STILTS- Starlink TablesInfrastructureLibrary Tool Set

Version 1.3-1

ADEEET ¥

=

e
——

V')
Sarlink User Note256

Mark Taylor
5 October 2006

$ld: sun256.xml,v 1.108.2.1 2007/02/22 19:13:08 mbt Exp $

Abstract

STILTS is aset of command-line tools for processing tabular data. It has been designed for, but is
not restricted to, use on astronomical data such as source catalogues. It contains both generic
(format-independent) table processing tools and tools for processing VOTable documents. Facilities
offered include format conversion, format validation, column calculation and rearrangement, row
selection, sorting, crossmatching, statistical calculations and metadata display. Calculations on cell
data can be performed using a powerful and extensible expression language.

The package is written in pure Java and based on STIL, the Starlink Tables Infrastructure Library.
This gives it high portability, support for many data formats (including FITS, VOTable, text-based
formats and SQL databases), extensibility and scalability. Where possible the tools are written to
accept streamed data so the size of tables which can be processed is not limited by available
memory. As well as the tutorial and reference information in this document, detailed on-line help is
available from the tools themselves.

STILTSisavailable under the GNU Genera Public Licence.

Contents

P o 1= = (o TR 1
O 16 0o [To: (o] RO 5
A N (SR R R =R e) 1010 4 =1 o TR 6
pZ0 S 1 £ =SS 6
A = = T N\ F= 10 1= 7
2.3 TASK ATQUIMENES.c.ueeiteeieeiesteesteeee et e s te et e st e sse et e sseesteeseesseesseesseeseesseensesseeaseensesseesseensesseenseensenn 7
p Ty g To = | o SRRSO 8
R N gLV 0 o= 11 [o] o FE TR 10

B2 JAVAFIAGS. ... e b bt e et et nnenne e 11

3.3 SYSIEM PrOPEITIES. ...ttt ettt e bbb bt b e e e et e nne e 12
3.4 IDBC CONFIQUITON.cuvititirieeiieieeeeee ettt sbe sttt s et bbbt s e e e e e e s e b e nbesbeebenbeeseeneennas 12
L = o] 1= 7L S ROS 14
R I o L= oo (0] SOOI 14
4.2 TADIE FOIMELS.eieeeeeeieeeee ettt b et st b e bt st et e e e et et e nb e nenne e s 15
4. 2.1 INPUL FOMMIBLS.......ceteeteeeeiee ettt s e b e e e s e e st e n e s aeenneenennnenneenne s 15
4.2.2 OULPUL FOMMELS........eeeeeieeieeiieete ettt s e b b e sb e e st aeenneenenneenne e e e 16
SR 01 LN 10 1= T 1= SO UP S 18
5.1 PrOCESSING FITEIS. ...ttt bbbttt e bbb b nae s 18
Lo T8 1 7 Vo o oo | R 19
LI Vo [0 S SQ Yoo Yo e 19
L0 0 3Ty SO 20
Lo IO I ¢ T Vo 1V | R 20
Lo T8 18T o2 Vo V- R 20
L0 LG oY =Y o < 20
Lo IO Ao ==Y o U Vo 20
L G oY I =1 - SR 21
L L Yoo SR 21
L0 00 0 =17 21
L IO I 0 o I o =YY S 21
L0 00 =0 o T 1= =R 21
L0 00 3 T= Y 22
Lo IO 1YY o Yo o =SSR 22
Lo T0 1 0 Y SRS 22
L 00 G o T o T =Y 23
Lo IO I A = o T T R 23
L 0B S =Y o) - Yo=Y oo S 23
L =Y o - Yo=Y Y S 23
L 2 0 Y=Y =Y 23
L 2 Y=Y o TV 1= 3 =Y 24
L Y=Y B - - 24
L 2 Yo 24
L Yo o 1 =Y Yo [24
L 2T - Y = 25
L 2 G =Y o =Y -V 1= 26
L0 A0 B Y 26
LN 2 S B - 1Y o Yo Y= 26
L0 2 VT o T 26
5.2 SpeCifying @ SINGIE COIUMN........oiiiiiiieie et sa e 26
5.3 Specifying alist Of COIUMNS..........coiiiii e e 27
5.4 OULPUL IMOUES........oiiiiitisiietiee ettt ettt bbbttt et e b e b e s b nb e e bt bt e st e e e e et e nee b 27
Lo T4 0 oo T 28
Lo o 10) 28
L I 0 oY o S 28
Lo T 1= B SRS 28
Lo T8 I 1 28
L B o] = Y=3 A oS 29
Lo T A - LR 29
L Yo 30
L 3 N =Y o | 30
O oIS g F= 1ot o1 T SRS 32
6.1 MEICH CrITEITAL....c.eiei ettt b et bbbt e e e e e e nnenbe b 32
FAANI 1< o g= VTl b o =S o g)Y 1 = b ST 35

7.1 Referencing COlUMN VAIUES.........cceeeeieeie e see st ee sttt e et ae e sseeaesneesneeeesnee e 35

T2 NUI W ABIUBS. .. et ettt et e nnmnnnnnnnmnnnnn 36

ST O 0= = (0] £ TP P RSP PRSPPSO 36
4 U ok o PSRN 37
0 O 0o o S 37
A N 110 0 0= (oSS 41
A T U =SOSR 42
T4 SITTNQS. ..ottt e b bbbt ae et e e e b e s R e e b e s b e e bt e heeaeeae e s e b e eE e eb e eb e e Rt e ne et et e e e b neeenn 44
TS FOIMELS......eeiiieeeeiee ettt ettt e e st et e st e e e ase e e e ae e e e ne e e ease e e ense e e snbe e e snneeeanneennneeennes 47
A 3311, = 11 1SS 47
A 11 49
Qe B L= o= S 52
A e O] 01V = = o] 54
7.5 EXAMPIES. ..ottt bbbttt R R R R bt e e b e ne e 55
FA I Ao (V= 416 = o B o oL oxs RSP PT PP 57
7.6.1 EXPreSSION @VAIUBLION.coeiieieiisiesiesie ettt st st e et s et nesb s se e e s e nnennenren 57
7.6.2 INSLANCE MELNOUS. ..ottt e ente e s neeneeneenreenes 57
7.6.3 Adding User-Defined FUNCLIONS..........coiiriiiireiseeeeeee st 58
Appendix A: Command REFEIENCE.........ocui i 59
A.lcal c: EVAlUALES EXPIESSIONS.......iciiieiiieciee e stee et stee et e see e ae e e ae e beesaseenseesneeeteesneeereeannes 59
A.2funcs: Browse functions used by algebraic expression langauage..........c.ccoeceevneeniereenne. 59
A.3nul ticone: Makes multiple cone search queriesto the same Service.........oceeeeeeerenennns 60
A.dregquery: QUENTESTNEV O FEOISLIY ..ot 64
A.5tcat: Concatenates multiple Similar tables...........oooiiiiiiii 66
A.6tcatn: Concatenates MUltiple tabIes.........coviiiiiiiii e 69
A.7 t copy: Convertsbetween tableformats..........ccooeeveeeieciec e 73
A.8tcube: Calculates N-dimensional NiStOgramsS..........cceceeuirererenineneeeee e 74
A.9tjoin: Joinsmultipletables SIde-t0-SIde.........cccoirireriee s 77
A.10tmat ch2: CrosSMatCheS 2 tADIES.........cccveieieerieee e e e es 79
A.11t pi pe: Performs pipeline processing on atable..........ccccevereeieene e 84
A.12 vot copy: Transformsbetween VOTable encodings........cccveveerverereereeniesieeseese e e 88
A.13votlint: ValidatesVOTable dOCUMENTS.........cceriririeiesiese e 91
ApPpPendiX B: REIEASE NOLES.......cc.cceeieeece ettt e e e nae e sneees 95
B.1 ACKNOWIEAQEMENTS......ooiuiiiecie ettt sttt reen e e e e s seeseennesreenseeneens 95

A s o]l T o SRS 95

SUN/256

SUN/256 5

1 Introduction

STILTS provides a number of command-line applications which can be used for manipulating
tabular data. Conceptually it sits between, and uses many of the same classes as, the packages STIL,
which isaset of Java APIs providing table-related functionality, and TOPCAT, which is a graphical
application providing the user with an interactive platform for exploring one or more tables. This
document is mostly self-contained - it covers some of the same ground as the STIL and TOPCAT
user documents (SUN/252 and SUN/253 respectively).

Currently, this package consists of the following commands for generic table manipulation:

t copy (Appendix A.7): Converts between table formats

t pi pe (Appendix A.11): Performs pipeline processing on atable
t mat ch2 (Appendix A.10): Crossmatches 2 tables

tcat (Appendix A.5): Concatenates multiple similar tables

t cat n (Appendix A.6): Concatenates multiple tables

tjoi n (Appendix A.9): Joins multiple tables side-to-side

t cube (Appendix A.8): Calculates N-dimensional histograms

the following commands specifically for operating on VOTable files:

* votcopy (Appendix A.12): Transforms between VVOTable encodings
* votlint (Appendix A.13): Validates VOTable documents

the following commands for accessing VO services:

* regquery (Appendix A.4): Queriesthe VO registry
* multicone (Appendix A.3): Makes multiple cone search queriesto the same service

and the following general purpose utilities:

* cal c (Appendix A.1): Evaluates expressions
» funcs (Appendix A.2): Browse functions used by algebraic expression langauage

More tools may be introduced in the future.

There are many ways you might want to use these tools; here are afew possibilities:

In conjunction with TOPCAT
you can identify a set of processing steps using TOPCAT's interactive graphical facilities, and
construct a script using the commands provided here which can perform the same steps on
many similar tables without further user intervention.

Format conversion
If you have a separate table processing engine and you want to be able to output the resultsin a
somewhat different form, for instance converting it from FITS to VOTable or from
TABLEDATA-encoded to BINARY-encoded VOTable, or to perform some more
scientifically substantial operation such as changing units or coordinate systems, substituting
bad values etc, you can pass the results through one of the tools here. Since on the whole
operation is streaming, such conversion can easily and efficiently be done on thefly.

Server-side oper ations
The tools provided here are suitable for use on servers, either to generate files as part of aweb
service (perhaps along the lines of the Format conversion item above) or as configurable
components in a server-based workflow system.

Quick look
You might want to examine the metadata, or a few rows, or a statistical summary of a table
without having to load the whole thing into TOPCAT or some other table viewer application.

SUN/256 6

2Thestilts command

All the functions available in this package can be used from a single command, which is usually
referred to in this document simply as"sti | t s". Depending on how you have installed the package,
you may just type"sti I ts", or something like

java -jar some/path/stilts.jar
or

java -classpath topcat-lite.jar uk.ac.starlink.ttools.Stilts
or something else - thisis covered in detail in Section 3.

In general, the form of acommand is
stilts <stilts-flags> <task-nanme> <task-args>

The forms of the parts of this command are described in the following subsections, and details of
each of the available tasks along with their arguments are listed in the command reference
(Appendix A) at the end of this document. Some of the commands are highly configurable and have
avariety of parameters to define their operation. In many cases however, it's not complicated to use
them. For instance, to convert the datain aFITS table to VOTable format you might write:

stilts tcopy cat.fits cat.vot

2.1 Stiltsflags

Some flags are common to all the tasks in the STILTS package, and these are specified after the
stilts invocation itself and before the task name. They generally have the same effect regardless
of which task is running. These generic flags are as follows:

-hel p
Prints a usage message for the stilts command itself and exits. The message contains a
listing of al the known tasks.

-version
Printsthe STILTS version number and exits.

-verbose
Causes more verbose information to be written during operation. Specifically, what this doesis
to boost the logging level by one notch. It may be specified multiple times to increase
verbosity further.

-di sk
Encourages the command to use temporary files on disk for caching large amounts of data
rather than doing it in memory. Thisis a good flag to try if you are running out of memory.
This flag is in most cases equivalent to specifying the system property
-Dstart abl e. st or age=di sk.

- debug
Sets up output suitable for debugging. The most visible consequence of thisis that if an error
occurs then afull stacktrace is output, rather than just a user-friendly report.

- pr onpt
Most of the STILTS commands have a number of parameters which will assume sensible
defaults if you do not give them explicit values on the command line. If you use the - pr onpt
flag, then you will be prompted for every parameter you have not explicitly specified to give
you an opportunity to enter a value other than the default.

- bat ch
Some parameters will prompt you for their values, even if they offer legal defaults. If you use
the - bat ch flag, then you won't be prompted at all.

SUN/256 7

- bench
Outputs the elapsed time taken by the task to standard error on successful completion.

- checkversi on <vers>
Requires that the version is exactly as given by the string <ver s>. If it isnot, STILTS will exit
with an error. This can be useful when executing in certain controlled environments to ensure
that the correct version of the application is being picked up.

If you are submitting an error report, please include the result of running stilts -version and the
output of the troublesome command with the - debug flag specified.

2.2 Task Names

The <t ask- name> part of the command line is the name of one of the tasks listed in Appendix A -
currently the available tasks are:

calc
funcs
mul ti cone
regquery
t cat
tcatn

t copy

t cube
tjoin

t mat ch2
t pi pe
vot copy
vot | i nt

2.3 Task Arguments

The <t ask- ar gs> part of the command lineisalist of parameter assignments, each giving the value
of one of the named parameters belonging to the task which is specified in the <t ask- name> part.

The general form of each parameter assignment is
<par am name>=<par am val ue>

If you want to set the parameter to the null value, which islegal for some but not al parameters, use
the specia string "nul | . In some cases you can optionally leave out the <par am name> part of the
assignment (i.e. the parameter is positionally determined); this is indicated in the task's usage
description if the parameter is described like [<param nane>=] <param val ue> rather than
<par am name>=<par am val ue>. If the <par am val ue> contains spaces or other special characters,
then in most cases, such as from the Unix shell, you will have to quote it somehow. How this is
done depends on your platform, but usually surrounding the whole value in single quotes will do the
trick.

Tasks may have many parameters, and you don't have to set all of them explicitly on the comand
line. For a parameter which you don't set, two things can happen. In many cases, it will default to
some sensible value. Sometimes however, you may be prompted for the value to use. In the latter
case, alinelike thiswill be written to the terminal:

mat cher - Nane of matching al gorithm [sky]:

This is prompting you for the value of the parameter named natcher. "Name of matching
algorithm” is a short description of what that parameter does. "sky" is the default value (if there is

SUN/256 8

no default, no value will appear in square brackets). At this point you can do one of four things:

* Hit return - this will select the default value if there is one. If there is no default, this is
equivalent to entering "nul | .

» Enter a vaue for the parameter explicitly. The specia value "nul 1" means the null value,
which islegal for some, but not all parameters. If the value you enter is not legal, you will see
an error message and you will beinvited to try again.

» Enter "hel p" or aquestion mark "?". This will output a message giving a detailed description
of the parameter and prompt you again.

» Bail out by hitting ctrl-C or whatever is usual on your platform.

Under normal circumstances, most parameters which have a legal default value will default to it if
they are not set on the command line, and you will only be prompted for those where there is no
default or the program thinks there's a good chance you might not want to use it. Y ou can influence
this however using flagsto the sti I ts command itself (see Section 2.1). If you supply the - pr onpt
flag, then you will be prompted for every parameter you have not explicitly set. If you supply
- bat ch on the other hand, you won't be prompted for any parameters (and if you fail to set any
without legal default values, the task will fail).

If you want to see the actual values of the parameters for a task as it runs, including prompted
values and defaulted ones which you haven't specified explicitly, you can use the - ver bose flag
after thestil ts command:

% stilts -verbose tcopy cat.fits cat.vot ifm=fits
INFO tcopy in=cat.fits out=cat.vot ifnt=fits of nt=(auto)

Extensive help isavailable from sti | t s itself about task and its parameters, as described in the next
section.

2.4 Getting help

As well as the command descriptions in this document (especially the reference section Appendix
A) you can get help for STILTS usage from the command itself. Typing

stilts -help
results in this output:

Usage:
stilts [-help] [-version] [-verbose] [-disk] [-debug] [-pronpt] [-batch]
[-bench] [-checkversion <vers>]
<t ask- nanme> <t ask-args>

stilts <task-name> hel p[=<par am nane>]

Known t asks:
calc
funcs
nmul ti cone
regquery
t cat
tcatn
t copy
t cube
tjoin
t mat ch2
t pi pe
vot copy
vot | int

For help on the individual tasks, including their parameter lists, you can supply the word hel p after
the task name, so for instance

stilts tcopy help
resultsin

SUN/256 9

Usage: tcopy ifnt=<in-format> of nt=<out-formt>
[n=] <t abl e> [out =] <out -t abl e>

Finally, you can get help on any of the parameters of a task by writing hel p=<par am nanme>, like
this:

stilts tcopy hel p=in
gives

Hel p for paranmeter INin task TCOPY

Usage:
[n=] <tabl e>

Summary:
Location of input table

Descri ption:
The location of the input table. This is usually a filenane or URL,
and may point to a file conpressed in one of the supported conpression
formats (Uni x conpress, gzip or bzip2). If it is omtted, or equal to
the special value "-", the input table will be read from standard
input. In this case the input format nust be given explicitly using
the ifnt paraneter.

In some cases, as described in Section 2.3, you will be prompted for the value of a parameter with a
line something like this:
mat cher - Nane of matching al gorithm[sky]:

In this case, if you enter "hel p" or a question mark, then the parameter help entry will be printed to
the screen, and the prompt will be repeated.

For more detailed descriptions of the tasks, which includes explanatory comments and examples as
well as the information above, see the full task descriptions in the Command Reference (Appendix
A).

SUN/256 10

3 Invocation

There are a number of ways of invoking the stilts command, depending on how you have
installed the package. If you're using a Unix-like operating system, the easiest way is to use the
stilts script. If you have afull starjavainstallation it isin the st arj ava/ bi n directory. Otherwise
you can download it separately from wherever you got your STILTS installation in the first place,
or find it at the top of the stilts.jar Or topcat-*.jar that contains your STILTS installation, so
do something like

unzip stilts.jar stilts
chnod +x stilts

to extract it (if you don't have unzi p, try jar xvf stilts.jar stilts).stilts isasimple shell
script which just invokes java with the right classpath and the supplied arguments.

Torunusing thesti | ts script, first make sure that both the j ava executable and the sti | ts script
itself are on your path, and that thestilts.jar oOrtopcat-*.jar jar fileisin the same directory as
stilts. Thentheform of invocationis:

stilts <java-flags> <stilts-flags> <task-nanme> <task-args>
A simple example would be:
stilts votcopy format=binary t1.xm t2.xm

in this case, as often, there are no <j ava-fl ags> or <stilts-flags>. If you use the -cl asspath
argument or have a CLASSPATH environment variable set, then classpath elements thus specified
will be added to the classpath required to run the command. The examples in the command
descriptions below use this form for convenience.

If you don't have a Unix-like shell available however, you will need to invoke Java directly with the
appropriate classes on your classpath. If you have the file stilts.jar, in most cases you can just
write:

java <java-flags> -jar stilts.jar <stilts-flags> <task-nane> <t ask-args>
which in practice would look something like

java -jar /sonme/where/stilts.jar votcopy format=binary t1.xm t2.xn

In the most general case, Javas-j ar flag might be no good, for one of the following reasons:

1. You havethe classesin some form other thanthestilts.jar file(suchastopcat-full.jar)

2. You need to specify some extra classes on the classpath, which is required e.g. for use with
JDBC (Section 3.4) or if you are extending the commands (Section 7.6.3) using your own
classes at runtime

In this case, you will need an invocation of thisform:

java <java-flags> -classpath <cl ass- pat h>
uk.ac.starlink.ttools.Stilts <stilts-flags> <task-nane> <t ask-args>

The example above in this case would ook something like:

java -classpath /sone/where/topcat-full.jar uk.ac.starlink.ttools.Stilts
votcopy format=binary t1.xm t2.xm

The <stilts-flags>, <task-nanme> and <t ask- ar gs> parts of these invocations are explained in
Section 2, and the <class-path> and <java-flags> parts are explained in the following
subsections.

3.1 Class Path

The classpath is the list of places that Java looks to find the bits of compiled code that it uses to run

SUN/256 11

an application. Depending on how you have done your installation the core STILTS classes could
be in various places, but they are probably in a file with one of the names stilts.jar,
topcat-lite.jar Or topcat-full.jar. The full pathname of one of these files can therefore be
used as your classpath. In some cases these files are self-contained and in some cases they reference
other jar filesin the filesystem - this means that they may or may not continue to work if you move
them from their original location.

