graphical components for tables, mainly load/save dialogues.

uk. ac. starlink.connect
org. apache. axi s. *
Generic code for browsing remote filespaces in load/save dial ogues.

uk.ac.starlink.astrogrid
org.astrogrid.*
Browsing MySpace remote filesystems in |oad/save dialogues.

uk.ac.starlink.srb
edu. sdsc. grid. *
Browsing SRB remote filesystems in load/save dial ogues.

C.3Version History

Version 1.0 (30 Jan 2004)
Initial public release.

Version 1.0-2 (11 Feb 2004)
e Added RowLi st St ar Tabl e.

Version 1.0-3 (12 Feb 2004)
* Considerably improved performance of inline (base64-encoded) BINARY/FITS table
parsing.
Version 1.0-4 (17 Mar 2004)
 VOTable-derived StarTables now pick up parameters from INFO elements as well as

SUN/252 50

PARAM elements.
Text format output handler now by default outputs table parameters as well as the table
data and column metadata.

Version 1.1 (29 Mar 2004)

New ASCII format output handler can write tables in the same text-based format used by
the ASCII input handler.

Joi nSt ar Tabl e can now deduplicate column names.

New class Concat St ar Tabl e permits adding the rows of one table after the rows of
another.

Version 1.1-1 (11 May 2004)

Improved PostgreSQL compatibility

Version 2.0 (20 October 2004)
Version 2.0 isamajor revision incorporating some non-backwardly-compatible changes to the
public API. The main differences are as follows.

RowSequence interface modified

The RowSequence interface has been modified; a new cl ose method has been introduced,
and the old advance() and get Rowi ndex() methods have been withdrawn (these latter
were not very useful and in some cases problematic to implement).

Setter methods added to Star Table interface

The methods set Nare() and set URL() have been added to the st ar Tabl e interface.

Pluggable storage policies

The st or agePol i cy class was introduced, which allows you to influence whether cached
table data are stored in memory or on disk. This has led to backwardly-incompatible
changes to public interfaces and classes. makeSt ar Tabl e NOwW takes anew St or agePol i cy
argument, and VOEI enrent Fact or y's methods are now instance methods rather than static
ones.

Input table format now either specified explicitly or detected automatically

The St ar Tabl eFact ory class's makeSt ar Tabl e methods now come in two flavours - with
and without a format name. This corresponds to two table reading modes: named format
mode and automatic format detection mode. In named format mode you specify the
format of the table you are trying to read and in automatic format detection mode you rely
on the factory to work it out using magic numbers. Although automatic detection works
well for VOTable and FITS, it's poor for text-based formats like ASCII and CSV. This
has resulted in addition of some new two-argument nakeSt ar Tabl e methods and the
withdrawal of the getBuilders method in favour of two new methods
get Def aul t Bui | ders and get KnownBui | ders (Similarly for setter methods) which deal
with the handlers used in automatic detection mode and the ones available for named
format mode respectively. Note that the ASCII table format is not automatically detected,
so to use ASCII tables you now have to specify the format explicitly.

VOTable parsing over hauled

The voEl enent class has been rewritten and now implements the DOM El enent interface.
This means that the hierarchical structure which you can navigate to obtain information
about the VOTable document and extract table data actually is a DOM rather than just
being sat on top of one. Y ou can therefore now use it just as a normal DOM tree (making
use of the methods defined in the or g. wac. dominterface, interoperating with third-party
components which require a DOM). This has had a number of additional benefits and
consequences:

 VOTable handling now fully meets version 1.1 of the VOTable standard. This
includes full ID/ref crossreferencing (e.g. a TABLE element obtaining its structure

SUN/252 51

by reference to a previously defined one) which was absent in previous versions.

» VOTable processing is now independent of Java version; in previous versions it
failed on J2SE1.5/5.0 due to absence of some Crimson parser classes.

* TheVCEl enent Fact ory class now has instance methods rather than static methods.