Under certain circumstances the tools might need additional classes, for instance:

» JDBC drivers (see Section 3.4)
» Providing extended algebraic functions (see Section 7.6.3)
* Installing I/O handlers for new table formats (see SUN/252)

In this case the classpath must contain a list of al the jar files in which the required classes can be
found, separated by colons (unix) or semicolons (MS Windows). Note that even if al your jar files
are in a single directory you can't use the name of that directory as a class path - you must name
each jar file, separated by colons/semicolons.

3.2 Java Flags

In most cases it is not necessary to specify any additional arguments to the Java runtime, but it can
be useful in certain circumstances. The two main kinds of options you might want to specify
directly to Java are these:

System properties
System properties are a way of getting information into the Java runtime from the outside,
rather like environment variables. There is a list of the ones which have significance to
STILTS in Section 3.3. You can set them from the command line using a flag of the form
- Dnane=val ue. SO for instance to ensure that temporary files are written to the / hone/ scrat ch
directory, you could use the flag

-Dj ava. i o. tmpdi r =/ hone/ scratch

Memory size
Java runs with a fixed amount of 'heap' memory; this is typically 64Mb by default. If one of
the tools fails with a message that saysit's out of memory then this has proved too small for the
job in hand. You can increase the heap memory with the - xnx flag. To set the heap memory
Size to 256 megabytes, use the flag

- Xnx256M

(don't forget the 'M' for megabyte). You will probably find performance is dreadful if you
specify a heap size larger than the physical memory of the machine you're running on.

Note however that encouraging STILTS to use disk files rather than memory for temporary
storage is often a better idea than boosting the heap memory - this is done by specifying the
-disk flag (stilts -disk <task-name> ...), or possibly setting the system property
- Dstartabl e. st or age=di sk (See Section 2.1).

Y ou can specify other options to Java such as tuning and profiling flags etc, but if you want to do
that sort of thing you probably don't need me to tell you about it.

If you are using the sti | t s command-line script, any flagsto it starting - D or - X are passed directly
to the j ava executable. You can pass other flags to Java with the stilts script's -J flag; for
instance:

stilts -Xmx4M -J-verbose: gc calc 'njdTol so(0)'
isequivalent to

SUN/256 12

java - Xnx4M -verbose: gc -jar stilts.jar calc 'njdTolso(0)'

3.3 System Properties

System properties are a way of getting information into the Java runtime - they are a hit like
environment variables. There are two ways to set them when using STILTS: either on the command
line using arguments of the form - bname=val ue (see Section 3.2) or in afile in your home directory
called . starj ava. properti es, inthe form of ananme=val ue line. Thus submitting the flag

-Dvotabl e.strict=true
on the command line is equivalent to having the following in your . st arj ava. properti es file:

Force strict interpretation of the VOTabl e standard.
vot abl e. strict=true

The following system properties have special significanceto STILTS:

java.io.tnpdir
The directory in which STILTS will write any temporary files it needs. This is usually only
doneif the - di sk flag has been specified (see Section 2.1).

jdbc.drivers
Can be set to a (colon-separated) list of JDBC driver classes using which SQL databases can
be accessed (see Section 3.4).

jel.classes
Can be set to a (colon-separated) list of classes containing static methods which define
user-provided functions for synthetic columns or subsets. (see Section 7.6.3).

mar k. wor kar ound
If set to "true", this will work around a bug in the mar k() /reset () methods of some java
| nput St r eam classes. These are rather common, including in Sun's J2SE system libraries. Use
thisif you are seeing errors that say something like "Resetting to invalid mark". Currently
defaultsto "false".

startabl e. readers
Can be set to a (colon-separated) list of custom table format input handler classes (see
SUN/252).

startabl e. st orage
Can be set to determine the default storage policy. Setting it to "di sk" has basically the same
effect as supplying the "-di sk" argument on the command line (see Section 2.1). Other
possible values are "menor y", "si deways" and "di scar d"; see SUN/252.

startable.witers
Can be set to a (colon-separated) list of custom table format output handler classes (see
SUN/252).

vot abl e. stri ct
Set true for strict enforcement of the VOTable standard when parsing VOTables. This
prevents the parser from working round certain common errors, such as missing arr aysi ze
attributes on FI ELD or PARAM el ements with dat at ype="char " . False by default.

3.4 JDBC Configuration

This section describes additional configuration which must be done to allow the commands to
access SQL-compatible relational databases for reading or writing tables. If you don't need to talk to
SQL-type databases, you can ignore the rest of this section. The steps described here are the
standard ones for configuring JDBC (which sort-of stands for Java Database Connectivity),

SUN/256 13

described in more detail on Sun's JIDBC web page.

To use STILTS with SQL-compatible databases you must:

* Have access to an SQL-compatible database locally or over the network
* HaveaJDBC driver appropriate for that database

* Install that driver for use with STILTS

* Know the format the driver uses for URL s to access database tables

» Have appropriate privileges on the database to perform the desired operations

Installing the driver consists of two steps:

1. Ensurethat the classpath you are using includes this driver class as described in Section 3.1
2. Setthejdbc. drivers system property to the name of the driver class as described in Section
3.3

These steps are all standard for use of the JIDBC system. See SUN/252 for information about JDBC
drivers known to work with STIL (the short story isthat at least MySQL and PostreSQL will work).

Here is an example of using t copy to write the results of an SQL query on a table in a MySQL
database asaVOTable:
stilts -classpath /usr/local/jars/nysql-connector-java.jar \
-Dj dbc. dri vers=com nysql . jdbc. Driver \
tcopy \

i n="]dbc: nysql ://local host/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
of mt =vot abl e gsc. vot

or invoking Java directly:

java -classpath stilts.jar:/usr/local/jars/ mysql-connect-java.jar \
-Dj dbc. drivers=com nysql . jdbc. Driver \
uk.ac.starlink.ttools.Stilts tcopy \
i n="j dbc: nysql ://local host/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
of nt =vot abl e out =gsc. vot

Y ou have to exercise some care to get the arguments in the right order here - see Section 3.

Alternatively, you can set some of this up beforehand to make the invocation easier. If you set your
CLASSPATH environment variable to include the driver jar file (and the STILTS classes if you're
invoking Javadirectly rather than using the scripts), and if you put the line

j dbc. drivers=com nysql .jdbc. Driver

inthe . starjava. properties filein your home directory, then you could avoid having to give the
-cl asspat h and - Dj dbc. dri vers flags respectively.

SUN/256 14

4 Tablel/O

Most of the tools in this package either read one or more tables as input, or write one or more tables
as output, or both. This section explains what kind of tables the tools can read and write, and how
you tell them where to find the tables to operate on.

In most cases input and output table specificcations are given by parameters with the following
names (or similar ones):

in

Location of the input table

i fnt

Format of the input table

out

Location of the output table

of nt

Format of the output table

The values of these parameters are discussed in more detail below.

4.1 Table Locations

The location of tables for input and output are usually given using the i n and out parameters
respectively. These are often, but not always, filenames. The possibilities are these:

Filename
Very often, you will simply specify a filename as location, and the tool will just read
from/writeto it in the usual way.

URL
Tables can be read from URLs directly, and in some cases written to them as well. Some
non-standard URL protocols are supported as well as the usual ones. Thelistis:

htt p:
Read from HTTP resources.

ftp:
Read from anonymous FTP resources.

file:
Read from local files; not particularly useful since you can do much the same using just
the filename.

jar:
Speciaised protocol for looking inside Java Archive files - see JarURLConnection
documentation.

nmyspace:
Accesses files in the AstroGrid "MySpace" virtua file store. These URLs ook something
like "nyspace: / survey/iras_psc. xm ", and can access files in the myspace are that the
user is currently logged into. These URLSs can be used for both input and output of tables.
To use them you must have an AstroGrid account and the AstroGrid WorkBench or
similar must be running; if you're not currently logged in a dialogue will pop up to ask
you for name and password.

i vo:
Understands ivo-type URLs which signify files in the AstroGrid "MySpace" virtua file
store. These URLs look something like

SUN/256 15

". These URLs can be used for both input and output of tables. To use them you must
have an AstroGrid account and the AstroGrid WorkBench or similar must be running; if
you're not currently logged in adialogue will pop up to ask you for name and password.

j dbc:
Used for communicating with SQL-compliant relational databases. These are a bit
different to normal URLs - see section Section 3.4.

Minussign ("-")
The special location "-" (minus sign) indicates standard input (for reading) or standard output
(for writing). Thisallows you to use STILTS commandsin anormal Unix pipeline.

In any of these cases, for input locations compression is taken care of automatically. That means
that you can give the filename or URL of a file which is compressed using gzi p, bzi p2 or Unix
conpr ess and the program will uncompressit on the fly.

4.2 Table Formats

The generic table commands in STILTS (currently tpi pe, tcopy, tcat, tcatn, tcube, tjoin,
t mat ch2, mul ti cone and r egquer y) have no native format for table storage, they can process datain
a number of formats equally well. STIL has its own model of what a table consists of, which is
basicaly:

Some per-table metadata (parameters)

A number of columns

Some per-column metadata

A number of rows, each containing one entry per column

Some table formats have better facilities for storing this sort of thing than others, and when
performing conversions STILTS does its best to translate between them, but it can't perform the
impossible: for instance there is nowhere in a Comma-Separated Values file to store descriptions of
column units, so these will be lost when converting from VOTable to CSV formats.

The formats the package knows about are dependent on the input and output handlers currently
installed. The ones installed by default are listed in the following subsections. More may be added
in the future, and it is possible to install new ones at runtime - see the STIL documentation for
details.

4.2.1 Input Formats

Some of the tools in this package ask you to specify the format of input tables using the i f nt
parameter. The following list gives the values usualy alowed for this (matching is
case-insensitive):

fits
FITS format - FITS binary or ASCII tables can be read. By default the first table HDU in the
file will used, but this can be atered by supplying the HDU index after a '# sign, so
"table.fits#3" means the third HDU extension.

colfits
Column-oriented FITS format. This is where a table is stored as a BINTABLE extension
which contains a single row, each cell of the row containing a whole column of the table it
represents. This has different performance characteristics from normal FITS tables; in
particular it may be considerably efficient for very large, and especially very wide tables where
not all of the columns are required at any one time. Only available for uncompressed files on
disk.

SUN/256 16

vot abl e
VOTable format - any legal version 1.0 or 1.1 format VOTable documents, and many illegal
ones, can be read. By default the first TABLE element is used, but this can be altered by
supplying the 0-based index after a '#' sign, so "tablexml#4" means the fifth TABLE element in
the document.

asci
Plain text file with one row per column in which columns are separated by whitespace.

Ccsv

Comma-Separated Vaues format, using approximately the conventions used by M S Excel.

t st
Tab-Separated Table format, as used by Starlink's GAIA and ESO's SkyCat amongst other
tools.

i pac

IPAC Table Format.

wdc
World Datacentre Format (experimental).

For more details on these formats, see the descriptionsin SUN/253.

In some cases (when using VOTable or FITS format tables) the tools can detect the table format
automatically, and no explicit specification is necessary. If this isn't the case and you omit the
format specification, the tool will fail with a suitable error message. It is always safe to specify the
format explicitly; this will be slightly more efficient, and may lead to more helpful error messages
in the case that the table can't be read correctly.

4.2.2 Output Formats

Some of the tools ask you to specify the format of output tables using the of mt parameter. The
following list gives the values usually allowed for this; in some cases as you can see there are
several variants of a given format. You can abbreviate these names, and the first match in the list
below will be used, so for instance specifying votable is equivaent to specifying
vot abl e-t abl edata and fits isequivalenttofits- pl us. Matching is case-insensitive.

fits-plus
FITS file; primary HDU contains a VOTable representation of the metadata, first extension
contains a FITS binary table (behavesthe same asfi t s- basi ¢ for most purposes)

fits-basic
FITSfile; primary HDU is data-less, first extension contains a FITS binary table

col fits-plus
FITS file containing a BINTABLE with a single row; each cell of the row contains a whole
column's worth of data. The primary HDU aso contains a VOTable representation of the
metadata.

col fits-basic
FITS file containing a BINTABLE with a single row; each cell of the row contains a whole
column’'s worth of data. The primary HDU contains nothing.

vot abl e-t abl edat a

VOTable document with TABLEDATA (pure XML) encoding

vot abl e- bi nary-inline
V OTable document with BINARY -encoded data inline within a STREAM element

vot abl e- bi nary- href
VOTable document with BINARY -encoded data in a separate file (only if not writing to a

SUN/256 17

stream)

vot abl e-fits-href
V OTable document with FITS-encoded datain a separate file (only if not writing to a stream)

votable-fits-inline
V OTable document with FITS-encoded data inline within a STREAM el ement

asci i

Simple space-separated ASCI| file format

t ext
Human-readabl e plain text (with headers and column boundaries marked out)

CSvVv
Comma-Separated Vaue format. The first line is a header which contains the column names.

csv- noheader
Comma-Separated Vaue format with no header line.

t st
Tab-Separated Table format.

ht m
Standalone HTML document containing a TABLE element

ht i - el enent
HTML TABLE element

| at ex
LaTeX t abul ar environment

| at ex- documnent
LaTeX standalone document containing at abul ar environment

nirage
Mirage input format

For more details on these formats, see the descriptionsin SUN/253.

In some cases the tools may guess what output format you want by looking at the extension of the
output filename you have specified.

SUN/256 18

5 Table Pipelines

Several of the tasks available in STILTS take one or more input tables, do something or other with
them, and produce an output table. Thisis a pretty obvious way to go about things, and in the most
straightforward case that's exactly what happens. you name one or more input tables, specify the
processing parameters, and name an output table; the task then reads the input tables from disk,
does the processing and writes the output table to disk.

However, many of the tasksin STILTS allow you to do pre-processing of the input tables before the
main job, post-processing of the output table after the main job, and to decide what happens to the
final tabular result, without any intermediate storage of the data. Examples of the kind of
pre-processing you might want to do are to rearrange the columns so that they have the right units
for the main task, or replace 'magic' values such as -999 with genuine blank values; the kind of
post-processing you might want to do is to sort the rows in the output table or delete some of the
columns you're not interested in. As for the destination of the final table, you might want to write it
to disk, but equally you might not want to store it anywhere, but only be interested in counting the
number of rows, or seeing the minima/maxima of a few of the columns, or you might want to send
it straight to TOPCAT or some other table viewing application for interactive analysis.

Clearly, you could achieve the same effect by running multiple applications. preprocess your
original input tables to write intermediate files on disk, run the main processing application which
reads those files from disk and writes a new output file, run another application to postprocess the
output file and write a new final output file, and finally do something with this such as counting the
rows in it or viewing it in TOPCAT. However, by doing it all within a single task instead, no
intermediate results have to be stored, and the whole sequence can be very much more efficient.
You can think of this (if it helps) like a Unix pipeline, except what is being streamed from the start
to the end of the pipe is not bytes, but table metadata and data. In most cases, the table data is
streamed through the pipeline arow at atime, meaning that the amount of memory required is small
(though in some cases, for instance row sorting and crossmatching, thisis not possible).

Tasks which allow this pre/post-processing, or "filtering”, have parameters with names like "cnd"
which you use to specify processing steps. Tasks with multiple input tables (t mat ch2, t cat n, tj oi n)
may have parameters called i cnd1, i cmd2, ... for preprocessing the different input tables and ocnd
for postprocessing the output table. t pi pe does nothing except filtering, so there is no distinction
between pre- and post-processing, and itsfilter parameter isjust called crd. t pi pe additionally has a
script parameter which allows you to use a text file to write the commands in, to prevent the
command line getting too long. In both cases there is a parameter called onode which defines the
"output mode”, that is, what happens to the post-processed output table that comes out of the end of
the pipeline.

Section 5.1 lists the processing steps available, and explains how to use them, Section 5.2 and
Section 5.3 describe the syntax used in some of these filter commands for specifying columns, and
Section 5.4 describes the available output modes. See the examples in the command reference, and
particularly thet pi pe examples (Appendix A.11.2), for some examples putting all this together.

5.1 Processing Filters

This section lists the filter commands which can be used for table pipeline processing, in
conjunction with crd- or scri pt -type parameters.

Y ou can string as many of these together as you like. On the command line, you can repeat the cnd
(or i cnd1, or ocnd...) parameter multiple times, or use one cnd parameter and separate different
filter specifiers with semicolons (';). The effect is the same.

It's important to note that each command in the sequence of processing steps acts on the table at that

SUN/256 19

point in the sequence. Thus either of the two identical invocations:

stilts tpipe cnd="delcols 1; delcols 1; delcols 1'
stilts tpipe cnd="delcols 1' cnd="delcols 1' cnd='delcols 1

has the same effect as
stilts tpipe cnmd="delcols "1 2 3"

since in the first case the columns are shifted | eft after each one is deleted, so the table seen by each
step has one fewer column than the one before. Note also the use of quotes in the latter of the
examples above, which is necessary so that the <colid-list> of the del cols command is
interpreted as one argument not three separate words.

The available filters are described in the following subsections.

5.1.1 addcol

Usage:

addcol [-after <col-id> | -before <col-id>]
[-units <units>] [-ucd <ucd>] [-desc <description>]
<col - name> <expr >

Add a new column called <col - nane> defined by the algebraic expression <expr>. By default the
new column appears after the last column of the table, but you can position it either before or after a
specified column using the - bef ore or - af t er flags respectively. The - units, -ucd and - desc flags
can be used to define metadata values for the new column.

Syntax for the <expr > and <col - i d> argumentsis described in the manual.

5.1.2 addskycoor ds

Usage:

addskycoords [-epoch <expr>] [-inunit deg|rad|sex] [-outunit deg|rad|sex]
<i nsys> <outsys> <col -id1> <col -1d2> <col - nanel> <col - nane2>

Add new columns to the table representing position on the sky. The values are determined by
converting a sky position whose coordinates are contained in existing columns. The <col -i d>
arguments give identifiers for the two input coordinate columns in the coordinate system named by
<i nsys>, and the <col - nane> arguments name the two new columns, which will be in the
coordinate system named by <out sys>. The <i nsys> and <out sys> coordinate system specifiers are
one of

i crs: ICRS (Hipparcos) (Right Ascension, Declination)

f k5: FK5 J2000.0 (Right Ascension, Declination)

f k4: FK4 B1950.0 (Right Ascension, Declination)

gal actic: AU 1958 Galactic (Longitude, Latitude)

super gal act i ¢c: de Vaucouleurs Supergalactic (Longitude, Latitude)
ecliptic: Ecliptic (Longitude, Latitude)

The -inunit and - outunit flags may be used to indicate the units of the existing coordinates and
the units for the new coordinates respectively; use one of degr ees, radi ans Or sexagesi mal (may
be abbreviated), otherwise degrees will be assumed. For sexagesimal, the two corresponding
columns must be string-valued in forms like hh:mm:ss.s and dd:mm:ss.s respectively.

For certain conversions, the value specified by the - epoch flag is of significance. Where significant
its value defaults to 2000.0.

SUN/256 20

Syntax for the <expr >, <col -i d1> and <col -i d2> arguments is described in the manual.

5.1.3 assert

Usage:

assert <expr>

Check that a boolean expression is true for each row. If the expression <expr> does not evaluate
true for any row of the table, execution terminates with an error. As long as no error occurs, the
output tableisidentical to the input one.

The exception generated by an assertion violation is of class
uk.ac.starlink.ttools.filter.AssertException athough that is not usually obvious if you are
running from the shell in the usual way.

Syntax for the <expr > argument is described in Section 7.

5.1.4 badval

Usage:
badval <bad-val > <colid-I|ist>

For each column specified in <col i d- 1 i st > any occurrence of the value <bad- val > isreplaced by a
blank entry.

Syntax for the <col i d- I i st > argument is described in Section 5.3.

5.15cache

Usage:
cache

Stores in memory or on disk a temporary copy of the table at this point in the pipeline. This can
provide improvements in efficiency if there is an expensive step upstream and a step which requires
more than one read of the data downstream. If you see an error like "Can't re-read data from stream”
then adding this step near the start of the filters might help.

5.1.6 check

Usage:
check

Runs checks on the table at the indicated point in the processing pipeline. This is strictly a
debugging measure, and may be time-consuming for large tables.

5.1.7 cl ear par ans

Usage:

cl ear parans <pname> ...

Clears the value of one or more named parameters. Each of the <pnane> values supplied may be

SUN/256 21

either a parameter name or a simple wildcard expression matching parameter names. Currently the
only wildcarding is a"*" to match any sequence of characters. cl earparans * will clear al the
parametersin the table.

It isnot an error to supply <pname>s which do not exist in the table - these have no effect.

5.1.8col neta
Usage:

colmeta [-nane <name>] [-units <units>] [-ucd <ucd>] [-desc <descrip>]
<colid-list>

Modifies the metadata of one or more columns. Some or al of the name, units, ucd and description
of the column(s), identified by <col i d-1ist> can be set by using some or all of the listed flags.
Typicaly, <col i d-1i st > will Ssimply be the name of a single column.

Syntax for the <col i d- I i st > argument is described in Section 5.3.

5.1.9del col s

Usage:
del cols <colid-Ilist>

Delete the specified columns. The same column may harmlessly be specified more than once.

Syntax for the <col i d- I i st > argument is described in Section 5.3.

5.1.10 every

Usage:

every <step>

Include only every <st ep>'th row in the result, starting with the first row.

5.1.11 expl odeal |

Usage:
expl odeal | [-ifndim<ndinme] [-ifshape <di ns>]

Replaces any columns which is an N-element arrays with N scalar columns. Only columns with
fixed array sizes are affected. The action can be restricted to only columns of a certain shape using
the flags.

If the -i f ndi mflag is used, then only columns of dimensionality <ndi m> will be exploded. <ndi m»
may bel, 2,

If the -i f shape flag is used, then only columns with a specific shape will be exploded; <di ms> isa

space- or commarseparated list of dimension extents, with the most rapidly-varying first, e.g. 2 5'
to explode all 2 x 5 element array columns.

5.1.12 expl odecol s

SUN/256 22

Usage:
expl odecol s <colid-list>

Takes a list of specified columns which represent N-element arrays and replaces each one with N
scalar columns. Each of the columns specified by <col i d-1ist> must have a fixed-length array
type, though not all the arrays need to have the same number of elements.

Syntax for the <col i d- I i st > argument is described in Section 5.3.

5.1.13 head

Usage:
head <nrows>

Include only the first <nr ows> rows of the table. If the table has fewer than <nr ows> rows then it
will be unchanged.

5.1.14 keepcol s

Usage:
keepcol s <colid-Ilist>

Select the columns from the input table which will be included in the output table. The output table
will include only those columns listed in <col i d-1ist>, in that order. The same column may be
listed more than once, in which case it will appear in the output table more than once.

Syntax for the <col i d- I i st > argument is described in Section 5.3.

5.1.15 et a

Usage:

nmeta [<itenr ...]

Provides information about the metadata for each column. This filter turns the table sideways, so
that each row of the output corresponds to a column of the input. The columns of the output table
contain metadata items such as column name, units, UCD etc corresponding to each column of the
input table.

By default the output table contains columns for the following items:

I ndex: Position of columnin table

Name: Column name

C ass: Datatype of objectsin column

Shape: Shape of array values

Uni t s: Unit string

Descri pti on: Description of datain the column
uch: Unified Content Descriptor

aswell as any table-specific column metadata items that the table contains.

However, the output may be customised by supplying one or more <i t em> headings. These may be
selected from the above as well as the following:

* UCD desc: Textua description of UCD

SUN/256 23

as well as any table-specific metadata. It is not an error to specify an item for which no metadata
existsin any of the columns (such entries will result in empty columns).

Any table parameters of the input table are propagated to the output one.

5.1.16 progress

Usage:

progress

Monitors progress by displaying the number of rows processed so far on the terminal (standard
error). This number is updated every second or thereabouts; if all the processing is done in under a
second you may not see any output. If the total number of rows in the table is known, an ASCI|-art
progress bar is updated, otherwise just the number of rows seen so far is written.

5.1.17 random

Usage:
random

Ensures that steps downstream see the table as random access. Only useful for debugging.

5.1.18 r epl acecol
Usage:

repl acecol [-nane <name>] [-units <units>] [-ucd <ucd>] [-desc <descrip>]
<col -i d> <expr>

Replaces the content of a column with the value of an algebraic expression. The old values are
discarded in favour of the result of evaluating <expr>. You can specify the metadata for the new
column using the - name, -units, -ucd and - desc flags; for any of these items which you do not
specify, they will take the values from the column being replaced.

It islegal to reference the replaced column in the expression, so for example "r epl acecol pi xsi ze
pi xsi ze*2" just multiplies the valuesin column pi xsi ze by 2.

Syntax for the <col - i d> and <expr > arguments is described in the manual .

5.1.19r epl aceval

Usage:

repl aceval <ol d-val > <newval > <colid-Ilist>

For each column specified in <col i d-1i st> any instance of <ol d-val > is replaced by <new- val >.
The value string 'nul | ' can be used for either <ol d- val ue> or <new-val ue> to indicate a blank value
(but see also the badval filter).

Syntax for the <col i d- I i st > argument is described in Section 5.3.

5.1.20 sel ect

Usage:

SUN/256 24

sel ect <expr>

Include in the output table only rows for which the expression <expr > evaluates to true. <expr >
must be an expression which evaluates to a boolean value (true/false).

Syntax for the <expr > argument is described in Section 7.

5.1.21 sequent i al

Usage:

sequenti al

Ensures that steps downstream see the table as sequential access. Only useful for debugging.

5.1.22 set par am

Usage:

setparam [-type byte|short]|int]|long|fl oat]|doubl e|] bool ean|string]
[-desc <descrip>] [-unit <units>] [-ucd <ucd>]
<pname> <pval >

Sets a named parameter in the table to a given value. The parameter named <pnane> is set to the
value <pval >. By default the type of the parameter is determined automatically (if it looks like an
integer it's an integer etc) but this can be overridden using the - t ype flag. The parameter description
may be set using the - desc flag.

5.1.23 sort

Usage:
sort [-down] [-nullsfirst] <key-list>

Sorts the table according to the value of one or more algebraic expressions. The sort key
expressions appear, as separate (space-separated) words, in <key- | i st >; sorting is done on the first
expression first, but if that resultsin atie then the second one is used, and so on.

Each expression must evaluate to a type that it makes sense to sort, for instance numeric. If the
- down flag is used, the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nul I sfirst flagisgiven then they are considered to come at the start instead.

Syntax for the <key- 1 i st > argument is described in Section 7.

5.1.24 sor t head

Usage:
sorthead [-tail] [-down] [-nullsfirst] <nrows> <key-list>

Performs a sort on the table according to the value of one or more algebraic expressions, retaining
only <nrows> rows at the head of the resulting sorted table. The sort key expressions appear, as
separate (space-separated) words, in <key- | i st >; sorting is done on the first expression first, but if
that resultsin a tie then the second one is used, and so on. Each expression must evaluate to a type

SUN/256 25

that it makes sense to sort, for instance numeric.
If the-tail flagisused, then thelast <nr ows> rows rather than the first ones are retained.
If the - down flag is used the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nul I sfirst flagisgiven then they are considered to come at the start instead.

This filter is functionally equivalent to using sort followed by head, but it can be done in one pass
and is usually cheaper on memory and faster, as long as <nr ows> is significantly lower than the size
of the table.

Syntax for the <key- 1 i st > argument is described in Section 7.

5125stats
Usage:
stats [<itemr ...]

Calculates statistics on the data in the table. This filter turns the table sideways, so that each row of
the output corresponds to a column of the input. The columns of the output table contain statistical
items such as mean, standard deviation etc corresponding to each column of the input table.

By default the output table contains columns for the following items:

Nare: Column name

Mean: Average

St Dev: Population Standard deviation
M ni mumi Numeric minimum

Maxi mumi Numeric maximum

NGood: Number of non-blank cells

However, the output may be customised by supplying one or more <i t em> headings. These may be
selected from the above as well as the following:

NBad: Number of blank cells

vari ance: Population Variance

SanpSt Dev: Sample Standard Deviation
SanpVar i ance: Sample Variance

Skew. Gamma 1 skewness measure

Kurt osi s: Gamma 2 peakedness measure
Sum Sum of values

M nPos: Row index of numeric minimum
MaxPos: Row index of numeric maximum
Car di nal i t y: Number of distinct values in column; values >100 ignored
Medi an: Middle value in sequence
Quartil el: First quartile

Quartil e2: Second quartile

Quartile3: Third quartile

Additionally, the form "Q.nn" may be used to represent the quantile corresponding to the proportion
0.nn, e.g..

* Q 25: First quartile
 Q 625: Fifthoctile

SUN/256 26

Any parameters of the input table are propagated to the output one.
Note that quantile calculations (including median and quartiles) can be expensive on memory. If
you want to calculate quantiles for large tables, it may be wise to reduce the number of columns to

only those you need the quantiles for earlier in the pipeline. No interpolation is performed when
calculating quantiles.

5.1.26 t abl enane

Usage:

t abl enanme <nanme>

Sets the table€'s name attribute to the given string.

51.27tail

Usage:

tail <nrows>

Include only the last <nr ows> rows of the table. If the table has fewer than <nr ows> rows then it will
be unchanged.

5.1.28 transpose

Usage:
transpose [-namecol <col-id>]

Transposes the input table so that columns become rows and vice versa. The - nanecol flag can be
used to specify a column in the input table which will provide the column names for the output
table. The first column of the output table will contain the column names of the input table.

Syntax for the <col -i d> argument is described in Section 5.2.

5.1.29 uniq

Usage:

uniqg [-count] [<colid-Ilist>]

Eliminates adjacent rows which have the same values. If used with no arguments, then any row
which has identical valuesto its predecessor is removed.

If the <col i d-1i st > parameter is given then only the values in the specified columns must be equal
in order for the row to be removed.

If the - count flag is given, then an additional column with the name DupCount will be prepended to
the table giving a count of the number of duplicated input rows represented by each output row. A
unique row has a DupCount value of 1.

Syntax for the <col i d- I i st > argument is described in Section 5.3.

5.2 Specifying a single column

SUN/256 27

If an argument is specified in the help text for a command with the symbol <col -i d> it means you
must give a string which identifies one of the existing columnsin atable.

There are two ways you can specify a column in this context:

Column Name
The name of the column may be used if it contains no spaces and doesn't start with a minus
character (-'). It is usually matched case insensitively. If multiple columns have the same
name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; thisis a useful fallback if the column name isn't
suitable for some reason. The first column is '1, the second is '2' and so on. You may
aternatively use the forms'$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running t pi pe with
onpde=net a Of onpde=st at s 0N the table may help.

5.3 Specifying a list of columns

If an argument is specified in the help text for a command with the symbol <col i d-1i st> it means
you must give a string which identifies alist of zero, one or more of the existing columnsin atable.
The string you specify is a separated into separate tokens by whitespace, which means that you will
normally have to surround it in single or double quotes to ensure that it is treated as a single
argument and not several of them.

Each token in the <col i d- I i st > string may be one of the following:

Column Name
The name of a column may be used if it contains no spaces and doesn't start with a minus
character (-'). It is usually matched case insensitively. If multiple columns have the same
name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; thisis a useful fallback if the column name isn't
suitable for some reason. The first column is 'l, the second is '2' and so on. You may
aternatively use the forms'$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running t pi pe with
onode=net a Of onode=st at s ON the table may help.

Wildcard Expression
You can use a simple form of wildcard expression which expands to any columns in the table
whose names match the pattern. Currently, the only special character is an asterisk ' which
matches any sequence of characters. To match an unknown sequence at the start or end of the
string an asterisk must be given explicitly. Other than that, matching is usualy case
insensitive. The order of the expanded list is the same as the order in which the columns
appear in the table.

Thus "col *" will match columns named col 1, Col um2 and COL_1024, but not decd d. "* MAG*"
will match columns named magni t ude, ABS_MAG_U and JMAG. "*" on its own expands to alist of
al the columns of the table in order.

Specifying a list which contains a given column more than once is not usually an error, but what
effect it has depends on the function you are executing.

5.4 Output Modes

SUN/256 28

This section lists the output modes which can be used as the value of the onode parameter of t pi pe
and other commands. Typically, having produced a result table by pipeline processing an input one,
you will write it out by specifying omode=out (Or not using the onode parameter at al - out isthe
default). However, you can do other things such as calculate statistics, display metadata, etc. In
some of these cases, additional parameters are required. The different output modes, with their
associated parameters, are described in the following subsections.

5.4.1 cgi

Usage:

onmode=cgi of nt =<out - f or mat >

Writes a table to standard output in away suitable for use as output from a CGl (Common Gateway
Interface) program. This is very much like out mode but a short CGI header giving the MIME
Content-Type is prepended to the output

Additional parameters for this output mode are:

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters).

[Default: vot abl e]

5.4.2 count

Usage:

onode=count
Counts the number of rows and columns and writes the result to standard output.

5.4.3di scard

Usage:

onpde=di scard

Reads all the datain the table in sequential mode and discards it. May be useful in conjunction with
theassert filter.

544 et a

Usage:

onode=net a

Prints the table metadata to standard output. The name and type etc of each column is tabulated, and
table parameters are also shown.

See the net a filter for more flexible output of table metadata.

5.4.5 out

Usage:

SUN/256 29

onbde=out out =<out -t abl e> of nt =<out - f or nat >

Writes a new table.

Additional parameters for this output mode are:

out = <out-table>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

[Default: -]

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the specid
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (aut o)]

54.6plastic

Usage:
onode=pl astic transport=string|file client=<app-nanme>

Broadcasts the table to any registered Plastic-aware applications. PLASTIC, the PLatform for
AStronomical Tool InterConnection, is a tool interoperability protocol. A Plastic hub must be
running in order for thisto work.

Additional parameters for this output mode are:

transport = string|file

Determines the method (PLASTIC message) used to perform the PLASTIC communication.

The choices are

 string: VOTable serialized as a string and passed as a cal parameter
(i vo: 7/ vot ech. or g/ vot abl e/ | oad). Not suitable for very largefiles.

* file: VOTable written to a temporary file and the filename passed as a call parameter
(i vo: //vot ech. or g/ vot abl e/ | oadFr orrURL). The file ought to be deleted once it has been
loaded. Not suitable for inter-machine communication.

If novalueis set (nul I') then adecision will be taken based on the apparent size of the table.

client = <app-nanme>
Gives the name of a PLASTIC listener application which is to receive the broadcast table. If a
non-null value is given, then only the first registered application which reports its application
name as that value will receive the message. If no value is supplied, the broadcast will be to all
listening applications.

547 stats

Usage:
onpbde=st ats

Calculates and displays univariate statistics for each of the numeric columns in the table. The

SUN/256 30

following entries are shown for each column as appropriate:

e mean
* population standard deviation
e minimum

e maximum

* number of non-null entries

Seethest at s filter for more flexible statistical calculations.

5.4.8t opcat

Usage:
onmode=t opcat

Displays the output table directly in TOPCAT. If a TOPCAT instance (version 1.6 or later) is
aready running on the local host, the table will be opened in that, otherwise a new TOPCAT
instance will be launched for display. The latter mode only works if the TOPCAT classes are on the
class path.

A variety of mechanisms (e.g. PLASTIC and SOAP) are attempted to transfer the table, depending
on what running instances of TOPCAT can be found. Depending on the transport mechanism used,
there may be limitsto the size of table which can be transmitted to the application in this way.

549t osql

Usage:

onode=t osql protocol =<j dbc- prot ocol > host =<val ue> dat abase=<db- nane>
newt abl e=<t abl e- nane> user =<user nane> passwor d=<passwd>

Writes a new table to an SQL database. You need the appropriate JDBC drivers and
-Dj dcb. dri vers Set asusual (see Section 3.4).

Additional parameters for this output mode are:

protocol = <jdbc-protocol >
The driver-specific sub-protocol specifier for the JIDBC connection. For MySQL 's Connector/J
driver, thisis nysql , and for PostgreSQL's driver it is post gres. For other drivers, you may
have to consult the driver documentation.

host = <val ue>
The host which is acting as a database server.

[Default: | ocal host]

dat abase = <db- nanme>
The name of the database on the server into which the new table will be written.

newt abl e = <t abl e- nanme>
The name of the new table which will be written to the database. If a table by this name
aready exigts, it may be overwritten.

user = <usernane>
User name for the SQL connection to the database.

[Default: nbt |

password = <passwd>

SUN/256

Password for the SQL connection to the database.

31

SUN/256 32

6 Crossmatching

STILTS offers flexible and efficient facilities for crossmatching tables. Crossmatching is
identifying different rows, which may be in the same or different tables, that refer to the same item.
In an astronomical context such an item is usually, though not necessarily, an astronomical source
or object. This operation corresponds to what in database terminology is called ajoin.

There are various complexities to specifying such a match. In the first place you have to define
what is the condition that must be satisfied for two rows to be considered matching. In the second
place you must decide what happensiif, for a given row, more than one match can be found. Finally,
you have to decide what to do having worked out what the matched rows are; the result will
generally be presented as a new output table, but there are various choices about what columns and
rows it will consist of. Some of these issues are discussed in this section, and othersin the reference
sections on the tools themselves in Appendix A.

Matching can in general be a computationally intensive process. The algorithm used by STILTS,
except in pathological cases, scales as O(N log(N)) or thereabouts, where N is the total number of
rows in al the tables being matched. No preparation (such as sorting) is required on the tables prior
to invoking the matching operation. It is reasonably fast; for instance an RA, Dec positional match
of two 10°-row catalogues takes of the order of 60 seconds on current (2005 laptop) hardware.
Attempting matches with large tables can lead to running out of memory; the calculation just
mentioned required ajava heap size of around 200Mb (- xmx200M).

In the current release of STILTS the only crossmatching task is t mat ch2 which finds matches
between pairs of tables. In future versions however facilities for finding matches within the same
table, and in more than two tables, will be introduced.

6.1 Match Criteria

Determining whether one row represents the same item as another is done by comparing the values
in certain of their columns to see if they are the same or similar. The most common astronomical
case is to say that two rows match if their celestial coordinates (right ascension and declination) are
within a given small radius of each other on the sky. There are other possibilities; for instance the
coordinates to compare may be in a Cartesian space, or have a higher (or lower) dimensionality than
two, or the match may be exact rather than within an error radius....

To determine the matching criteria, you set the values of the following parameters of t mat ch2:

mat cher
Name of the match criteriatype.

par ans
Fixed value(s) giving the parameters of the match (typically an error radius). If more than one
valueisrequired, the values should be separated by spaces.

val ues*
Expressions to be compared between rows. This will typically contain the names of one or
more columns, but each element may be an algebraic expression (see Section 7) rather than
just a column name if required. If more than one value is required, the values should be
separated by spaces. There is one of these parameters for each table taking part in the match,
so for t mat ch2 you must specify both val ues1 and val ues2.

For example, suppose we wish to locate objects in two tables which are within 3 arcseconds of each
other on the sky. One table has columns RA and DEC which give coordinates in degrees, and the
other has columns RArad and DECrad which give coordinates in radians. These are the arguments

SUN/256 33

which would be used to tell t mat ch2 what the match criteria are:

mat cher =sky

par ans=3

val ues1l=' RA DEC

val ues2="'radi ansToDegr ees(RArad) radi ansToDegr ees(DECr ad)
It is clearly important that corresponding values are comparable (in the same units) between the
tables being matched, and in geometrically sensitive cases such as matching on the sky, it's
important that they are the units expected by the matcher as well. To determine what those units are,
either consult the roster below, or run the following command:

stilts tmatch2 hel p=mat cher

which will tell you about all the known matchers and their associated parans and val ues*
parameters.

Here is a list of al the basic mat cher types and the requirements of their associated par ans and
val ues* parameters. The units of the required values are given where significant.

mat cher =sky val ues*=' <ra/ degrees> <dec/ degrees>'
par anms=' <max- error/arcsec>'
Comparison of positions on the celestial sphere with a fixed error radius. Rows are considred
to match when the two r a, dec positions are within max- er r or arcseconds of each other along
agreat circle.

mat cher =skyerr val ues*='<ra/ degrees> <dec/ degrees> <error/arcsec>'
par ans=' <mex- error/arcsec>

Comparison of positions on the celestial sphere with per-row error radii. Rows are considered
to match when the separation between the two r a, dec positions is smaller than both the fixed
max- er ror value and the sum of the two per-row error values. If either of theerror valuesis
blank, then any separation up to nax-error is considered a match. According to these rules,
you might decide to set max- error to an arbitarily large number so that only the sum of errors
will determine the actual match criteria. However please don't do this, since max-error aso
functions as a tuning parameter for the matching algorithm, and ought to be reasonably close
to the actual maximum acceptable separation.

mat cher =sky3d val ues*=' <ra/ degr ees> <dec/ degr ees> <di st ance>
parans='<error/Units of distance>
Comparison of positions in the sky taking account of distance from the observer. The position
in three-dimensional space is calculated for each row using the ra, dec and di stance as
spherical polar coordinates, where di st ance is the distance from the observer along the line of
sight. Rows are considered to match when their positions in this space are within error units
of each other. The units of err or are the same as those of di st ance.

mat cher =exact val ues*=' <nmat ched- val ue>

Comparison of arbitrary key values for exact equality. Rows are considered to match only if
the values in their mat ched- val ue columns are exactly the same. These values can be strings,
numbers, or anything else. A blank value never matches, not even with another blank one.
Since the par ans parameter holds no values, it does not have to be specified.

mat cher =1d val ues*=" <x>'
par ans=' <error>'

Comparison of positions in 1-dimensional Cartesian space. Rows are considered to match if
their x column values differ by no morethanerror.

mat cher =2d val ues*=" <x> <y>'
par ans='<error>'

Comparison of positions in 2-dimensional Cartesian space. Rows are considered to match if
the difference in their (x,y) positions reckoned using Pythagorasislessthanerror.