* By instaling a st or agePol i cy. DI SCARD into a VOEI enent Fact ory it IS now possible
to obtain a data-less (structure only, hence minimal resource) VOTable DOM.

TableSink interface modified
Some Tabl eSi nk methods now throw exceptions.

Comma-Separ ated Value format supported
There are now CSV input and output handlers. The input handler is not by default
installed in the st ar Tabl eFact ory's list for automatic format detection, but CSV-format
tables can be loaded using named format mode. The format is intended to match the
(widely-used) variety used by Microsoft Excel amongst others (with optional column
names).

New 'FITS-plus format introduced

Handlers are introduced for a variant of FITS called 'FITS-plus (see Section 3.6.2). This
isaFITSfilewithaBINTABLE extension in HDU#1 as usual, but with the VOTable text
containing its metadata stored in a byte array in the primary HDU. This means that the
rich VOTable metadata are available when reading it with a matching input handler, but it
looks like a perfectly normal FITS table without the metadata when read by a normal
FITS-aware application. This is now the format in which FITS tables are written by
default (unless you choose the format name "basi c-fits").

ASCII-format input handler improvements

* Now runsin limited memory, but requires two passes of stream (data caching as per
current St or agePol i cy).

* Now uses short /Fl oat typesin preferenceto I nt eger /Doubl e if the input data make
this appropriate.

* Now preserves negative zero values (often important for sexagesmal
representations).

* Now understandsd or D as an exponent letter aswell ase or E.

* A 'l'character in column 1 is now understood to introduce a comment line.

Table matching
There have been several changes including performance enhancements and improved
functionality in the table matching classes in the package uk. ac. starlink. tabl e.join.
These work and have full javadocs, but they are still experimental, subject to substantial
change in future releases, and not documented properly in this document.

Null handling improvements
There is now a mechanism for flagging the magic value you would like to use when
encoding nulls in an integer output column (NULL_VALUE_I NFO) Nulls in FITS and
VOTable/FITS tables are now preserved correctly on output.

Miscellaneous
There have been a number of miscellaneous improvements and bugfixes in various parts
of the library, including the following:

* FITSfiles now store column descriptionsin Tcowwk headers.

* A type-trandation bug in the JDBC handler has been fixed, so that it now works with
PostgreSQL (and possibly other JIDBC implementations).

* New class Enpt ySt ar Tabl e added.

Version 2.0-1 (October 2004)

SUN/252 52

» Fixed bugs related to reading streamed (rather than mapped) FITS tables
* FixedabuginVOTable 1.1 schema namespace declaration on output

Version 2.0-2

» Better documentation (Section 7.1) and facilities for manipulation of VOTable FIELD
attributes from st ar Tabl e object

Version 2.0-3

» Fixed two more bugs in VOTable 1.1 namespace declaration on output; output elements
were being declared in the unnamed namespace rather than the VOTable 1.1 one, and the
VOTable schema location was wrong. Both of these errors arose from the fact that the
example VOTable in the recommendation document was declared in a wrong/misleading
fashion.

* Added architecture cartoon to SUN/252.

Version 2.1 (4 February 2005)
Some of the public interfaces have been modified in backwardly incompatible ways at this
release. However, it is not expected that much user code will need to be changed.

RequireRandom flag in Star TableFactory
The want Random flag has been changed in name and semantics to requi r eRandom in
St ar Tabl eFact ory. When set, any table returned from the factory is now guaranteed to
have random access.

Table output to streams
St ar Tabl equt put oW has a new method wri t eSt ar Tabl e which writes a table to an
Qut put St reamas Well as the one which writes to alocation string (usually filename). This
is supported by changes to the writeStarTabl e methods which Star Tabl eWiter
implementations must provide.