SUN/256 34

mat cher =Nd val ues*=' <x> <y> ...'
par anms=' <error>'
Comparison of positions in N-dimensional Cartesian space. As for mat cher =2d, but specify
mat cher =3d or whatever and the corresponding number of entriesin the val ues* parameters.

mat cher =2d_ani sotropi ¢ val ues*=' <x> <y>' .
parans='<error-in-x> <error-in-y>'
Comparison of positions in 2-dimensional Cartesian space using an anisotropic metric. Rows
are considered to match if their (x,y) positions fall within an error ellipse with radii
error-in-x,error-in-y Of each other. This kind of match will typically be used for
non-'spatial’ spaces, for instance (magnituderedshift) space, in which the metrics along
different axes are not related to each other.

mat cher =Nd_ani sot ropi ¢ val ues*="<x> <y> ...’
parans='<error-in-x> <error-in-y> ...’
Comparison of positions in N-dimensional Cartesian space using an anisotropic metric. As
mat cher =2d_ani sotropi ¢, but specify matcher=3d_ani sotropic or whatever and the
corresponding number of entriesin the val ues* and par ans parameters.

In addition to those matching criteria listed above, you can build your own by combining any of
these. To do this, take the two (or more) matchers that you want to use, and separate their names
with a "+" character. The val ues* parameters of the combined matcher should then hold the
concatenation of the val ues* entries of the constituent matchers, and the same for the par ans
parameter. So for instance the following can be used:

mat cher =sky+1d val ues*=' <r a/ degr ees> <dec/ degrees> <x>'
par ans=' <max-error/arcsec> <error>'
Comparison of positions on the sky with an additional scalar constraint. Rows are considered
to match if both their r a, dec positions are within max- er r or arcseconds of each other along a
great circle (as for mat cher =sky) and their x values differ by no more than error (as for
mat cher =1d).

This example might be used for instance to identify objects from two catalogues which are within a
couple of arcseconds and also 0.5 blue magnitudes of each other. Rolling your own matchersin this
way can give you very flexible match constraints.

SUN/256 35

7 Algebraic Expression Syntax

The t pi pe command alows you to use algebraic expressions when making row selections and
defining new synthetic columns. They can aso be used in defining the quantities to match against in
t mat ch2. In both cases you are defining an expression which has a value in each row as a function
of the values in the existing columns in that row. This is a powerful feature which permits you to
manipulate and select table data in very flexible ways. The syntax for entering these expressionsis
explained in this section.

What you write are actually expressions in the Java language, which are compiled into Java
bytecode before evaluation. However, this does not mean that you need to be a Java programmer to
write them. The syntax is pretty similar to C, but even if you've never programmed in C most
simple things, and many complicated ones, are quite intutitive.

The following explanation gives some guidance and examples for writing these expressions.
Unfortunately a complete tutorial on writing Java is beyond the scope of this document, but it
should provide enough information for even a novice to write useful expressions.

The expressions that you can write are basically any function of all the column values which apply
to a given row; the function result can then be used in one of t pi pe's commands, e.g. to define the
per-row value of a new column (addcol , repl acecol) make a row selection (sel ect), and some
other places. If the built-in operators and functions are not sufficient, or it's unwieldy to express
your function in one line of code, it is possible to add new functions by writing your own classes -
see Section 7.6.3.

Note that since these algebraic expressions often contain spaces, you may need to enclose them in
single or double quotes so that they don't get confused with other parts of the command string.

Note: if Javais running in an environment with certain security restrictions (a security manager
which does not permit creation of custom class loaders) then algebraic expressions won't work at
al. It's not particularly likely that security restrictions will be in place if you are running from the
command line though.

7.1 Referencing Column Values

To create a useful expression which can be evaluated for each row in atable, you will have to refer
to cellsin different columns of that row. Y ou can do thisin two ways:

By Name
The Name of the column may be used if it is unique (no other column in the table has the same
name) and if it has a suitable form. This means that it must have the form of a Java variable -
basically starting with a letter and continuing with letters or numbers. In particular it cannot
have any spaces in it. The underscore and currency symbols count as letters for this purpose.
Column names are treated case-insensitively.

By $ID
The "$ID" identifier of the column may aways be used to refer to it; thisis a useful fallback if
the column name isn't suitable for some reason (for instance it contains spaces or is not
unique). Thisisjust a"$" sign followed by the column index - the first column is $1.

There is a specia column whose name is "Index" and whose ID is "$0". The value of this is the
same as the row number (the first row is 1).

The value of the variables so referenced will be a primitive (boolean, byte, short, char, int, long,
float, double) if the column contains one of the corresponding types. Otherwise it will be an Object

SUN/256 36

of the type held by the column, for instance a String. In practice this means. you can write the name
of a column, and it will evaluate to the numeric (or string) value that that column contains in each
row. You can then use this in normal algebraic expressions such as "B_MAG - U MAG' as you'd
expect.

7.2 Null Values

When no special steps are taken, if a null value (blank cell) is encountered in evaluating an
expression (usually because one of the columns it relies on has a null value in the row in question)
then the result of the expression isalso null.

It is possible to exercise more control than this, but it requires a little bit of care, because the
expressions work in terms of primitive values (numeric or boolean ones) which don't in general
have a defined null value. The name "nul I " in expressions gives you the java nul | reference, but
this cannot be matched against a primitive value or used as the return value of a primitive
expression.

For most purposes, the following two tips should enable you to work with null values:

Testing for null
To test whether a column contains a null value, prepend the string "NULL_" (use upper case) to
the column name or $ID. Thiswill yield a boolean value which istrue if the column contains a
blank, and false otherwise.

Returning null
To return anull value from a numeric expression, use the name "NULL" (upper case). To return
anull value from a non-numeric expression (e.g. a String column) use the name "nul 1 " (lower
case).

Null values are often used in conjunction with the conditional operator, "2 :"; the expression
test ? tval : fval

returns the valuet val if the boolean expressiont est evaluatestrue, or fval if test evaluatesfalse.
So for instance the following expression:

Vmag == -99 ? NULL : Vmag

can be used to define a new column which has the same value as the vimag column for most values,
but if vmag has the "magic" value -99 the new column will contain a blank. The opposite trick
(substituting a blank value with a magic one) can be done like this:

NULL_Vmag ? -99 : Vimag
Some more examples are given in Section 7.5.

7.3 Operators

The operators are pretty much the same asin the C language. The common ones are:
Arithmetic

+ (add)

- (subtract)

* (multiply)

/ (divide)

%(modulus)
Boolean

! (not)

SUN/256 37

&& (and)

Il (or)

~ (exclusive-or)

== (numeric identity)

I = (numeric non-identity)
< (lessthan)

> (greater than)

<= (lessthan or equal)

>= (greater than or equal)

Numeric Typecasts

(byte) (numeric-> signed byte)

(short) (numeric-> 2-byteinteger)

(i nt) (numeric-> 4-byte integer)

(1 ong) (numeric-> 8-byteinteger)

(f1oat) (numeric -> 4-typefloating point)
(doubl e) (numeric -> 8-byte floating point)

Note you may find the Maths (Section 7.4.6) conversion functions more convenient for
numeric conversions than these.

Other

+ (string concatenation)

[1 (array dereferencing)

?: (conditional switch)

i nst anceof (class member ship)

7.4 Functions

Many functions are available for use within your expressions, covering standard mathematical and
trigonometric functions, arithmetic utility functions, type conversions, and some more specialised
astronomical ones. You can use them in just the way you'd expect, by using the function name
(unlike column names, this is case-sensitive) followed by comma-separated arguments in brackets,
SO

max(1 MAG, JMAG)
will give you the larger of the valuesin the columns IMAG and IMAG, and so on.
The functions available for use by default are listed by class in the following subsections with their

arguments and short descriptions. The funcs command provides another way to browse these
function descriptions online.

7.4.1 Coords

Functions for angle transformations and manipulations. In particular, methods for translating
between radians and HH:MM:SS.S or DDD:MM:SS.S type sexagesimal representations are
provided.

DEGREE
The size of one degreein radians.

HOUR
The size of one hour of right ascension in radians.

SUN/256 38

ARC_M NUTE
The size of one arcminute in radians.

ARC_SECOND
The size of one arcsecond in radians.

radi ansToDns(rad)
Converts an angle in radians to a formatted degrees:minutes.seconds string. No fractional part
of the seconds field is given.

* rad (floating point): angle in radians
* return value (String): DM S-format string representing r ad

radi ansToDns(rad, secFig)
Converts an angle in radians to a formatted degrees.minutes:.seconds string with a given
number of decimal placesin the seconds field.

* rad (floating point): anglein radians
* secFi g (integer): number of decimal placesin the secondsfield
* return value (String): HMS-format string representing r ad

radi ansToHMs(rad)
Converts an angle in radians to a formatted hours:minutes:seconds string. No fractional part of
the secondsfield is given.

* rad (floating point): anglein radians
* return value (String): HMS-format string representing r ad

radi ansToHms(rad, secFig)
Converts an angle in radians to a formatted hours:minutes.seconds string with a given number
of decimal placesin the seconds field.

* rad (floating point): anglein radians
* secFi g (integer): number of decimal placesin the secondsfield
* return value (String): HMS-format string representing r ad

dmsToRadi ans(dns)
Converts a formatted degrees.minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters dnis], or some others. Additional spaces and leading +/- are
permitted.

e dns (String): formatted DM S string
» return value (floating point): angle in radians specified by dns

hmsToRadi ans(hns)
Converts a formatted hours:minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters hnis], or some others. Additional spaces and leading +/- are
permitted.

* hns (String): formatted HM S string
» return value (floating point): angle in radians specified by hns

dmsToRadi ans(deg, mn, sec)
Converts degrees, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 degrees. This routine uses the sign bit of the deg argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating

SUN/256

39

point values). It isillegal for the mi n or sec arguments to be negative.

deg (floating point): degrees part of angle
mi n (floating point): minutes part of angle
sec (floating point): seconds part of angle
return value (floating point): specified angle in radians

hmsToRadi ans(hour, min, sec)
Converts hours, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 hours. This routine uses the sign bit of the hour argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating

point values).

* hour (floating point): degrees part of angle
* nin (floating point): minutes part of angle
* sec (floating point): seconds part of angle

return value (floating point): specified angle in radians

skyDi stance(ral, decl, ra2, dec2)
Calculates the separation (distance around a great circle) of two points on the sky.

ral (floating point): right ascension of point 1 in radians

dec1 (floating point): declination of point 1 in radians

ra2 (floating point): right ascension of point 2 in radians

dec2 (floating point): declination of point 2 in radians

return value (floating point): angular distance between point 1 and point 2 in radians

skyDi st anceDegrees(ral, decl, ra2, dec2)
Calculates the separation (distance around a great circle) of two points on the sky in degrees.

ral (floating point): right ascension of point 1 in degrees

dec1 (floating point): declination of point 1 in degrees

ra2 (floating point): right ascension of point 2 in degrees

dec2 (floating point): declination of point 2 in degrees

return value (floating point): angular distance between point 1 and point 2 in degrees

hour sToRadi ans(hours)
Converts hours to radians.

hour s (floating point): angle in hours
return value (floating point): angle in radians

degreesToRadi ans(deg)
Converts degreesto radians.

deg (floating point): angle in degrees
return value (floating point): angle in radians

radi ansToDegrees(rad)
Converts radians to degrees.

rad (floating point): angle in radians
return value (floating point): angle in degrees

r aFk4t oFK5(raFK4, decFK4)
Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Right
Ascension. This assumes zero proper motion in the FK5 frame.

raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)

SUN/256 40

* decFk4 (floating point): declination in B1950.0 FK4 system (radians)
» return value (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4t oFK5(raFK4, decFk4)
Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Declination
This assumes zero proper motion in the FK5 frame.

* raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
» decFk4 (floating point): declination in B1950.0 FK4 system (radians)
» return value (floating point): declination in J2000.0 FK5 system (radians)

r aFK5t oFK4(raFK5, decFK5)
Converts a J2000.0 FK5 position to B1950.0 FK4 a an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

» raFks (floating point): right ascension in J2000.0 FK5 system (radians)
* decFkKs (floating point): declination in J2000.0 FK5 system (radians)
» return value (floating point): right ascension in the FK4 system (radians)

decFK5t oFK4(raFK5, decFK5)
Converts a J2000.0 FK5 position to B1950.0 FK4 a an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

* raFks (floating point): right ascension in J2000.0 FK5 system (radians)
* decFkKs (floating point): declination in J2000.0 FK5 system (radians)
» return value (floating point): right ascension in the FK4 system (radians)

r aFKat oFK5(raFK4, decFK4, bepoch)
Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Right Ascension. This assumes
zero proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position
in the FK4 frame was determined.

raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
decFk4 (floating point): declination in B1950.0 FK4 system (radians)

bepoch (floating point): Besselian epoch

return value (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4t oFK5(raFK4, decFK4, bepoch)
Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Declination. This assumes zero
proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position in
the FK4 frame was determined.

raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
decFK4 (floating point): declination in B1950.0 FK4 system (radians)
bepoch (floating point): Besselian epoch

return value (floating point): declination in J2000.0 FK5 system (radians)

r aFK5t oFK4(raFK5, decFK5, bepoch)
Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

raFKs (floating point): right ascension in J2000.0 FK5 system (radians)
decFKs (floating point): declination in J2000.0 FK5 system (radians)
bepoch (floating point): Besselian epoch

return value (floating point): right ascension in the FK4 system (radians)

decFK5t oFK4(raFK5, decFK5, bepoch)
Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

SUN/256 41

raFks (floating point): right ascension in J2000.0 FK5 system (radians)
decFks (floating point): declination in J2000.0 FK5 system (radians)
bepoch (floating point): Besselian epoch

return value (floating point): right ascension in the FK4 system (radians)

7.4.2 Arithmetic

Standard arithmetic functions including things like rounding, sign manipulation, and
maxi mum/minimum functions.

roundUp(x)
Rounds a value up to an integer value. Formally, returns the smallest (closest to negative
infinity) integer value that is not less than the argument.

* x (floating point): avalue.
* return value (integer): x rounded up

roundDown(x)
Rounds a value down to an integer value. Formally, returns the largest (closest to positive
infinity) integer value that is not greater than the argument.

* x (floating point): avaue
* return value (integer): x rounded down

round(x)
Rounds a value to the nearest integer. Formally, returns the integer that is closest in value to
the argument. If two integers are equally close, the result is the even one.

* x (floating point): afloating point value.
» return value (integer): x rounded to the nearest integer

roundDeci mal (x, dp)
Rounds a value to a given number of decimal places. The result is a float (32-bit floating
point value), so this is only suitable for relatively low-precision values. It's intended for
truncating the number of apparent significant figures represented by a value which you know
has been obtained by combining other values of limited precision. For more control, see the
functionsin the For mat s class.

* x (floating point): afloating point value

» dp (integer): number of decimal places (digits after the decimal point) to retain

» return value (floating point): floating point value close to x but with a limited apparent
precision

abs(x)
Returns the absolute value of an integer value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned.

* x (integer): the argument whose absolute value is to be determined
* return value (integer): the absolute value of the argument.

abs(x)
Returns the absolute value of a floating point value. If the argument is not negative, the
argument is returned. If the argument is negative, the negation of the argument is returned.

* x (floating point): the argument whose absolute value is to be determined
» return value (floating point): the absolute value of the argument.

SUN/256 42

mex(a, b))
Returns the greater of two integer values. If the arguments have the same value, the result is
that same value.

* a(integer): an argument.
* b (integer): another argument.
* return value (integer): the larger of a and b.

max(a, b))
Returns the greater of two floating point values. If the arguments have the same value, the
result is that same value. If either value is blank, then the result is blank.

* a(floating point): an argument.
* b (floating point): another argument.
* return value (floating point): the larger of a and b.

mn(a, b)
Returns the smaller of two integer values. If the arguments have the same value, the result is
that same value.

* a(integer): an argument.
* b (integer): another argument.
» return value (integer): the smaller of a and b.

mn(a, b)
Returns the smaller of two floating point values. If the arguments have the same value, the
result isthat same value. If either valueis blank, then the result is blank.

* a (floating point): an argument.
* b (floating point): another argument.
» return value (floating point): the smaller of a and b.

7.4.3 Fluxes

Functions for conversion between flux and magnitude values. Functions are provided for
conversion between flux in Janskys and AB magnitudes.

Some constants for approximate conversions between different magnitude scales are also provided:

e Constants JOHNSON AB *, for Johnson <-> AB magnitude conversions
(http://www.astro.utoronto.ca/~patton/astro/mags.html
(http://www.astro.utoronto.ca/~patton/astro/mags.html), citing Frei and Gunn 1995).

* Constants VEGA AB *, for Vega <-> AB magnitude conversions (Blanton et al., Astronomical
Journal 127, 2562-2578 (2005), egs.(5)).

JOHNSON_AB_V
Approximate offset between Johnson and AB magnitudes in V band.
V=V, gHIOHNSON_AB V.

JOHNSON_AB_B
Approximate offset between Johnson and AB magnitudes in B band.
B ~=B g tJOHNSON_AB_B.

JOHNSON_AB_B;
Approximate offset between Johnson and AB magnitudes in Bj band.

SUN/256 43

JOHNSON_AB_B; .

JOHNSON_AB_R
Approximate offset between Johnson and AB magnitudes in R band.
R J~:R AgTIOHNSON_AB_R.

JOHNSON_AB_|
Approximate offset between Johnson and AB magnitudesin | band. | ~=I , ;+JOHNSON_AB_I .

JOHNSON_AB_g

Approximate offset between Johnson and AB magnitudesin g band. g i +JOHNSON_AB_g.

~IB
JOHNSON_AB_r
Approximate offset between Johnson and AB magnitudesin r band. r T Ag TIOHNSON_AB T

JOHNSON_AB_i
Approximate offset between Johnson and AB magnitudesin i band. i J~:i AgTJOHNSON_AB i .

JOHNSON_AB_Rc
Approximate offset between Johnson and AB magnitudes in Rc band.
Rc;~=Rc, ;+IOHNSON_AB_Re.

JOHNSON_AB_| ¢
Approximate offset between Johnson and AB magnitudes in Ic band.
IC;~=IC, g +IOHNSON_AB I c.

JOHNSON_AB_uPri nme
Offset between Johnson and AB magnitudes in U band (zero).

UJZUAB+J OHNSON_AB_uPri ne=u

AB’
JOHNSON_AB gPri nme

Offset between Johnson and AB magnitudes in g band (zero).
g J=g' A TIOHNSON_AB_gPri me=¢' AB"

JOHNSON _AB r Pri me
Offset between Johnson and AB magnitudes in ' band (zero).

|:I + . :l
' =1\ g FIOHNSON_AB 1 Pr i me=I"AB.

JOHNSON _AB i Pri me
Offset between Johnson and AB magnitudes in ' band (zero).

T, R
i' =i'\ g FIOHNSON_AB i Pr i me=i'AB.

JOHNSON_AB zPri me
Offset between Johnson and AB magnitudes in 7 band (zero).

Z 77) g FIOHNSON_AB_zPr i ne=Z', .

VEGA_AB _J
Approximate offset between Vega (as in 2MASS) and AB magnitudes in J band.

%ega~:J g TVEGA_AB_J.

SUN/256 44

VEGA AB_H
Approximate offset between Vega (as in 2MASS) and AB magnitudes in H band.

H ~=HAB+VEGA_AB H.
Vega

VEGA_AB_K
Approximate offset between Vega (as in 2MASS) and AB magnitudes in K band.
KVega~=KAB+VEGA_AB_K.

abToJansky(nmagAB)
Converts AB magnitude to flux in Jansky.

F/Jy=10(23(AB+48.6)/25)

» magAB (floating point): AB magnitude value
» return value (floating point): equivalent flux in Jansky

j anskyToAb(fl uxJansky)
Converts flux in Jansky to AB magnitude.

AB=2.5*(23-log, (F/y))-48.6

* fluxJansky (floating point): flux in Jansky
» return value (floating point): equivalent AB magnitude

7.4.4 Strings

String manipulation and query functions.

concat (s1, s2)
Concatenates two strings. In most cases the same effect can be achieved by writing s1+s2, but
blank values can sometimes appear as the string "nul | " if you do it like that.

e s1(String): first string
e s2 (String): second string
» return value (Sring): s1 followed by s2

concat(sl1, s2, s3)
Concatenates three strings. In most cases the same effect can be achieved by writing s1+s2+s3,
but blank values can sometimes appear asthe string "nul | " if you do it like that.

s1 (String): first string

s2 (String): second string

s3 (String): third string

return value (String): s1 followed by s2 followed by s3

concat(sl1, s2, s3, s4)
Concatenates four strings. In most cases the same effect can be achieved by writing
s1+s2+s3+s4, but blank values can sometimes appear as the string "nul | " if you do it like that.

s1 (Sring): first string

s2 (Sring): second string

s3 (Sring): third string

s4 (Sring): fourth string

return value (String): s1 followed by s2 followed by s3 followed by s4

equal s(s1, s2)
Determines whether two strings are equal. Note you should use this function instead of s1==s2,

SUN/256 45

which can (for technical reasons) return false even if the strings are the same.

* s1(Sring): first string
e s2(String): second string
» return value (boolean): trueif s1 and s2 are both blank, or have the same content

equal sl gnoreCase(sl1, s2)
Determines whether two strings are equal apart from possible upper/lower case distinctions.

* s1(Sring): first string

e s2 (String): second string

» return value (boolean): true if sl and s2 are both blank, or have the same content apart
from case folding

startsWth(whole, start)
Determines whether a string starts with a certain substring.

* whol e (Sring): the string to test
* start (Sring): the sequence that may appear at the start of whol e
» return value (boolean): trueif the first few characters of whol e arethe same asst art

endsWth(whole, end)
Determines whether a string ends with a certain substring.

* whol e (Sring): the string to test
* end (String): the sequence that may appear at the end of whol e
» return value (boolean): trueif the last few characters of whol e are the same asend

contai ns(whole, sub)
Determines whether a string contains a given substring.

* whol e (Sring): the string to test
* sub (String): the sequence that may appear within whol e
* return value (boolean): trueif the sequence sub appears within whol e

I ength(str)
Returns the length of a string in characters.

e str (String): string
* return value (integer): number of charactersinstr

mat ches(str, regex)
Tests whether a string matches a given regular expression.

o str (String): string to test
* regex (Sring): regular expression string
» return value (boolean): trueif r egex matchesstr anywhere

mat chGr oup(str, regex)
Returns the first grouped expression matched in a string defined by a regular expression. A
grouped expression is one enclosed in parentheses.

o str (String): string to match against
* regex (Sring): regular expression containing a grouped section
e return value (String): contents of the matched group (or null, if regex didn't match st r)

replaceFirst(str, regex, replacenment)
Replaces the first occurrence of a regular expression in a string with a different substring
value.

e str (String): string to manipulate

SUN/256 46

* regex (Sring): regular expression to match in st r

* replacerment (String): replacement string

* return value (String): same as st r, but with the first match (if any) of r egex replaced by
repl acenent

replaceAl |l (str, regex, replacenent)
Replaces all occurrences of aregular expression in a string with a different substring value.

str (String): string to manipul ate

regex (Sring): regular expression to match instr

repl acenent (String): replacement string

return value (String): same as str, but with all matches of regex replaced by
repl acenent

substring(str, startlndex)
Returns the last part of a given string. The substring begins with the character at the specified
index and extends to the end of this string.

e str (String): the input string
* startlndex (integer): the beginning index, inclusive
* returnvalue (String): last part of st r, omitting the first st art | ndex characters

substring(str, startlndex, endlndex)
Returns a substring of a given string. The substring begins with the character at st art I ndex
and continues to the character at index endl ndex-1 Thus the length of the substring is
endl ndex- start | ndex.

str (String): the input string

start | ndex (integer): the beginning index, inclusive
endl ndex (integer): the end index, inclusive

return value (String): substring of st r

t oUpper Case(str)
Returns an uppercased version of astring.

e str (String): input string
* return value (Sring): uppercased version of st r

t oLower Case(str)
Returns an uppercased version of astring.

e str (String): input string
* return value (Sring): uppercased version of st r

trinm(str)
Trims whitespace from both ends of a string.

e str (String): input string
* return value (String): str with any spaces trimmed from start and finish

padWthzZeros(value, ndigit)
Takes an integer argument and returns a string representing the same numeric value but
padded with leading zeros to a specified length.

* val ue (long integer): numeric value to pad

* ndigit (integer): the number of digitsin the resulting string

e return value (String): a string evaluating to the same as val ue with at least ndigit
characters

SUN/256 47

7.4.5 Formats

Functions for formatting numeric values.

format Deci mal (val ue, dp)
Turns afloating point value into a string with a given number of decimal places.

» val ue (floating point): value to format
» dp (integer): number of decimal places (digits after the decmal point)
* return value (String): formatted string

format Deci mal (val ue, format)
Turns a floating point value into a formatted string. The f or mat string is as defined by Java's
java. text. Deci mal Format (http://java.sun.com/j2se/1.4.2/docs/api/javaltext/Decimal Format)
class.

* val ue (floating point): value to format
e format (Sring): format specifier
» return value (String): formatted string

7.4.6 Maths

Standard mathematical and trigonometric functions.

E
Euler's number e, the base of natural logarithms.

Pl
Pi, the ratio of the circumference of acircleto its diameter.

RANDOM
Evaluates to a random number in the range O<=x<1. Thisis different for each cell of the table.
The quality of the randomness may not be particularly good.

sin(theta)
Sine of an angle.

* theta (floating point): an angle, in radians.
» return value (floating point): the sine of the argument.
cos(theta)
Cosine of an angle.
* theta (floating point): an angle, in radians.
» return value (floating point): the cosine of the argument.
tan(theta)
Tangent of an angle.
* theta (floating point): an angle, in radians.
» return value (floating point): the tangent of the argument.

asin(x)
Arc sine of an angle. The result isin the range of -pi/2 through pi/2.

SUN/256 48

* x (floating point): the value whose arc sineis to be returned.
» return value (floating point): the arc sine of the argument (radians)

acos(x)
Arc cosine of an angle. Theresult isin the range of 0.0 through pi.

* x (floating point): the value whose arc cosine is to be returned.
» return value (floating point): the arc cosine of the argument (radians)

atan(x)
Arc tangent of an angle. The result isin the range of -pi/2 through pi/2.

* x (floating point): the value whose arc tangent is to be returned.
» return value (floating point): the arc tangent of the argument (radians)

exp(X)
Euler's number e raised to a power.

* x (floating point): the exponent to raise e to.
« return value (floating point): the value e X, where e s the base of the natural logarithms.

| 0g10(x)
L ogarithm to base 10.

* x (floating point): argument
» return value (floating point): Ioglo(x)

In(x)
Natural logarithm.

* x (floating point): argument
» return value (floating point): Ioge(x)

sqrt(x)
Square root. The result is correctly rounded and positive.

* x (floating point): avalue.
» return value (floating point): the positive square root of x. If the argument is NaN or less
than zero, the result is NaN.

atan2(y, x)
Converts rectangular coordinates (x,y) to polar (r,theta). This method computes the phase
t het a by computing an arc tangent of y/ x in the range of -pi to pi.

* vy (floating point): the ordinate coordinate

* x (floating point): the abscissa coordinate

» return value (floating point): the t heta component (radians) of the point (r,theta) in
polar coordinates that corresponds to the point (x,y) in Cartesian coordinates.

pow a, b)
Exponentiation. The result is the value of the first argument raised to the power of the second
argument.

* a (floating point): the base.
* b (floating point): the exponent.
« return value (floating point): thevalue a” .

sinh(x)
Hyperbolic sine.

* x (floating point): parameter

SUN/256 49

» return value (floating point): result

cosh(x)
Hyperbolic cosine.

* x (floating point): parameter
» return value (floating point): result

tanh(x)
Hyperbolic tangent.

* x (floating point): parameter
» return value (floating point): result

asi nh(x)
Inverse hyperbolic sine.

* x (floating point): parameter
» return value (floating point): result

acosh(x)
Inverse hyperbolic cosine.

* x (floating point): parameter
» return value (floating point): result

atanh(x)
Inverse hyperbolic tangent.

* x (floating point): parameter
» return value (floating point): result

7.4.7 Times

Functions for conversion of time values between various forms. The forms used are

Modified Julian Date (MJD)

A continuous measure in days since midnight at the start of 17 November 1858. Based on
UTC.

SO 8601

A string representation of the form yyyy- nm ddThh: nm ss. s, where the T is aliteral character
(a space character may be used instead). Based on UTC.

Julian Epoch
A continuous measure based on a Julian year of exactly 365.25 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes

(but not here) represented by prefixing a'J; J2000.0 is defined as 2000 January 1.5 inthe TT
timescale.

Besselian Epoch
A continuous measure based on a tropical year of about 365.2422 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a'B'.

Decimal Year
Fractiona number of years AD represented by the date. 2000.0, or equivaently

1999.99recurring, is midnight at the start of the first of January 2000. Because of leap years,
the size of a unit depends on what year itisin.

SUN/256 50

Therefore midday on the 25th of October 2004 is 2004- 10-25T12: 00: 00 in 1SO 8601 format,
53303.5 as an MJD value, 2004.81588 as a Julian Epoch and 2004.81726 as a Besselian Epoch.

Currently thisimplementation cannot be relied upon to better than a millisecond.

i soToM d(isoDate)
Converts an 1SO8601 date string to Modified Julian Date. The basic format of the i soDat e
argument iSyyyy- mm ddThh: mm ss. s, though some deviations from this form are permitted:

The 'T" which separates date from time can be replaced by a space
The seconds, minutes and/or hours can be omitted

The decimal part of the seconds can be any length, and is optional
A 'Z' (which indicates UTC) may be appended to the time

Some legal examples are therefore: "1994-12-21T14:18:23.2", "1968-01-14", and
"2112-05-25 16: 452",

* isoDate (String): datein 1SO 8601 format
» return value (floating point): modified Julian date corresponding to i soDat e

dat eToM d(year, nonth, day, hour, min, sec)
Converts a calendar date and time to Modified Julian Date.

year (integer): year AD

nont h (integer): index of month; January is 1, December is 12

day (integer): day of month (thefirst day is 1)

hour (integer): hour (0-23)

mi n (integer): minute (0-59)

sec (floating point): second (0<=sec<60)

return value (floating point): modified Julian date corresponding to arguments

dat eToM d(year, nonth, day)
Converts a calendar date to Modified Julian Date.

year (integer): year AD

nont h (integer): index of month; January is 1, December is 12

day (integer): day of month (thefirst day is 1)

return value (floating point): modified Julian date corresponding to 00:00:00 of the date
specified by the arguments

decYear ToM d(decYear)
ConvertsaDecimal Y ear to aModified Julian Date.

* decYear (floating point): decimal year
» return value (floating point): modified Julian Date

n dTolso(njd)
Converts a Modified Julian Date value to an 1SO 8601-format date-time string. The output
format isyyyy- nm ddThh: nm ss.

* njd (floating point): modified Julian date
* return value (Sring): 1SO 8601 format date corresponding to nj d

nj dToDate(nmjd)
Converts a Modified Julian Date value to an 1SO 8601-format date string. The output format is
yyyy- mmdd.

* njd (floating point): modified Julian date

SUN/256 51
* return value (Siring): 1SO 8601 format date corresponding to nj d

nj dToTi me(njd)
Converts a Modified Julian Date value to an 1SO 8601-format time-only string. The output
format ishh: nm ss.

* njd (floating point): modified Julian date
* return value (String): 1SO 8601 format time corresponding to nj d

n dToDecYear(nmjd)
Converts aModified Julian Date to Decimal Y ear.

* njd (floating point): modified Julian Date
» return value (floating point): decimal year

formtMd(nd, format)
Converts a Modified Julian Date value to a date using a customisable date format. The format
is as defined by the j ava. t ext. Si npl eDat eFor mat
(http://java.sun.com/j2se/1.4.2/docs api/javaltext/SimpleDateFormat.html) class. The default
output corresponds to the string "yyyy- Mt dd' T' HH: rm ss”

* njd (floating point): modified Julian date
e format (String): formatting patttern
* return value (String): custom formatted time corresponding to nj d

nj dToJdulian(njd)
Converts a Modified Julian Date to Julian Epoch. For approximate purposes, the result of this
routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

* njd (floating point): modified Julian date
» return value (floating point): Julian epoch

julianToM d(julianEpoch)
Converts a Julian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

* julianEpoch (floating point): Julian epoch
* return value (floating point): modified Julian date

nj dToBesselian(md)
Converts Modified Julian Date to Besselian Epoch. For approximate purposes, the result of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

* njd (floating point): modified Julian date
» return value (floating point): Besselian epoch

bessel i anToM d(bessel i anEpoch)
Converts Besselian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

* bessel i anEpoch (floating point): Besselian epoch
» return value (floating point): modified Julian date

SUN/256 52

uni xM I'1isToM d(uni xM11is)
Converts from milliseconds since the Unix epoch (1970-01-01T00:00:00) to a modified Julian
date value

* unixMIlis (longinteger): milliseconds since the Unix epoch
* return value (floating point): modified Julian date

nj dToUni xM 1 1is(njd)
Converts from modified Julian date to milliseconds since the Unix epoch
(1970-01-01T00:00:00).

* njd (floating point): modified Julian date
» return value (long integer): milliseconds since the Unix epoch

7.4.8 Distances
Functions for converting between different measures of cosmological distance.

The following parameters are used:

Z: redshift

HO: Hubble constant in km/sec/Mpc (example value ~70)

omegaM : Density ratio of the universe (example value 0.3)

omegal ambda: Normalised cosmological constant (example value 0.7)

For aflat universe, onegaMtonegalLanbda=1

The terms and formulae used here are taken from the paper by D.W.Hogg, Distance measures in
cosmology, astro-ph/9905116 (http://arxiv.org/abs/astro-ph/9905116) v4 (2000).

SPEED OF LI GHT
Speed of light in m/s.

METRE_PER_PARSEC
Number of metresin a parsec.

SEC_PER_YEAR
Number of secondsin ayear.

MpcToM di st Mpc)
Converts from M egaParsecs to metres.

* di st Mpc (floating point): distancein Mpc
* return value (floating point): distancein m
nroMpc(di stM)
Converts from metres to M egaParsecs.
» di st M(floating point): distancein m
» return value (floating point): distance in Mpc
zToDist(z)
Quick and dirty function for converting from redshift to distance.
Warning: this makes some reasonable assumptions about the cosmology and returns the

SUN/256 53

luminosity distance. It is only intended for approximate use. If you care about the details, use
one of the more specific functions here.

» z (floating point): redshift
» return value (floating point): some distance measure in Mpc

zToAge(z)
Quick and dirty function for converting from redshift to time.

War ning: this makes some reasonable assumptions about the cosmology. It is only intended
for approximate use. If you care about the details use one of the more specific functions here.

» z (floating point): redshift
» return value (floating point): ‘age’ of photons from redshift z in Gyr

conmovi ngbhi st anceL(z, HO, omegaM onegalLanbda)
Line-of-sight comoving distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe

omegalLanbda (floating point): normalised cosmological constant
return value (floating point): line-of-sight comoving distance in Mpc

conmovi ngbhi st anceT(z, HO, omegaM onegalLanbda)
Transverse comoving distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe

omegalLanbda (floating point): normalised cosmological constant
return value (floating point): transverse comoving distance in Mpc

angul ar Di anet er Di stance(z, HO, onegaM onegalLanbda)
Angular diameter distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): angular diameter distancein Mpc

| um nosityDi stance(z, HO, onegaM onegalLanbda)
Luminosity distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): luminosity distance in Mpc

| ookbackTine(z, HO, onegaM onegalLanbda)
Lookback time. This returns the difference between the age of the universe at time of
observation (now) and the age of the universe at the time when photons of redshift z were
emitted.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant

SUN/256 54

» return value (floating point): lookback timein Gyr

conmovi ngVol unme(z, HO, onegaM onegalanbda)
Comoving volume. Thisreturns the all-sky total comoving volume out to a given redshift z.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): comoving volumein Gpc3

7.4.9 Conversions

Functions for converting between strings and numeric values.

toString(val ue)
Turns anumeric value into a string.

» val ue (floating point): numeric value
» return value (Siring): a string representation of val ue

parseByte(str)
Attempts to interpret a string as a byte (8-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

* str (String): string containing numeric representation
» return value (byte): byte value of st r

parseShort(str)
Attempts to interpret a string as a short (16-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

* str (String): string containing numeric representation
* return value (short integer): byte value of st r

parselnt(str)
Attempts to interpret a string as an int (32-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

e str (String): string containing numeric representation
» return value (integer): byte value of st r

parseLong(str)
Attempts to interpret a string as along (64-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

e str (String): string containing numeric representation
» return value (long integer): byte value of st r

parseFl oat(str)
Attempts to interpret a string as a float (32-bit floating point) value. If the input string can't be
interpreted in thisway, a blank value will result.

e str (String): string containing numeric representation
» return value (floating point): byte value of st r

par seDoubl e(str)
Attempts to interpret a string as a double (64-bit signed integer) value. If the input string can't

SUN/256 55

be interpreted in this way, a blank value will result.

* str (String): string containing numeric representation
» return value (floating point): byte value of st r

toByte(val ue)
Attempts to convert the numeric argument to a byte (8-bit signed integer) result. If it is out of
range, a blank value will result.

» val ue (floating point): numeric value for conversion
* return value (byte): val ue converted to type byte

toShort (val ue)
Attempts to convert the numeric argument to a short (16-bit signed integer) result. If it is out of
range, a blank value will result.

» val ue (floating point): numeric value for conversion
* return value (short integer): val ue converted to type short

tol nteger (val ue)
Attempts to convert the numeric argument to an int (32-bit signed integer) result. If it is out of
range, a blank value will result.

» val ue (floating point): numeric value for conversion
* return value (integer): val ue converted to type int

toLong(val ue)
Attempts to convert the numeric argument to along (64-bit signed integer) result. If it is out of
range, a blank value will result.

* val ue (floating point): numeric value for conversion
» return value (long integer): val ue converted to type long

t oFl oat (val ue)
Attempts to convert the numeric argument to afloat (32-bit floating point) result. If it is out of
range, a blank value will result.

* val ue (floating point): numeric value for conversion
» return value (floating point): val ue converted to type float
t oDoubl e(val ue)
Converts the numeric argument to a double (64-bit signed integer) result.
* val ue (floating point): numeric value for conversion
» return value (floating point): val ue converted to type double
t oHex(val ue)
Converts the integer argument to hexadecimal form.
* val ue (long integer): integer value
* return value (String): hexadecimal representation of val ue
fronHex(hexVal)
Converts a string representing a hexadecimal number to its integer value.

* hexVval (String): hexadecimal representation of value
» return value (integer): integer value represented by hexVal

7.5 Examples

SUN/256 56

Here are some examples for defining new columns; the expressions below could appear as the
<expr>inatpi pe addcol Or sortexpr command).
Average
(first + second) * 0.5

Squareroot
sqrt(variance)

Angle conversion
r adi ansToDegr ees(DEC r adi ans)
degreesToRadi ans(RA_degr ees)
Conversion from string to number
par sel nt ($12)
par seDoubl e(i dent)
Conversion from number to string
toString(index)

Conversion between numeric types

toShort (obs_type)
t oDoubl e(range)

or
(short) obs_type
(doubl €) range
Conversion from sexagesimal to radians
hnms ToRadi ans(RA1950)
dnsToRadi ans(decDeg, decM n, decSec)
Conversion from radiansto sexagesimal
radi ansToDms($3)
radi ansToHTs(RA, 2)
Outlier clipping
m n(1000, nax(val ue, 0))

Converting a magic value to null
jmag == 9999 ? NULL : jmag

Converting a null value to a magic one
NULL_j nmag ? 9999 : jmag

Taking thethird scalar element from an array-valued column
psf Count s[2]

and here are some examples of boolean expressions that could be used for row selection (appearing
inat pi pe sel ect command)
Within anumeric range
RA > 100 && RA < 120 && Dec > 75 && Dec < 85

Within acircle

$2*$2 + $3*$3 < 1
skyDi st ance(r a0, decO, degr eesToRadi ans(RA), degr eesToRadi ans(DEC)) <15* ARC_M NUTE

SUN/256 57

First 100 rows
i ndex <= 100
(though you could uset pi pe cnd=' head 100' instead)

Every tenth row
index %10 == 0
(though you could uset pi pe cnd="every 10' instead)

String equality/matching

equal s(SECTOR, "ZZ9 Plural Z Al pha")

equal sl gnoreCase(SECTOR, "zz9 plural z al pha")
startsWth(SECTOR, "Zzz")

cont ai ns(ph_qual, "U")

String regular expression matching
mat ches(SECTOR, "[XYZ] Al pha")

Test for non-blank value
I NULL ellipticity

7.6 Advanced Topics

This section contains some notes on getting the most out of the algebraic expressions facility. If
you're not a Java programmer, some of the following may be a bit daunting - read on at your own
risk!