Tableload dialogue

The uk. ac. starlink.table.gui.StarTabl eChooser table loader dialogue has been
improved in several ways. Loading is now done asynchronously, so that the GUI does not
lock up when a long load is taking place (a load cancel button can be pressed).
Additionally, custom load dialogues have been made pluggable, so that you can add new
load sub-dialogues by implementing Tabl eLoadDi al og (most likely subclassing
Basi cTabl eLoadDi al og) and haming the classin the start abl e. | oad. di al ogs property.
A dialogue for browsing AstroGrid's MySpace remote filestore is available, but for
reasons of size STIL is not by default packaged with all the classes required to make it
work (AXI1S and the CDK are missing).

Star Table parameter method
A new utility method set Par anet er has been added to the st ar Tabl e interface.

BeanStar Table
A new StarTable implementation, BeanSt ar Tabl e which can store Java Beans has been
introduced. Thisis handy for storing arrays of objects of the same kind without having to
write a custom table implementation.

Undeclared character arraysi ze workaround
A workaround has been introduced to cope with a common error in VOTable documents
in which FIELD elements for string values lack the required arraysi ze attribute; by
default it is now assumed to have the value "*" rather than "1" as the standard dictates.
See Section 7.3.4.

Minor changes
* LINK elements can now be added to FIELDs in a VOTable on output by adding a

SUN/252 53

suitable URL -type metadatum to the corresponding Columninfo.

* Temporary files are now deleted by finalizers (may lead to better reclamation of
temporary file space during operation).

* Fixed abuginVOTable parsing when TD elements were empty.

* V1.1VOTable tableswritten now contain the declaration

xsi :schemalLocati on="http://ww.ivoa. net/xm /VOrabl e/vl.1
http://ww.ivoa. net/xm/VOTabl e/v1. 1"

instead of

Xsi : noNanmespaceSchemalLocati on="http://ww. i voa. net/xmnl / VOTabl e/ v1. 1"

(thanks to Paul Harrison for suggesting this correction).

Version 2.2 (17 March 2005)
New tool:

t pi pe command introduced
The tpipe command has been tentatively introduced at this release. This useful
command-line tool is experimental and may undergo major changes or be moved to a
separate package altogether in future releases.

There have been changes to some of the main interfaces:

RowSequence hasNext withdrawn
The hasNext () method has been withdrawn from the RowSequence interface and the
next () method, which used to be declared voi d, now returns bool ean indicating whether
there is another row. Thisis quite likely to break existing code, but the fix is easy; simply

replace:
RowSequence rseq = tabl e. get RowSequence() ;
while (rseq. hasNext()) {
rseq. next();
| c.
with

RowSequence rseq = tabl e. get RowSequence();
while (rseq.next()) {

}

TableBuilder streaming
A new method streanttar Tabl e has been added to the Tabl eBui | der interface to
provide improved support for table streaming.

GUI table chooser s changed
There have been severa changes in the wuk.ac.starlink.gui package.
St ar Tabl eChooser and St ar Tabl eSaver have been replaced by Tabl eLoadChooser and
Tabl eSaveChooser, and these both now use a graphical widget which can view files in
remote filestores (such as MySpace and SRB) if the relevant classes are present.

Minor changes:
e Added Tabl es. sort Tabl e method.

SUN/252 54

Added Expl odedSt ar Tabl e.

Added Concat St ar Tabl e.

VOTables now write ar r aysi ze="1" explicitly for scalar character fields.

VOTable BINARY input handler refuses to attempt reading assumed-size character
fields.

Severa bugfixes in JDBC output handler for writing new SQL tables, now writes String
(VARCHAR) fields, better NULL value handling, avoids some SQL reserved words for
column names.

Better NULL value handling for some text-like output formats.

Version 2.3 (29 April 2005)

New streaming convenience method introduced on StarTableFactory.

New Axisbased sStarTable<->VOTable seridizer/deserializer classes in
uk. ac. starlink. vot abl e. soap package.

New Tabl eCont ent Handl er class provides table-aware SAX processing of VOTable
document streams.

Improved documentation of storage policiesin SUN/252.

Missing ar r aysi ze attribute for character fieldsis now interpreted by default according to
the VOTable standard rather than by default being worked around - i.e. an unspecified
vot abl e. strict System property now counts as true rather than false. Thisis the reverse
of the behavioursin versions 2.1 and 2.2. See Section 7.3.4.

Now overwrites existing tables when attempting to write tables to SQL database if atable
of the same name already exists.

Fixed PostgreSQL bug - can now write String columns correctly.

t abl ecopy command deprecated and t pi pe withdrawn - these are now available within
the new package STILTS.

Version 2.3-1 (30 June 2005)

Added convenience methods writel nlineTabl eEl enent, writeHref Tabl eEl enent to
VCSeri al i zer.

Fixed abug in vost ar Tabl e parameter setting.

Fixed a bug in Concat St ar Tabl e which was leading to ClassCastExceptions when used
sequentialy.

Version 2.3-2 (30 September 2005)

Some changes to Rowivat cher class.

Fixed some bugsin the VOTable DOM implementation connected with nul I values.
MatchEngine now returns metadata on match scores.

The string "nul 1 " (unquoted) in ASCII input handler isinterpreted as a blank entry.

Fixed bug in ASCII input handler which misidentified blank lines, or DOS-format line
ends, as end of file.

Version 2.4 (10 May 2006)
The following API change has taken place:

New method st ar Tabl ew i t er. get M meType has been introduced.

Additionally, there are the following minor improvements and bugfixes:

Now copes with 'K'-format FITS binary table columns (64-bit integers).

Added IPAC Table Format input handler.

Added noheader option to CSV output format.

Added rar k. wor kar ound System property.

Blank values in boolean columns are now handled as null rather than false (changes to
FITS handlers, VOTable handlers and cell renderer).

Fixed bug which was writing some integer null values as empty TD elements (illegal) -

SUN/252 55

now uses magic bad value where available.

e CSV & ASCII input handlers now (try to) detect sexagesimal and 1SO-8601 format data
columns and mark the unit string appropriately.

» Fixed bug writing unclosed LINK elementsin output VOTables.

Version 2.5 (7 July 2006)

» Support for new column-oriented FITS file format (Section 3.5.2, Section 3.6.3).

New StoragePolicy SIDEWAY S storage (Section 4.1).

FITS-PLUS files now only recognised if VOTMETA header card has the value "T", not
justif itis present.

Increased the maximum field width written by text and (especialy) ascii output
handlers.

TUCDNNn header cards now used in FITS files to transmit UCDs (non-standard
mechanism).

Version 2.6 (3 August 2006)

* Replaced Rowst epper class by RowSequence in vot abl e package. As well as being a bit
tidier, this improves efficiency considerably for column-oriented access in some cases
(esp. fits-plug/coalfits-plus).

o Dramatically improved efficiency of fits-plus & (especialy) col fits-plus format
access in some situations (related to above point).

* colfits-basic format isnow auto-detected.

* Added TST (tab-separated table) input and output handlers.

» Efficiency improvements for column-oriented access.

Version 2.6-1 (Starlink Hokulei release)

* Modified and extended JpBCFor mat t er API for more flexible use with creating tables in
RDBMS.

* Modified presentation of HTML version of SUN/252 using CSS.

» Fixed bug in handling of single quotesin FITS file metadata.

Version 2.6-2 (23 July 2007)

* Add new exception Unr epeat abl eSequenceExcept i on.

e Add new classes Sequential Resul t Set Star Table and RandonResul t Set St ar Tabl e
which are st ar Tabl e implementations built directly on JDBC Resul t Set objects.

* Joi nFi xActi on interface and implementation changed. Now better at deduplicating the
names of joined tables.

* Fix error in output of FITS table TNULL n header cards - write them as numeric not string
values.

* Improve error message for broken CSV files.

Version 2.6-3 (4 Sep 2007)

e Added get Ut ype and set Ut ype utility methods.
* Added Rowpi pe interface and implementations and new cr eat eQut put Si nk methods in
St ar Tabl eCut put .
* FITSfiles now read/write Utypes using TUTYPnn header cards.
Version 2.6-4 (30 Oct 2007)

* Minor changes to interface and implementation of RowPi pe and OnceRowPi pe.