7.6.1 Expression evaluation

This note provides a bit more detail for Java programmers on what is going on here; it describes
how the use of functionsin STILTS algebraic expressions relates to normal Java code.

The expressions which you write are compiled to Java bytecode when you enter them (if thereis a
‘compilation error' it will be reported straight away). The functions listed in the previous
subsections are all the publi ¢ stati c methods of the classes which are made available by default.
The classes listed are all in the package uk. ac. starlink. ttool s. f unc. However, the public static
methods are al imported into an anonymous namespace for bytecode compilation, so that you write
(sqrt(x,y) and not mat hs. sqrt (x, y) . The same happens to other classes that are imported (which
can be in any package or none) - their public static methods all go into the anonymous namespace.
Thus, method name clashes are a possibility.

This clevernessis al made possible by the rather wonderful JEL (http://galaxy.fzu.cz/JEL/).

7.6.2 Instance M ethods

There is another category of functions which can be used apart from those listed in Section 7.4.
These are called, in Java/object-oriented parlance, "instance methods' and represent functions that
can be executed on an object.

It is possible to invoke any of its public instance methods on any object (though not on primitive
values - numeric and boolean ones). The syntax is that you place a "." followed by the method
invocation after the object you want to invoke the method on, hence NAME. subst ri ng(3) instead of
subst ri ng(NAME, 3) . If you know what you're doing, feel free to go ahead and do this. However,
most of the instance methods you're likely to want to use have equivaents in the normal functions

SUN/256 58

listed in the previous section, so unless you're a Java programmer or feeling adventurous, you may
be best off ignoring this feature.

7.6.3 Adding User-Defined Functions

The functions provided by default for use with algebraic expressions, while powerful, may not
provide all the operations you need. For this reason, it is possible to write your own extensions to
the expression language. In this way you can specify abritrarily complicated functions. Note
however that this will only allow you to define new columns or subsets where each cell is a
function only of the other cellsin the same row - it will not allow values in one row to be functions
of valuesin another.

In order to do this, you have to write and compile a (probably short) program in the Java language.
A full discussion of how to go about this is beyond the scope of this document, so if you are new to
Java and/or programming you may need to find a friendly local programmer to assist (or mail the
author). The following explanation is aimed at Java programmers, but may not be incomprehensible
to non-specialists.

The steps you need to follow are:

1. Write and compile a class containing one or more static public methods representing the
function(s) required

2. Makethisclass available on the application's classpath at runtime as described in Section 3.1

3. Specify the class's name to the application, as the value of the j el . cl asses Ssystem property
(colon-separated if there are several) as described in Section 3.3

Any public static methods defined in the classes thus specified will then be available for use. They
should be defined to take and return the relevant primitive or Object types for the function required.
For instance a class written as follows would define a three-value average:

public class AuxFuncs {

public static double average3(double x, double y, double z) {
return (x +y +z) [/ 3.0
}

}
and the command
stilts tpipe cnd="addcol AVERAGE "average3($1, $2, $3)""

would add a new column called AVERAGE giving the average of the first three existing columns.
Exactly how you would build this is dependent on your system, but it might involve doing
something like the following:

1. Writing afile called AuxFuncs. j ava containing the above code
2. Compiling it using acommand like "j avac AuxFuncs. j ava"
3. Runningt pi pe using theflags"stilts -classpath . -Djel.classes=AuxFuncs tpi pe"

SUN/256 59

A Command Reference

This appendix provides the reference documentation for the commands in the package. For each
one a description of its purpose, a list of its command-line arguments, and some examples are
given.

A.lcal c: Evaluates expressions

cal c isavery smple utility for evaluating expressions. It uses the same expression evaluator as is
used in t pi pe and the other generic table tasks for things like creating new columns, so it can be
used as a quick test to see what expressions work, or in order to evaluate expressions using the
various agebraic functions documented in Section 7.4. Since no table is involved, you can't refer to
column names in the expressions. It takes one parameter, the expression to evaluate, and writes the
result to the screen.

A.1.1 Usage

The usage of cal ¢ is
stilts <stilts-flags> cal c [expression=] <expr>

If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

expressi on = <expr>
An expression to evaluate. The functionsin Section 7.4 can be used.

A.1.2 Examples

Here are some examples of using cal c:

stilts calc 1+2
Calculates one plus two. Writes "3" to standard output.

stilts calc "isoToM d("2005-12-25T00: 00: 00")"
Works out the Modified Julian Day corresponding to Christmas 2005. The output is "53729.0".

A.2funcs: Browse functions used by algebraic expression langauage

funcs is a utility which allows you to browse the functions you can use in STILTS's algebraic
expression language. Invoking the command causes a window to pop up on the display with two
parts. The left hand panel contains a tree-like representation of the functions available - the top level
shows the classes (categories) into which the functions are divided, and if you open these up (by
double clicking on them) each contains alist of functions and constants in that class. If you click on
any of these classes or their constituent functions or constants, a full descritption of what they are
and how to use them will appear in the right hand panel.

The information available from this command is the same as that given in Section 7.4, but the
graphical browser may be a more convenient way to view the documentation. There are no
parameters.

SUN/256 60

A.2.1 Usage
The usage of f uncs is

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

A.3mul ticone: Makes multiple cone sear ch queriesto the same service

mul ti cone is a utility which performs a cone search query for each row of an input table and
concatenates the results of all these queries together into one big output table. You give the service
URL for the cone search server you wish to use, and expressions (usually column names) defining
how to get the search parameters (sky position and search radius) for each row of the input table.
The program then goes through the input table and dispatches a cone search query to the server for
each row. For each of these queries the service should respond with a VOTable containing the
objects it knows about in the specified region; hopefully the columns will be the same or very
similar for al the different queries since they are using the same service. The response tables are
stitched together top-to-bottom (in the same way ast cat) and the result is output.

Thisisin some ways like doing a positional crossmatch where one of the cataloguesislocal and the
other is remote. Because of both the network communication and the naive algorithm however, it is
only suitableif the local catalogue has arather small number of rows.

The cone sear ch protocol is not currently aformal 1VOA standard, but it is a simple service widely
implemented by catalogue servers. A description of the protocol can be found at
http://us-vo.org/pubs/files/conesearch.html.

You can locate available cone search services and their service URLSs by interrogating the VO
Registry. One way to do this is using the r egquery command. For instance, to identify registered
cone search services that have something to do with Sloan data, you could execute the folowing:

stilts regquery query="serviceType = 'CONE' and title |ike ' %5l oan% " \

ocnd="keepcol s 'shortNanme serviceUr|"'" \
of nt =asci |
Writing just query="serviceType = 'CONE " with no further qualification will give you all

registered cone search services. See the section on r egquery (Appendix A.4) for more explanation.

Note that when running, mul ti cone often generates a lot of WARNING messages. Most of these
are complaining about badly formed VOTables being returned from the cone search services.
STILTS does its best to work out what the service responses mean in this case, and usually makes a
good enough job of it.

This command is experimental. It may be modified or renamed in a future release of STILTS.

A.3.1 Usage

The usage of mul ti cone is

stilts <stilts-flags> multicone ifnt=<in-format> istreanrtrue|false
i cmd=<cnds> ocnd=<cnds>
onpde=<out - nnde> <node- ar gs>
out =<out -t abl e> of m =<out - f or mat >

SUN/256 61

servi ceur| =<val ue> ra=<expr> dec=<expr>
sr=<expr> verb=1| 2| 3 copycol s=<colid-1ist>
zeroneta=true| fal se force=true|false
[in=] <t abl e>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

copycols = <colid-list>
List of columns from the input table which are to be copied to the output table. Each column
identified here will be prepended to the columns of the combined output table, and its value for
each row taken from the input table row which provided the parameters of the query which
produced it. See Section 5.3 for list syntax.

dec = <expr>
Expression which evaluates to the declination in degrees in the J2000 coordinate system for
the request at each row of the input table. This will usually be the name or ID of a column in
the input table, or afunction involving one.

force = true|fal se
Controls whether a workaround is used for services with broken metadata requests. Normally,
before performing the main queries, an initial query is made to the service with search radius
zero, to test that the service is alive and possibly also to obtain result metadata (see zer onet a).
Some (broken) services refuse to honour this initial request, making it look like they don't
work when in fact they do. If this parameter is set t r ue then even if the initial query fails, the
task will continue to attempt the data queries.

[Default: f al se]

icmd = <cnds>
Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cnd=@i | enanme" causes the file fi| ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifm = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 4.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <tabl e>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

i stream = true|fal se

SUN/256 62

If set true, thei n table will be read as a stream. It is necessary to give thei fnt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

ocnmd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "ocmd=@i | enane" causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
pl astic
t osql

Use the hel p=onode flag or see Section 5.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".

SUN/256 63
[Default: -]

ra = <expr>
Expression which evaluates to the right ascension in degrees in the J2000 coordinate system
for the request at each row of the input table. Thiswill usually be the name or ID of a column
in the input table, or afunction involving one.

servi ceurl = <val ue>
The base part of a URL which defines the queries to be made. Additional parameters will be
appended to this using CGI syntax ("nane=val ue", separated by '&"' characters). If this value
doesnot end in either a'? or a'&"', one will be added as appropriate.

Note that the regquery command can be used to locate the service URL for cone search
SErVices.

sr = <expr>
Expression which evaluates to the search radius in degrees for the request at each row of the
input table. This will often be a constant numerical value, but may be the name or ID of a
column in the input table, or a function involving one.

verb = 1| 2|3
Verbosity level of the tables returned by the query service. A value of 1 indicates the bare
minimum and 3 indicates all available information.

zeronmeta = true|fal se

Determines where the metadata for the output table comes from. If true, an initial query is
made to the service with search radius set to zero. Cone search services are supposed to
respond to such requests with a metadata-only table giving column information etc but no data.
Unfortunately, many services in practice respond with metadata which is incommpatible with
successful data queries, which means the other queries cannot be used by nul ti cone. The
default setting of false instead picks up the metadata from the first non-empty data request.
Thisislesslikely to fail, but doesn't stream data so well on output.

[Default: f al se]

A.3.2 Examples

Here are some examples of nul ti cone:

stilts multicone serviceurl=http://archive. stsci.edul/ hst/search.php \
i n=nessi er.xm ra=RA dec=DEC sr=0.05 \
out =mat ches. xm

This queries the HST cone search service from Space Telescope for records within .05 degrees
of each Messier abject contained in alocal VOTable nessi er. xm . The result is written to a
new VOTable, mat ches. xni . The J2000 positions of each record in the input file are held in
columns named RA and DEC respectively.

stilts multicone \
serviceurl =" http://ww. nofs. navy. nl/cgi-bin/vo_cone. cgi ?CAT=NOVAD \
i n=vi zi er. xm #7 \
i cnd=" addskycoords -inunit sex fk4 fk5 RAB1950 DEB1950 RAJ2000 DEJ2000" \
i cd=" progress'
ra=RAJ2000 dec=DEJ2000 sr=0.01 \
ocnd='repl acecol -units rad RA hnsToRadi ans(RA[0], RA[1],RA[2])" \
ocnmd="repl acecol -units rad DEC dnsToRadi ans(DEC 0], DEC[1], DEC[2])" \
onmode=t opcat

In this example some pre-processing of the input catalogue and post-processing of the output
catalogue is performed as well as the multiple cone search itself.

The input catalogue, which is the 8th TABLE element in a VOTable file, contains sky
positions in sexagesmal FK4 (B1950) coordinates. The i cnd=addskycoords. .. parameter

SUN/256 64

specifies a filter which will add new columns in FK5 (J2000) degrees, which are what the
multicone command requires. Thei cnd=pr ogr ess parameter specifies afilter which will write
progress information to the terminal so you can see how the queries are progressing.

The NOMAD service specified by the serviceurl parameter used here happens to return
results with the RA/DEC columns represented in a rather eccentric format, namely 3-element
floating point arrays representing (hours,minutes,seconds)/(degrees,minutes,seconds). The two
ocnd=r epl acecol . .. filters replace the values of these columns with the scalar equivalentsin
radians. Finally, the onode=t opcat parameter causes the result table to be loaded directly into
TOPCAT (if itisavailable).

stilts multicone serviceurl="http://archive.stsci.edu/iue/search. php?' \

i n=queries.txt 1fnt=ascii \

ra=' $1' dec='$2' sr='$3"' copycol s='$4' \

out=found.fits
Here the input is a plain text table with four unnamed columns, giving in order the right
ascension, declination, positional error and name of target objects. The command carries out a
cone search to the named service for each one. Note in this case the search radius (sr
parameter) is taken from the table and so varies for each query. The copycol s parameter has
the value '$4', which means that the value of the fourth column of the input table will be
prepended to each row of the output table for which it isresponsible. Output isto a FITS table.

A.4regquery: Queriesthe VO registry

regquery submits a query to the Virtua Observatory registry and returns the result as a table
containing all the records which match the condition specified. The resulting table can be written
out in any of the supported formats or otherwise processed in the usual ways. Currently the registry
used by default is the SOAP service offered by the US NVO registry at
http://voservices.net/registry/registry.asmx. Because VO registries generally harvest from each
other, the content of this one can be expected to be similar to that stored in registries maintained by
other organisations.

A.4.1 Usage

The usage of regquery is

stilts <stilts-flags> regquery query=<val ue> regurl =<val ue> ocnd=<cnds>
onpde=<out - nnde> <node- ar gs> out =<out -t abl e>
of nt =<out - f or mat >
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus "ocni=@i | ename" causes the file fi | ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or

SUN/256 65

semicolons.

of M = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
pl astic
t osql

Use the hel p=onode flag or see Section 5.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

query = <val ue>
Text of an SQL WHERE clause defining which resource records you wish to retrieve from the
registry. Some examples are:

* serviceType=' CONE
* title like ' %2MASS%
* publisher Iike "CDS% and title |ike '%gal ax%

The special value "ALL" will attempt to retrieve all the records in the registry (though thisis
not necessarily a sensible thing to do).

A full description of SQL syntax is beyond the scope of this documentation, but in general you
want to use <f i el d- nane> | i ke ' <val ue> where '% isawildcard character. Logical operators
and and or and parentheses can be used to group and combine expressions. You can find the
various <fi el d-name>S by executing one of the queries above and looking at the column
names in the returned table.

regurl = <val ue>

The URL of a SOAP endpoint which provides suitable registry query services.

SUN/256 66

[Default: htt p: // voservi ces. net/registry/registry.asnx]

A.4.2 Examples

Here are some examples of r egquery:

stilts regquery query="identifier like '%strogrid%" out=ag.xn

Retrieves al the records in the registry whose identifier field contain the string
"astrogrid". The '% characters function as wildcards for the Ii ke operator. The output is
written to alocal VOTable file which can be examined or further processed later.

stilts regquery query="servi ceType = ' SSAP'" onbde=count

Queries the registry for all the records whose ser vi ceType fields equal the string ssap (this
identifies services which support the Simple Spectral Access Protocol). These records are not
stored, but the ormode=count output mode counts the rows. This therefore tells you how many
SSAP servers are registered.

stilts regquery query="serviceType = "CONE' and title like "%l oan% " \
ocnd="keepcol s 'shortName serviceUr|"'" \
of nt =asci| out=-
Queries the registry for all cone search services (http://us-vo.org/pubs/files/conesearch.html)
whose title contains the term "Sloan". The keepcol s filter takes the result and throws away all
the columns except for short Nane and servi ceUr |, and these are written to the terminal in
ASCII format. This may be useful to find the service URL for a cone search service with
particular data for use with the nul ti cone command.

A.5tcat: Concatenates multiple similar tables

t cat isatool for concatenating any number of similar tables one after the other. The tables must be
of similar form to each other (same number and types of columns). Preprocessing of the tables may
be done using the i cnd parameter, which will operate in the same way on all the input tables. Table
parameters of the output table will be taken from the first of the input tables.

Subject to some constraints on the details of the input and output formats and processing, t cat is
capable of joining an unlimited number of tables together to produce an output table of unlimited
length, without large memory requirements.

If you have heterogeneous tables, in different formats of requiring different preprocessing steps
from each other before they can be concatenated, uset cat n.

A.5.1 Usage

Theusageof t cat is

stilts <stilts-flags> tcat in=<table> [<table> ...] ifm=<in-formt>
i streanrtrue|fal se i cnd=<cnds> ocnd=<cnds>
onode=<out - nrode> <nbde- ar gs> out =<out -t abl e>
of nt =<out - f or mat > seqcol =<col nanme>
| occol =<col nanme> ul occol =<col nane>
| azy=true|fal se countrows=true|fal se

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

SUN/256 67

countrows = true|false
Whether to count the rows in the table before starting the output. This is essentially a tuning
parameter - if writing to an output format which requires the number of rows up front (such as
normal FITS) it may result in skipping the number of passes through the input files required
for processing. Unless you have a good understanding of the internals of the software, your
best bet for working out whether to set thistrue or falseisto try it both ways

[Default: f al se]

icnd = <cnds>
Commands which will operate on each of the input tables, before any other processing takes
place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus"i cmd=@i | enane” causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifnt = <in-formt>
Specifies the format of the input table (one of the known formats listed in Section 4.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

The same format parameter appliesto all the tables specified by i n.
[Default: (aut o)]

in = <table> [<table> ...]
Locations of the input tables. Either specify the parameter multiple times, or supply the input
tables as a space-separated list within a single use. Each table location may be a filename or
URL, and may point to data compressed in one of the supported compression formats (Unix
compress, gzip or bzip2).

A list of input table locations may be given in an external file by using the indirction character
'‘@'. Thus"in=@i | enane" causesthefilefil enane to be read for alist of input table locations.
The locations in the file should each be on a separate line.

i stream = true|fal se
If set true, the i n table will be read as a stream. It is necessary to give thei f nt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

The same streaming flag applies to all the tables specified by i n.
[Default: f al se]

lazy = true|fal se
Whether to perform table resolution lazily. If true, each table is only accessed when the time
comes to add its rows to the output; if false, then al the tables are accessed up front. Thisis
mostly a tuning parameter, and on the whole it doesn't matter much how it is set, but for

SUN/256 68

joining an enormous number of tables setting it true may avoid running out of resources.
[Default: f al se]

| occol = <col nanme>
Name of a column to be added to the output table which will contain the location (as specified
in the input parameter(s)) of the input table from which each row originated.

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "ocmd=@i | enane” causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

nmet a
stats
count
cqi

di scard
t opcat
pl astic
t osql

Use the hel p=onode flag or see Section 5.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

SUN/256 69

seqcol = <col nane>
Name of a column to be added to the output table which will contain the sequence number of
the input table from which each row originated. This column will contain 1 for the rows from
the first concatenated table, 2 for the second, and so on.

ul occol = <col nanme>

Name of a column to be added to the output table which will contain the unique part of the
location (as specified in the input parameter(s)) of the input table from which each row
originated. If not null, parameters will also be added to the output table giving the pre- and
post-fix string common to all the locations. For example, if the input tables are
"/data/cat_al.fits' and "/data/cat_b2.fits" then the output table will contain a new column
<colname> which takes the value "al" for rows from the first table and "b2" for rows from the
second, and new parameters "<colname>_prefix" and "<colname>_postfix" with the values
"/data/cat_" and ".fits" respectively.

A.5.2 Examples

Here are some examples of t cat :

stilts tcat ifnt=ascii in=tl.txt in=t2.txt in=t3.txt out=table.txt

Concatenates the three named ASCII format tables to produce an output table. All three must
have compatible numbers and types of columns.

stilts tcat ifm=ascii in="tl.txt t2.txt t3.txt" out=table.txt
Has exactly the same effect as the previous example.

stilts tcat ifm=ascii in=@nlist out=table.txt

This will have the same effect as the previous two examples if a file name "inlist" in the
current directory contains three lines, "t1.txt", "t2.txt" and "t3.txt".

stilts tcat in=r368776.fits#1 i n=r368776#2 i n=r368776.fits#3 in=r368776.fits#4
out =r368776_all .fits icmd=progress seqcol =I D

Concatenates the contents of four tables (the first four extenson HDUs) from a
multi-extension FITS file to produce a single FITS table. Progress through each of the input
files is reported to the console. An additional column "ID" will be appended to the output
which contains 1 for all the rows from the first input table, 2 for the rows from the second one
and so on. Many Unix shells (csh, bash) will alow you to list the input files using the
following shorthand: "i n=r 368776. fits#{1, 2, 3, 4} ".

stilts tcat in="rA csv rB.csv rC.csv' ifnt=csv \

i cd=" keepcol s "RA DEC FLUX"' icnd="sorthead 10 FLUX \

ocnd="sort FLUX
Takes the 10 rows with highest FLUX values from each of three input tables (in
comma-separated value format) and joins them together to produce a 30-row output table. This
Is then sorted in FLUX order, and the resulting table is output to the console in text format.
Only the columns RA, DEC and FLUX are output; any other columns are discarded. The input
tables don't need to have identical forms to each other, but each must have at least an RA, DEC
and FLUX column.

A.6tcatn: Concatenates multiple tables

tcatn iS a tool for concatenating a number of tables one after the other. Each table can be
manipulated separately prior to the concatenatation. If you have two tables T1 and T2 which
contain similar columns, and you want to treat them as a single table, you can uset cat n to produce

SUN/256 70

a new table whose metadata (row headings etc) comes from T1 and whose data consists of all the
rows of T1 followed by all the rows of T2.

For this concatenation to make sense, each column of T1 must be compatible with the
corresponding column of T2 - they must have compatible types and, presumably, meanings. If this
is not the case for the tables that you wish to concatenate, for instance the columns are in different
orders, or the units differ between a column in T1 and its opposite number in T2, you can use the
i cmd1 and/or i cmd2 parameters to manipulate the input tables so that the column sequences are
compatible. See Appendix A.6.2 for some examples.

If the tables are similar to each other (same format, same columns, same preprocessing stages
required if any), you may find it easier to uset cat instead.

A.6.1 Usage

Theusageof tcatn is

stilts <stilts-flags> tcatn nin=<count> ifnt N=<i n-format> i nN=<t abl eN>
i cmdN=<cnmds> ocnd=<cnds>
onmode=<out - nrode> <nbde- ar gs> out =<out -t abl e>
of mt =<out - f or mat > seqcol =<col nane>
| occol =<col narme> ul occol =<col name>
countrows=true| fal se
If you don't have the sti | ts script installed, write"java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

countrows = true|false
Whether to count the rows in the table before starting the output. This is essentially a tuning
parameter - if writing to an output format which requires the number of rows up front (such as
normal FITS) it may result in skipping the number of passes through the input files required
for processing. Unless you have a good understanding of the internals of the software, your
best bet for working out whether to set thistrue or falseisto try it both ways

[Default: f al se]

i cndN = <cnds>
Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cmdN=@ i | ename” causesthefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifmN = <in-formt>
Specifies the format of input table #N (one of the known formats listed in Section 4.2.1). This
flag can be used if you know what format your input table is in. If it has the specia value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

SUN/256 71

i nN = <tabl eN>
The location of input table #N. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

| occol = <col nane>
Name of a column to be added to the output table which will contain the location (as specified
in the input parameter(s)) of the input table from which each row originated.

nin = <count>
The number of input tables for this task. For each of the input tables N there will be associated
parametersi fnt N, i nNand i cndN.

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus "ocnmi=@i | ename" causes the file fi | enanme to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of mt = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileis required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possihilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
pl astic
t osql

Use the hel p=onode flag or see Section 5.4 for more information.
[Default: out]

SUN/256 72

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

seqcol = <col nane>
Name of a column to be added to the output table which will contain the sequence number of
the input table from which each row originated. This column will contain 1 for the rows from
the first concatenated table, 2 for the second, and so on.

ul occol = <col nanme>

Name of a column to be added to the output table which will contain the unique part of the
location (as specified in the input parameter(s)) of the input table from which each row
originated. If not null, parameters will also be added to the output table giving the pre- and
post-fix string common to all the locations. For example, if the input tables are
"/data/cat_al.fits' and "/data/cat_b2.fits" then the output table will contain a new column
<colname> which takes the value "al" for rows from the first table and "b2" for rows from the
second, and new parameters "<colname>_prefix" and "<colname>_postfix" with the values
"/data/cat_" and ".fits" respectively.

A.6.2 Examples

Here are some examples of t cat n:

stilts tcatn nin=2 inl=obsl.fits in2=o0bs2.fits out=conbined.fits

Concatenates two similar observation catalogues to form a combined one. In this case, both
input and output tables are FITSfiles.

stilts tcatn nin=3 onbde=stats inl=obsl.txt ifntl=asci
i n2=obs2. xm i fnt2=votabl e
in3=0bs3.fit ifm3=fits

Three catalogues with similar forms but in different data formats are joined. Instead of writing
the result to an output file, the resulting joined catalogue is examined to calculate its statistics,
which are written to standard outpui.

stilts tcatn nin=2 inl=survey.vot.gz ifnt2=csv i n2=nore_data. csv

i cndl="addskycoords fk5 gal acti c RA2000 DEC2000 GLON GLAT' \

i cndl="keepcols "OBJ_I D GLON GLAT"" \

i cmd2=" keepcols "ident gal _long gal lat"" \

| occol =FI LENAME

onode=t opcat
In this case we are trying to concatenate results from two tables which are quite dissimilar to
each other. In the first place, one is a VOTable (no ifnt 1 parameter is required since
VOTables can be detected automatically), and the other is a comma-separated-values file (for
which the i f nt 2=csv parameter must be given). In the second place, the column structure of
the two tables may be quite different. By pre-processing the two tables using the i cnd1 &
i cmd2 parameters, we produce in each case an input table which consists of three columns of
compatible types and meanings: an integer identifier and floating point galactic longitude and
latitude coordinates. The second table contains such columns to start with, but the first table
requires an initial step to convert FK5 J2000.0 coordinates to galactic ones. t cat n joins the
two doctored tables together, to produce a table which contains only these three columns, with
all the rows from both input tables, and sends the result directly to a new or running instance of
TOPCAT. An additional column called FILENAME is appended to the table before sending it;
this contains "survey.vot.gz" for all the columns from the first table and "more_data.csv" for
all the columns from the second one.

SUN/256 73

A.7t copy: Converts between table formats

t copy is atable copying tool. It simply copies a table from one place to another, but since you can
specify the input and output formats as desired, it works as a converter from any of the supported
input formats (Section 4.2.1) to any of the supported output formats (Section 4.2.2).

t copy is just a stripped-down version of t pi pe - it doesn't do anything that t pi pe can't, but the
usage is dlightly simplified. It is provided as a drop-in replacement for the old tabl ecopy
(uk. ac. starlink.tabl e. Tabl eCopy) tool which was supplied with earlier versions of STIL and
TOPCAT - it has the same arguments and behaviour as t abl ecopy, but is implemented somewhat
differently and will in some cases be more efficient.

A.7.1 Usage

The usage of t copy is

stilts <stilts-flags> tcopy ifnt=<in-format> of m =<out - f or mat >
[n=] <tabl e> [out =] <out -t abl e>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

ifm = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 4.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <tabl e>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

of m = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (aut o)]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

[Default: -]

A.7.2 Examples

SUN/256 74

Here are some examples of t copy in use:

stilts tcopy stars.fits stars.xm

Copies a FITS table to a VOTable. Since no input format is specified, the format is
automatically detected (FITS is one of the formats for which this is possible). Since no output
format is specified, the st ars. xm filename is examined to make a guess at the kind of output
towrite: the . xm ending istaken to mean a TABLEDATA-encoded VOTable.

stilts tcopy stars.fits stars.xnml ifnt=fits ofnt=votable

Does the same as the previous example, but the input and output formats have been specified
explicitly.

stilts tcopy of m=text http://renote.host/datal/vizer.xn.gz#4 -

Prints the contents of a remote, compressed VOTable to the terminal in a human-readable
form. The #4 at the end of the URL indicates that the data from the fifth TABLE element in the
remote document are to be used. The gzip compression of the table is taken care of
automatically.

stilts tcopy ifnt=csv ofnt=latex spec.csv

Converts a comma-separated values file to a LaTeX table environment, writing the result to
standard output.

stilts -classpath /usr/local/jars/pg73jdbc3.jar \
-Dj dbc. dri vers=org. postgresql . Driver \
tcopy in="jdbc:postgresql://local host/inmsi #SELECT ra, dec, |mag FROM dgc" \
ofm=fits wslist.cat

Makes an SQL query on a PostgreSQL database and writes the results to a FITS file. The
whole command is shown here, to show that the classpath is augmented to include the
PostgreSQL driver class, and the driver class is named using the j dbc. drivers system
property. As you can see, using SQL from Java is a bit fiddly, and there are other ways to
perform this setup than on the command line - see Section 3.4 and t pi pe's onode=t osql output
mode.

A.8tcube: Calculates N-dimensional histograms

t cube constructs an N-dimensional histogram, or density map, from N columns of an input table,
and writes it out as an N-dimensional data cube. The parameters you supply define which N
numeric columns of the input table you want to use and the dimensions (bounds and pixel sizes) of
the output grid. Each table row then defines a point in N-dimensional space. The program goes
through each row, and if the point that row defines falls within the bounds of the output grid you
have defined, increments the value associated with the corresponding pixel. The resulting
N-dimensiona array, whose pixel values represent a count of the rows associated with that region
of the N-dimensional space, is then written out as a FITS file. In one dimension, this gives you a
normal histogram of a given variable. In two dimensions it might typically be used to plot the
density on the sky of objects from a catalogue.

As with some of the other generic table commands, you can perform extensive pre-processing on
the input table by use of thei cnd parameter before the actual cube counts are cal cul ated.

A.8.1 Usage

The usage of t cube is

stilts <stilts-flags> tcube col s=<col-id> ... ifnt=<in-format>
i streanrtrue|fal se i cmd=<cnds>

SUN/256 75

bounds=[<l 0>]:[<hi>] ... binsizes=<size> ...

nbi ns=<nun® ... out=<out-file>

ot ype=byte| short|int|long|float]|double

scal e=<col -i d>

[n=] <t abl e>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

bi nsi zes = <size> ...
Gives the extent of of the data bins (cube pixels) in each dimension in data coordinates. The
form of the value is a space-separated list of values, giving alist of extents for the first, second,
... dimension. Either this parameter or the nbi ns parameter must be supplied.

bounds = [<lo>]:[<hi>] ...

Gives the bounds for each dimension of the cube in data coordinates. The form of the value is
a space-separated list of words, each giving an optional lower bound, then a colon, then an
optional upper bound, for instance "1:100 0:20" to represent a range for two-dimensional
output between 1 and 100 of the first coordinate (table column) and between 0 and 20 for the
second. Either or both numbers may be omitted to indicate that the bounds should be
determined automatically by assessing the range of the data in the table. A null value for the
parameter indicates that all bounds should be determined automatically for all the dimensions.

If any of the bounds need to be determined automatically in this way, two passes through the
datawill be required, the first to determine bounds and the second to populate the cube.

cols = <col-id> ...
Columns to use for this task. One or more <col -i d> elements, separated by spaces, should be
given. Each one represents a column in the table, using either its name or index.

The number of columns listed in the value of this parameter defines the dimensionality of the
output data cube.

icmd = <cnds>
Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus"i cni=@i | ename" causes the file fi | ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifm = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 4.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <table>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it

SUN/256 76

is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

istream = true|fal se
If set true, the i n table will be read as a stream. It is necessary to give thei f nt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

nbi ns = <nun® ..
Gives the number of bins (cube pixels) in each dimension. The form of the value is a
space-separated list of integers, giving the number of pixels for the output cube in the first,
second, ... dimension. Either this parameter or the bi nsi zes parameter must be supplied.

otype = byte|short]|int]|long|float|double
The type of numeric value which will fill the output array. If no selection is made, the output
type will be determined automatically as the shortest type required to hold all the valuesin the
array. Currently, integers are always signed (no BSCALE/BZERO), so for instance the largest
value that can be recorded in 8 bitsis 127.

out = <out-file>
The location of the output file. Thisis usualy afilename to write to. If it is equal to the special
value"-" the output will be written to standard output.

The output cube is currently written asasingle-HDU FITSfile.
[Default: -]

scale = <col -id>
Optionally gives a value by which the count in each bin is scaled. If this value is nul | (the
default) then for each row that falls within the bounds of a pixel, the pixel value will be
incremented by 1. If a column ID is given, then instead of 1 being added, the value of that
column for the row in question is added. The effect of thisis that the output image contains the
mean of the given column for the rows corresponding to each pixel rather than just a count of
them.

A.8.2 Examples

stilts tcube in=2QZ 6QZ pubcat.fits out=ccmfits \
cols="Bj_R UBj Bj' binsizes="0.05 0.05 0.5 bounds='-2:1 -3:2 :
Calculates a 3-dimensional colour-colour-magnitude grid from three existing columns in a
table. The bin (pixel) sizes are specified. The data bounds are specified explicitly for the (first
two) colour dimensions, but for the (third) magnitude dimension it is determined from the
minimum and maximum values the data in that column of the table. The output is a
three-dimensional FITS cube.

stilts tcube in=iras_psc.vot out=iras_psc_map.fits \

i cnd=" addskycoords fk5 galactic ra dec glat glon" \

col s=' glat glon' nbins="400 200
Calculates a map of object densities in galactic coordinates from a catalogue of IRAS point
sources. The output is a two-dimensional FITS image representing the sky in galactic
coordinates. Bounds are determined automatically from the data, and the number of pixelsin
each dimension (400 in latitude and 200 in longitude) are specified, which means that the pixel
sizes don't have to be. Since the input table contains sky positions in equatorial coordinates

SUN/256 77

rather than galactic ones, the addskycoor ds filter is used to preprocess the data before the cube
generation step (see Section 5.1).

A.9tjoi n: Joinsmultiple tables side-to-side

tjoi n performs a trivial side-by-side join of multiple tables. The N'th row of the output table
consists of the N'th row of the first input table, followed by the N'th row of the second input table,
....and so on. It is suitable if you want to amalgamate two or more tables whose row orderings
correspond exactly to each other.

For the (more usual) case in which the rows of the tables to be joined are not aready in the right
order, use the t mat ch command.

A.9.1 Usage

Theusageof tjoinis

stilts <stilts-flags> tjoin nin=<count> ifntN=<in-format> i nN=<t abl eN>
i cmdN=<cnmds> ocnd=<cnds>
onmode=<out - nrode> <nbde- ar gs> out =<out -t abl e>
of m =<out -f or mat > fi xcol s=none| dups] al |
suf fi xN=<val ue>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

fixcols = none| dups| al |
Determines how input columns are renamed before insertion into the output table. The choices
are;

* none: columns are not renamed

* dups: columns which would otherwise have duplicate names in the output will be
renamed to indicate which table they came from

e all:al columnswill be renamed to indicate which table they came from

[Default: dups]

i cmdN = <cnds>
Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus"i cmdN=@ i | ename” causesthefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifmN = <in-fornmat>
Specifies the format of input table #N (one of the known formats listed in Section 4.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will

SUN/256 78

exit with an error explaining which formats were attempted.
[Default: (aut o)]

i nN = <tabl eN>
The location of input table #N. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

nin = <count>
The number of input tables for this task. For each of the input tables N there will be associated
parametersi fnt N, i nNand i cndN.

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "ocmd=@i | enane” causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ™.
[Default: (aut o)]

onode = <out-node> <node-ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possihilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

nmet a
stats
count
cqi

di scard
t opcat
pl astic
t osql

Use the hel p=onode flag or see Section 5.4 for more information.
[Default: out]

SUN/256

out = <out-tabl e>

79

The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".

[Defalt; -]

suffi xN = <val ue>

If the fixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how they are renamed. It specifies a suffix which is appended
to all renamed columns from table N.

[Default: _N]

A.9.2 Examples

Here are some examples of using t j oi n

stilts tjoin nin=2

inl=positions.fit in2=fluxes.fits out=conbined.fits

Takes two input FITS files and sticks them together side by side, writing the result as a third
FITS file. The output will have the same number of rows as each of the input catalogues, and a
number of columns equal to the sum of those in the two input catal ogues.

stilts tjoin nin=3
ifmtl
i ft2=
i ft3=
ocnd='

onode=

fixcols=all \

=ascii inl=tl.txt suffixl=T1 \
ascii in2=t2.txt suffix2=_T2 \
ascii in3=t3.txt suffix3=_T3 \
sel ect FLAG T1==0" \

stats

Thisjoins three ascii tables together. Each column of the output table is renamed by appending

astring to it ("_T1" for the first table, "

_T2" for the second...). Only those rows of the output

for which the FLAG column in the first input table, and hence the FLAG_T1 column in the
output table, have the value zero are selected. Statistics are calculated for al the columns of
these selected rows, and written to the outpui.

A.10t mat ch2: Crossmatches 2 tables

t mat ch2 is an efficient and highly configurable tool for crossmatching pairs of tables. It can match
rows between tables on the basis of their relative position in the sky, or aternatively using many
other criteria such as separation in some isotropic or anisotropic Cartesian space, identity of a key
value, or some combination of these; the full range of match criteria is discussed in Section 6.1.
Y ou can choose whether you want to identify all the matches or only the closest, and what form the
output table takes, for instance matched rows only, or al rows from one or both tables, or only the

unmatched rows.

A.10.1 Usage

The usage of t mat ch2 is

stilts <stilts-flags> tmatch2 ifnml=<in-format> ifnt2=<in-formt>

i cndl=<cnds> i cnd2=<cnds> ocnd=<cnds>
onmode=<out - node> <nbde- ar gs> out =<out -t abl e>
of m =<out - f or mat > mat cher =<mat cher - nane>

val uesl=<expr-1|ist> val ues2=<expr-1Iist>

par ans=<mat ch- par ans>

j oi n=1and2| 1or 2| al | 1| al | 2] 1not 2| 2not 1| 1xor 2
find=best|all duptagl=<trail-string>

dupt ag2=<trail -string>

SUN/256 80

[inl=] <t abl el> [in2=] <t abl e2>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

duptagl = <trail-string>
If the same column name appears in both of the input tables, those columns are renamed in the
output table to avoid ambiguity. The output column name of such a duplicated column is
formed by appending the value of this parameter to its name in the input table.

[Default: _1]

duptag2 = <trail-string>
If the same column name appears in both of the input tables, those columns are renamed in the
output table to avoid ambiguity. The output column name of such a duplicated column is
formed by appending the value of this parameter to its name in the input table.

[Default: _2]

find = best]|all
Determines which matches are retained. If best is selected, then only the best match between
the two tables will be retained; in this case the data from arow of either input table will appear
in at most one row of the output table. If al | is selected, then all pairs of rows from the two
input tables which match the input criteriawill be represented in the output table.

[Default: best |

icmdl = <cnds>
Commands to operate on the first input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cnd1=@i | enane" causes thefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

icnd2 = <cnds>
Commands to operate on the second input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@". Thus"i cnd2=@i | enane" causesthefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifml = <in-formt>
Specifies the format of the first input table (one of the known formats listed in Section 4.2.1).
This flag can be used if you know what format your input table isin. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table

SUN/256 81

automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

ifnt2 = <in-format>
Specifies the format of the second input table (one of the known formats listed in Section
4.2.1). Thisflag can be used if you know what format your input tableisin. If it has the special
value (aut o) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

inl = <tabl el>
The location of the first input table. Thisis usually afilename or URL, and may point to afile
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt 1 parameter.

in2 = <tabl e2>
The location of the second input table. Thisis usually a filename or URL, and may point to a
file compressed in one of the supported compression formats (Unix compress, gzip or bzip2).
If it is omitted, or equal to the special value "-", the input table will be read from standard
input. In this case the input format must be given explicitly using thei f nt 2 parameter.

join = land2| lor2|all 1] all 2| 1not 2| 2not 1| 1xor 2
Determines which rows are included in the output table. The matching algorithm determines
which of the rows from the first table correspond to which rows from the second. This
parameter determines what to do with that information. Perhaps the most obvious thing is to
write out a table containing only rows which correspond to a row in both of the two input
tables. However, you may also want to see the unmatched rows from one or both input tables,
or rows present in one table but unmatched in the other, or other possibilities. The options are:

1and2: An output row for each row represented in both input tables

1or 2: An output row for each row represented in either or both of the input tables

al 1 1: An output row for each matched or unmatched row in table 1

al 1 2: An output row for each matched or unmatched row in table 2

1not 2: An output row only for rows which appear in the first table but are not matched in

the second table

* 2not 1: An output row only for rows which appear in the second table but are not matched
in thefirst table

* 1xor2: An output row only for rows represented in one of the input tables but not the

other one

[Default: 1and2]

mat cher = <mat cher - name>
Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 6.1. The value supplied for this parameter determines the
meanings of the values required by the par ans, val ues1 and val ues2 parameters.