Version 2.6-5 (6 Dec 2007)

* Improvements and modifications to crossmatching functionality in
uk. ac. starlink. tabl e.joi n package, including multi-pair join.

SUN/252 56

* FITSreader now imports table HDU header cards as table parameters.

» Embedded spaces in output ASCII format table column names are now substituted with
underscores.

* Added quoting of SQL identifiers for JDBC statement execution.

Version 2.6-6 (28 Jan 2008)

* Downgraded from WARNING to INFO log messages about the (extremely common)
VOTable syntax error of omitting a FIELD/PARAM element's dat at ype attribute.

* Avoid some truncations of double (and float?) fields in t ext -mode output (may result in
longer fields too).

Version 2.6-7 (4 Apr 2008)

* Some missing classesreinstated in the stil jar file.
* Minor changes to matching classes.

Version 2.7 (19 Aug 2008)
* Variable-length arrays are now mostly supported for FITS binary tables:

* Columns with TFORM cards containing the ‘P or 'Q' data type descriptors will be
read correctly for FITS BINTABLE extensions read from random access sources
(which basically means from disk). Tables read from a sequential-only stream will,
as before, fail to read variable length array-valued columns.

* Thenew Vari abl eFi t sTabl ewiter TabléWriter implementation can write tablesin
which variable-length columns are represented in the FITS BINTABLE extension by
columns with the 'P or 'Q’ data type descriptors.

* New method makeByt eSt or e introduced in class St or agePol i cy.

e Various Val uel nfo keys for FITS-specific column auxiliary metadata items are now
available as static members of Bi nt abl eSt ar Tabl e.

» Fixesto JDBCFor mat t er - safer checks on column and table name syntax.

» Sexagesimal field identification for ASCII input files less stringent (now permits minutes
or seconds equal to 60).

* HEALPIX bug fix (PixTools bug fix update).

 Take more steps to use StoragePolicy when loading JDBC tables, avoiding some
JDBC-driver-based out of memory issues.

Version 2.7-1 (27 Mar 2009)

* More careful header consistency checks in fits-plus files - corrupted/modified fits-plus
less likely to generate errors.
* FitsBINTABLE TZERO/TSCAL value reading improvements:

* Columns with integer TZERO values now read as integers rather than floating point
values where possible. This includes unsigned longs ('K'), which were previously
represented as doubles with lost precision. Unsigned longs which are too large
however (>263) areread asnulls.

 It's now configurable whether byte columns are written as signed bytes
(TFORM=B,TZERO=-128) or as signed shorts (TFORM=1I).

* More comprehensive testing.

» Fixed bug in calculating value scaled double ('D") values.

» Fixed bug in typing value for scaled float ('E’) arrays.

* The fixed length Substring Array Convention for string arrays (TFORMhn=r Aw) iS nOwW
understood for FITS binary tables.

Version 2.7-2 (17 July 2009)

SUN/252 57

VOTable xtype and ref column attributes can be read and written by use of suitable
Columninfo aux data keys, defined as static members of VOStarTable.

Version 2.8 (2 Oct 2009)

VOTable namespace handling has been improved. Previously VOTable documents with
xm ns namespacing declarations were mostly rejected by STIL. Now the behaviour is
configurable.

* A new class Nanespaci ng is introduced which takes care of pluggable namespace
handling.

» The default is now lax handling; anything that looks like it is probably a VOTable
element is treated as such. This means that documents both with and without xmins
declarations should work. The behaviour of previous versions was approximately
that corresponding to none.

* A new system property votable.namespacing has been introduced to control
behaviour from outside the JVM.

* New VOElement methods get El ement sByVOTagNane and get VOTagNarme have been
introduced for convenience of use of elements in the VOTable namespace.

e The semantics of the VOElement methods get Chi | dByNane and get Chi | dr enByNane
are slightly changed (now return only elements in VVOTable namespace.

VOTable 1.2 is now supported. The supported version is the PR 2009-09-29, which is not
expected to differ significantly from the REC when it is approved. Support for versions
1.0 and 1.1 isunaffected. API changes are:

* Fiel drRef El ement and Par anRef El enent have new get Ucd and get Ut ype methods.
* Fiel dEl ement has new get Xt ype method.

Be more careful in XML, including VOTable, output; fix VOTable output encoding to be
UTF-8, and ensure no illegal XML characters are written.

HTML table output isnow HTML 4.01 by default (includes THEAD and TBODY tags).
Work around illegally truncated type declarationsin IPAC tables.

Bug fixed in crossmatching output: entries which should have been null were sometimes
written as non-null (typically large negative numbers) in FITS and in non-TABLEDATA
VOTable output. This affected cells in otherwise non-nullable columns where the entire
row was absent. The previous behaviour is not likely to have been mistaken for genuine
results.

Versions 2.9*x
STIL versons 2.9x, 2.9-1x, 2.9-2x, 2.9-3x did not get a public release, since the
backwardly-incompatible changes they contained were not stable, but were present in some
versions of TOPCAT and STILTS. Details of what changed in which of these versions are
only available by examining relevant versions of the XML sources for SUN/252 (sun252.xml)
in the version control system. All the changes are amalgamated into version 3.0.

Version 3.0 (23 December 2010)
This major release contains some new capabilities and some backward incompatibilities with
respect to the previous public release, version 2.8. The magjor changes are in the following
areas.

Multiple table read (new capability)
Multiple table write (new capability)

GUI load/save dialogues (major overhaul)
New Adaptive storage policy as default

Anyone implementing a table read handler, write handler, load dialogue or save dialogue will
need to make some adjustments since the relevant interfaces have changed. Anyone using the
GUI load dialogue classes in package uk. ac. starlink.tabl e. gui (asfar as| know, nobody
apart from me is) will require significant rewriting. Other users of the library will probably

SUN/252 58

find no or only minor issues if compiling against the new version. In most cases significant
changes will be marked by compilation errors rather than silent changes in behaviour. The
exception is use of the new Adaptive storage policy which is now the default; this change is
expected to be beneficial rather than problematic in most cases.

If you experience any difficulties in upgrading from a previous version to this one, please
contact the author, who will be happy to advise or assist.

The changesin more detail are asfollows:
Multiple table read:

* New Ml tiTabl eBui | der interface which Tabl eBui | ders may implement if they
know how to load multiple tables from the same source. The FITS and VOTable
handlers now implement this.

* Three new nmkeSt ar Tabl es methods added to StarTableFactory. These return a
Tabl eSequence Which contains multiple tables. Multiple tables are only a possibility
if the relevant handler implements the new Ml ti Tabl eBui | der interface (of the
supplied handlers, FITS and VOTable).

o StarTableFactory methods nakeSt ar Tabl e(URL) and makeSt ar Tabl e(URL, Stri ng)
are deprecated. They are very thin utility wrappers around existing methods which
may be replaced easily in caling code using the URLDat aSource class. These
methods may be removed in afuture release.

Multiple tablewrite:

* New interface Mul ti St ar Tabl eW i t er, which extends St ar Tabl ew i t er, for output
handlers which can write multiple tables to the same container. Corresponding
methods added to St ar Tabl eQut put .

* MultiStarTableWriter is implemented for most variants of the FITS and VOTable
output handlers, to generate multi-extension FITS and multi-TABLE VOTable
outputs respectively. Implementations for some other output handlers generating
output that may not be machine-readable as a multi-table file are provided as well.

GUI load/save dialogues:
There have been substantial changes to the GUI load framework, mainly to support
multiple table load and non-modal load dialogues. The main interface is still called
Tabl eLoadDi al og, but its definition has changed considerably. See the javadocs for
details.

The save dialogue framework has also undergone some incompatible changes to support
writing of multiple files, though these are less dramatic. There are backwardly
incompatible effects on the APIs of Savewsrker, TableSaveChooser and
Tabl eSaveDi al og and itsimplementations.

Storage policies:

* New StoragePolicy ADAPTI VE, which effectively uses memory for relatively small
tables and scratch disk files for relatively large ones. The intention is that for most
purposes this can be used without the user or the programmer having to guess
whether small or large tables are likely to be in use. The implementation makes use
in some circumstances of direct byte buffer allocation (=nal | oc()), which means
that the size of the controlling java process can grow beyond the size of the
maximum specified java heap. The Adaptive storage policy isthe new default.

* Added method t oByt eBuf f er s t0 Byt eSt or e Class.

* Implementation changes in Disk storage policy to reduce memory footprint.

Other:
e Library now distributed as zip of jars (stil_jars.zip) as an aternative to

SUN/252

59

monolithic jar file (stil.jar). This may be more appropriate for those using the
library in aframework that contains other third party class libraries.

* VOTabl eBui | der. makeSt ar Tabl e now works in a streaming fashion. This should be
much faster in the case of a VOTable document containing many TABLE elements.
There is a possibility that behaviour will change dlightly (some post-positioned
INFO/PARAM elements may not get picked up, tables may be successfully loaded
from invalid XML documents) - | don't believe these are likely to cause trouble, but
please aert meif you disagree.

* Updated VOTable 1.2 schemato final version (elementFormDefault="qualified").

* New attribute Utype for val uel nfos. Vauelnfo has new method get U ype,
DefaultValuelnfo has new method set Utype, and Tabl es. get/set Utype IS
deprecated.

* FITS files now store table names in EXTNAME (and possibly EXTVAR) header
cards.

* Added configurable JDBC type conversion framework for reading results from SQL
gueries. By default JDBC results with Date-type contents will now be turned into
String values, but this can be configured by supplying a custom TypeMapper .
Previoudly they were left as Date-type objects, which meant that without special
attention they could not be written by general-purpose table output handlers.

» Better behaviour (warn + failover) when attempting to read large files on 32-bit OS
or VM.

» VOTable PARAM output now works out nullability and unspecified array and
element size values from the data rather than leaving them as unspecified.

* Thewant Randomparameter of Tabl eBui | der . makeSt ar Tabl e has been deprecated in
the documentation.

» Fixed an obscure bug which could under rare circumstances cause truncation of
strings with |eading/trailing whitespace read from text-format files.

* Fixed bug in TST table outpuit.

 Fixed bug in CSV file parsing that could ignore header row in absence of
non-numeric columns.

» Fixed minor bug in CSV file parsing which ignored first row in no-header CSV file
when calculating column Element Size values.

Version 3.0-1 (9 May 2011)

Random Groups HDUs are now tolerated, though not interpreted, within FITSfiles.
JDBC table input handler now effectively downcasts Biglnteger/BigDecimal types to
Long/Double. The PostgreSQL JDBC driver seems to use the Big* types routinely for
numeric values (which | don't think it used to do).

Add get Lengt h method to Byt eSt or e interface.

Add workaround for J2SE bug #4795134, which could cause errors when reading
compressed FITSfiles.

Fix FITS character handling bug which could cause corrupted FITS files on output in
presence of non-ASCII characters.

Version 3.0-2 (30 June 2011)

Fixed a significant crossmatching bug in SkyMatchEngine. If all pointsin atable were on
one side of the RA=0 line, but the error radius extended across that line, matches on the
other side could be missed. Matches could also be missed if different tables used different
conventional ranges for RA (e.g. -180..180 in one case and 0..360 in another). This fix
may in some, but not most, cases result in slower matching than previously.

Added new public class vorabl eDOVBui | der which provides a SAX Cont ent Handl er
implementation with similar functionality to VOEI enent Fact ory.

Version 3.0-3 (27 October 2011)

SUN/252

PARAMref with no referent no longer causes uncaught NullPointerException.

60