[Default: sky]

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter

SUN/256 82

can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "ocmd=@i | enane” causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of m = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
pl astic
t osql

Use the hel p=onode flag or see Section 5.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

parans = <mat ch- parans>
Determines the parameters of this match. Thisistypically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the mat cher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted’ or "quoted".

val uesl = <expr-list>
Defines the values from table 1 which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by mat cher . Depending on the kind of match, the number and type of the values

SUN/256 83

required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within asingle value it must be 'quoted’ or "quoted”. Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 7.

val ues2 = <expr-list>

Defines the values from table 2 which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by mat cher . Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within asingle value it must be 'quoted’ or "quoted”. Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 7.

A.10.2 Examples

Here are some examples of using t mat ch2

stilts tmatch2 inl=obs_v.xm in2=obs_i.xm out=obs_iv.xm \
mat cher =sky val uesl="ra dec" val ues2="ra dec" parans="2"
Takes two input catalogues (VOTables), one with observations in the V band and the other in
the | band, and performs a match to find objects within 2 arcseconds of each other. The result
Isanew table containing only rows where a match was found.

stilts tmatch2 survey.fits ifnt2=csv mycat.csv \

i cmd1=" addskycoords fk4 fk5 RA1950 DEC1950 RA2000 DEC2000' \

mat cher =skyerr \

par ams=10 val ues1="RA2000 DEC2000 POS_ERR' val ues2="RA DEC 0" \

J 0i n=2not 1 onobde=count
Here a comma-separated-values file is being compared with a FITS catalogue representing
some survey results. Positions in the survey catalogue use the FK4 B1950.0 system, and so a
preprocessing step is inserted to create new position columns in the first input table using the
FK5 J2000.0 system, which is what the other input table uses. The survey catalogue contains a
POS_ERR column which gives the positional uncertainty of its entries, so the skyer r matcher
is used, which takes account of this; the third entry in the val ues1 parameter is the POS ERR
column (in arcsec). Since the second input table has no positional uncertainty information, O is
used as the third entry in val ues2. The parans still has to contain a value which gives the
maximum error for matching (i.e. >= the largest value in the POS_ERR column). The join type
IS 2not 1, which means the output table will only contain those entries which are in the second
input table but not in the first one. The output table is not stored, but the number of rows it
contains (the number of objects represented in the CSV file but not the survey) is written to the
screen.

stilts tmatch2 ifntl=ascii ifnt2=ascii intl=cat-a.txt in2=cat-b.txt \

mat cher =2d val uesl=' X Y' val ues2="X Y' parans=5 joi n=1and2 \

dupt agl=_a duptag2=_b \

ocnd="addcol XDI FF X a-X b; addcol YD FF Y a-Y_b' \

ocnd' keepcol s " XDl FF YDI FF"' onode=stats
Two ASCII-format catalogues are matched, where rows are considered to match if their X,Y
positions are within 5 units of each other in some Cartesian space. The result of the matching
operation is a table of all the matched rows, containing columns called X_a, Y_a, X_b and
Y _b (along with any others in the input tables) - the dupt ag* parameters describe how the
input X and Y columns are to be renamed to avoid duplicate column names in the output table.
To this result are added two new columns, representing the X and Y positional difference
between the rows from one input table and those from the other. The keepcol s filter then
throws all the other columns away, retaining only these difference columns. The final

SUN/256 84

two-column table is not stored anywhere, but (omode=st at s) statistics including mean and
standard deviation are calculated on its columns and displayed to the screen. Having done all
this, you can examine the average X and Y differences between the two input tables for
matched rows, and if they differ significantly from zero, you can conclude that there is a
systematic error between the positions in the two input files.

stilts tmatch2 inl=ngc.fits in2=6dfgs.xm join=1land2 find=all \

mat cher =sky+1d parans="3 0.5 \

val uesl='ra dec brmag' val ues2=' RA2000 DEC2000 B_MAG' \

out=pairs.fits
This performs a match with a matcher that combines sky and 1d match criteria. This means
that the only rows which match are those which are both within 3 arcsec of each other on the
sky and and within 0.5 blue magnitudes. Note that for both the par ans and the val ues1 and
val ues2 parameters, the items for the sky matcher (RA and DEC) are listed first, followed by
those for the 1d matcher (in this case, blue magnitude).

A.11t pi pe: Performs pipeline processing on a table

t pi pe performs all kinds of general purpose manipulations which take one table as input. It is
extremely flexible, and can do the following things amongst others:

calculate statistics

display metadata

select rowsin various ways, including algebraically
define new columns as algebraic functions of old ones
delete or rearrange columns

sort rows

convert between table formats

and combine these operations. Y ou can think of it as a supercharged table copying tool.

The basic operation of t pi pe is that it reads an input table, performs zero or more processing steps
on it, and then does something with the output. There are therefore three classes of things you need
to tell it when it runs:

Input tablelocation

Specified by thein, i fnt andi st r eamparameters.

Processing steps

Either provide a string giving steps as the value of one or more cnd parameters, or the name of
a file containing the steps using the scri pt parameter. The steps that you can perform are
described in Section 5.1.

Output table destination

What happens to the output table is determined by the value of the onode parameter. By
default, omode=out , in which case the table is written to a new table file in aformat determined
by of nt . However, you can do other things with the result such as calculate the per-column
statistics (onode=st at s), view only the table and column metadata (onode=net a), display it
directly in TOPCAT (onode=t opcat) €tc.

See Section 5 for amore detailed explanation of these ideas.

The parameters mentioned above are listed in detail in the next section.

A.11.1 Usage

The usage of t pi pe is

SUN/256 85

stilts <stilts-flags> tpipe ifn=<in-format> istreanrtrue|fal se cnil=<cnds>
onpde=<out - nnde> <node- ar gs> out =<out -t abl e>
of nt =<out - f or mat >
[in=] <t abl e>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

cmd = <cnds>
Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 5.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus"i cnd=@i | ename" causes the filefi | ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifmt = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 4.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <table>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
Is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

istream = true|fal se
If set true, the i n table will be read as a stream. It is necessary to give thei fnt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

of nt = <out-formt>
Specifies the format in which the output table will be written (one of the onesin Section 4.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onode = <out - node> <node- ar gs>

SUN/256 86

The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
pl astic
t osql

Use the hel p=onode flag or see Section 5.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

A.11.2 Examples

Here are some examples of t pi pe in use with explanations of what's going on. For simplicity these
examples assume that you have the stilts script installed and are using a Unix-like shell; see
Section 3 for an explanation of how to invoke the command if you just have the Java classes.

stilts tpipe cat.fits

Writes a FITS table to standard output in human-readable form. Since no mode specifier is
given, onode=out isassumed, and output isto standard output int ext format.

stilts tpipe cnd="head 5' cat.fits.gz

Does the same as the last example, but with one processing step: only the first five rows of the
table are output. In this case, the input file is compressed using gzip - this is automatically
detected.

stilts tpipe ifm=csv xxx.csv \

cmd=" keepcol s "index ra dec"' \

omode=out ofm=fits xxx.fits
Reads from a comma-separated values file, writes to a FITS file, and discards all columns in
the input table apart from INDEX, RA and DEC. Note the quoting in the cnd argument: the
outer quotes are so that the argument of the cnd parameter itself (keepcol's "index ra dec")
Is not split up by spaces (to protect it from the shell), and the inner quotes are to keep the
col i d-1ist argument of the keepcol s command together.

stilts tpipe ifnt=votable \
cnmd=" addcol |V_SUM " (I MAGFVNAG "' \
cmd="addcol |IV_DIFF "(1 MAG VMAG "' \
cmd="del col s "I MAG VWAG'' \

SUN/256 87

onode=out of nt =vot abl e \

< tabl.vot \

> tab2. vot
Replaces two columns by their sum and difference in a VOTable. Since neither the i n nor out
parameters have been specified, the input and output are actually byte streams on standard
input and standard output of the t pi pe command in this case. The processing steps first add a
column representing the sum, then add a column representing the difference, then delete the
original columns.

stilts tpipe cnd=" addskycoords -inunit sex fk5 gal \
RA2000 DEC2000 GAL_LONG GAL_LAT' \
6dfgs.fits 6dfgs+gal .fits
Adds columns giving galactic coordinates to a table. Both input and output tables are FITS
files. The galactic coordinates, stored in new columns called GAL_LONG and GAL_LAT, are
calculated from FK5 J2000.0 coordinates given in the existing columns named RA2000 and
DEC2000. The input (FK5) coordinates are represented as sexagesimal strings (hh:mm:ss,
dd:mm:ss), and the output ones are numeric degrees.

stilts -disk tpipe 2dfgrs_ngp.fits \

cmd="' keepcol s " SEQNUM AREA ECCENT"' \

cmd='sort -down AREA" \

cmd=" head 20’
Displays selected columns for the 20 rows with largest values in the AREA column of aFITS
table. First the columns of interest are selected, then the rows are sorted into descending order
by the value of the AREA column, then the first 20 rows of the resulting table are selected, and
the result is written to standard output. Since a sort is being performed here, it's not possible to
do al the processing a row at a time, since all the AREA values must be available for
comparison during the sort. Two things are done here to accommodate this fact: first the
column selection is done before the sort, so that it's only a 3-column table which needs to be
available for random access, reducing the temporary storage required. Secondly the - di sk flag
is supplied, which means that temporary disk files rather than memory will be used for caching
table data.

stilts tpipe 2dfgrs_ngp.fits \
cmd=' keepcol s " SEQNUM AREA ECCENT"' \
cmd="sorthead -down 20 AREA
Has exactly the same effect as the previous example. However, the agorithm used by the
sort head filter isin most cases faster and cheaper on memory (only 20 rows ever have to be
stored in this case), so this is generally a better approach than combining the sort and head
filters.

stilts tpi pe onbde=neta cnd=@onmands.|is http://archive.org/datal/survey.vot.Z

Outputs column and table metadata about a table. In this case the table is a compressed
VOTable at the end of a URL. Processing is performed according to the commands contained
in afile named "commands.lis' in the current directory.

stilts tpipe in=survey.fits
cnd="sel ect "skyDi st ance(hnsToRadi ans(RA), dmsToRadi ans(DEC), \
hnmsToRadi ans(2, 28, 11), dnmsToRadi ans(- 6, 49, 45)
< 5 * ARC_M NUTE"' \
onmode=count
Counts the number of rows within a given 5 arcmin cone of sky in a FITS table. The
skyDi st ance function is an expression which calculates the distance between the position
specified in arow (as given by its RA and DEC columns) and a given point on the sky (here,
02:28:11,-06:49:45). Since skyDi st ance's arguments and return value are in radians, some
conversions are required: the RA and DEC columns are sexagesima strings which are
converted using the hnsToRadi ans and dnsToRadi ans functions respectively. Different
versions of these functions (ones which take numeric arguments) are used to convert the

SUN/256 88

coordinates of the fixed point to radians. The result is compared to a multiple of the
ARC_M NUTE constant, which is the size of an arcminute in radians. Any rows of the input table
for which this comparison is true are included in the output. An alternative function,
skyDi st anceDegr ees Which works in degrees, is also available. The functions and constants
used here are described in detail in Section 7.4.1.

stilts tpipe ifnmt=ascii survey.txt \

cmd="sel ect "OBJTYPE == 3 && Z > 0.15"" \

cnd=' keepcol s "1 MAG JVMAG KMAG'' \

onode=stats
Calculate statistics on the I, J and K magnitudes of selected objects from a catalogue. Only
those rows with the given OBJTY PE and in the given Z range are included. The minimum,
maximum, mean, standard deviation etc of the IMAG, IMAG and KMAG columns will be
written to standard output.

stilts -classpath lib/drivers/nysql-connector-java.jar \
-Dj dbc. drivers=com nysql . jdbc. Driver \

tpipe in=x.fits cnd="expl odeal | " onpbde=t osql \
pr ot oggl =mysqgl host =l ocal host dat abase=ASTROL newt abl e=TABLEX \
user =nbt

Writes a FITS table to an SQL table, converting array-valued columns to scalar ones. To make
the SQL connection work properly, the classpath is augmented to include the path of the
MySQL JDBC driver and the j dbc. dri vers System property is set to the JDBC driver class
name. The output will be written as a new table named TABLEX in the MySQL database
called ASTROL1 on a MySQL server on the local host. The password, if required, will be
prompted for, as would any of the other required parameters if they had not been given on the
command line. Any existing table in ASTRO1 with the name TABLEX is overwritten. The
only processing done here is by the expl odeal | command, which takes any columns which
have fixed-size array values and replaces them in the output with multiple scalar columns.

java -classpath stilts.jar:lib/drivers/nysqgl-connector-java.jar
-DO dbc. drivers=com nysql . jdbc. Driver \
uk.ac.starlink.ttools.Stilts \
tpipe in=x.fits \
crmd=expl odeal | \
onobde=out \
out ="j dbc: mysql : //1 ocal host/ ASTROL?user =nbt #TABLEX"
This does exactly the same as the previous example, but achieves it in a dlightly different way.
In the first place, java is invoked directly with the necessary flags rather than getting the
stilts script to do it. Note that you cannot use javas -j ar flag in this case, because doing it
like that would not permit access to the additional classes that contain the JDBC driver. In the
second place we use onode=out rather than onode=t osql . For this we need to supply an out
value which encodes the information about the SQL connection and table in a special
URL-like format. Asyou can see, thisis a bit arcane, which is why the onode=t osql mode can

be a help.

stilts tpipe USNOB. FI TS cnd="every 1000000' onode=stats

Calculates statistics on a selection of the rows in a catalogue, and writes the result to the
terminal. In this example, every millionth row is sampled.

A.12 vot copy: Transformsbetween VOTable encodings

The VOTable standard provides for three basic encodings of the actual data within each table:
TABLEDATA, BINARY and FITS. TABLEDATA is a pureeXML encoding, which is relatively
easy for humans to read and write. However, it is verbose and not very efficient for transmission
and processing, for which reason the more compact BINARY format has been defined. FITS format
shares the advantages of BINARY, but is more likely to be used where a VOTable is providing
metadata 'decoration’ for an existing FITS table. In addition, the BINARY and FITS encodings may

SUN/256 89

carry their data either inline (as the base64-encoded text content of a STREAMelement) or externally
(referenced by a STREAMelement'shr ef attribute).

These different formats have their different advantages and disadvantages. Since, to some extent,
programmers are humans too, much existing VOTable software dealsin TABLEDATA format even
though it may not be the most efficient way to proceed. Conversely, you might wish to examine the
contents of a BINARY -encoded table without use of any software more specialised than a text
editor. So there aretimes when it is desirable to convert from one of these encodings to another.

vot copy IS a tool which trandates between these encodings while making a minimum of other
changes to the VOTable document. The processing may result in some changes to lexical details
such as whitespace in start tags, but the element structure is not modified. Unlike t pi pe it does not
impose STIL's model of what constitutes a table on the data between reading it in and writing it out,
so subtleties dependent on the exact structure of the VOTable document will not be mangled. The
only important changes should be the contents of DATA elements in the document.

A.12.1 Usage

The usage of vot copy is

stilts <stilts-flags> votcopy charset=<xnl - encodi ng> cache=true|fal se
href=true| fal se base=<l ocati on>
[in=] <l ocation> [out=]<location>
[f or mat =] TABLEDATA| Bl NARY| FI TS
If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

base = <l ocati on>
Determines the name of external output files written when the hr ef flag istrue. Normally these
are given names based on the name of the output file. But if this flag is given, the names will
be based on the <l ocat i on> string. Thisflag is compulsory if href istrue and out =- (output is
to standard out), since in this case there is no default base name to use.

cache = true|false
Determines whether the input tables are read into a cache prior to being written out. The
default is selected automatically depending on the input table; so you should normally leave
thisflag alone.

charset = <xml -encodi ng>
Selects the Unicode encoding used for the output XML. The available options and default are
dependent on your JVM, but the default probably corresponds to UTF-8. Use hel p=char set
for afull listing.

format = TABLEDATA| Bl NARY| FI TS
Determines the encoding format of the table data in the output document. If nul | is selected,
then the tables will be data-less (will contain no DATA element), leaving only the document
structure. Data-less tables are legal VOTable elements.

[Default: t abl edat a]

href = true|false
In the case of BINARY or FITS encoding, this determines whether the STREAM elements
output will contain their data inline or externaly. If set false, the output document will be
self-contained, with STREAM data inline as base64-encoded characters. If true, then for each
TABLE in the document the binary data will be written to a separate file and referenced by an

SUN/256 90

href attribute on the corresponding STREAM element. The name of these files is usually
determined by the name of the main output file; but see aso the base flag.

in = <location>
Location of the input VOTable. May be a URL, filename, or "-" to indicate standard input. The
input table may be compressed using one of the known compression formats (Unix compress,
gzip or bzip2).

[Default: -]

out = <l ocation>
Location of the output VOTable. May be afilename or "-" to indicate standard output.

[Default: -]

A.12.2 Examples

Normal use of vot copy is pretty straightforward. We give here a couple of examples of itsinput and
output.

Hereis an example VOTable document, cat . vot :

<VOTABLE>
<RESOURCE>

<TABLE nanme=" Aut hor s" >

<FI ELD nane=" Aut hor Nane" dat at ype="char" arraysi ze="*"/>
<DATA>

<TABLEDATA>

<TR><TD>Char | es Messi er </ TD></ TR>

<TR><TD>Mar k Tayl or </ TD></ TR>

</ TABLEDATA>

</ DATA>

</ TABLE>

<RESOURCE>

<COOSYS equi nox="J2000. 0" epoch="J2000. 0" systenr"eq_FK4"/>
<TABLE nane="Messi er Objects">

<FI ELD nane="Identifier" datatype="char" arraysize="10"/>
<FI ELD nane="RA" dat at ype="doubl e" uni ts="degrees"/>

<FI ELD nane="Dec" dat at ype="doubl e" units="degrees"/>
<DATA>

<TABLEDATA>

<TR> <TD>Mbl</ TD> <TD>202. 43</ TD> <TD>47.22</ TD> </ TR>
<TR> <TD>MB7</ TD> <TD>168. 63</ TD> <TD>55. 03</ TD> </ TR>

</ TABLEDATA>

</ DATA>

</ TABLE>

</ RESOURCE>

</ RESOURCE>
</ VOTABLE>

Note that it contains more structure than just a flat table: there are two TABLE elements, the
RESOURCE element of the second one being nested in the RESOURCE of the first. Processing this
document using a generic table tool such ast pi pe or t copy would lose this structure.

To convert the data encoding to BINARY format, we simply execute
stilts votcopy format=binary cat. vot
and the output is

<?xm version="1.0"7?>
<VOTABLE>
<RESQURCE>

<TABLE nane=" Aut hor s" >
<FI ELD nane=" Aut hor Nane" dat at ype="char" arraysi ze="*"/>
<DATA>

SUN/256 91

<Bl NARY>

<STREAM encodi ng=' base64' >
AAAADONOYXJIsZXMyTW/zc 21 | cgAAAAL NYXJr | FRheWkvcg==
</ STREAM>

</ Bl NARY>

</ DATA>

</ TABLE>

<RESOURCE>

<COOSYS equi nox="J2000. 0" epoch="J2000. 0" systenr"eq_FK4"/>
<TABLE nane="Messi er Objects">

<FI ELD nane="Identifier" datatype="char" arraysize="10"/>

<FI ELD nane="RA" dat at ype="doubl e" uni ts="degrees"/>

<FI ELD nane="Dec" dat atype="doubl e" units="degrees"/>

<DATA>

<Bl NARY>

<STREAM encodi ng=' base64' >

TTUXAAAAAAAAAEBP TcKPXC 2QEecKPXC 1x NOTc AAAAAAAAAQGUUKPXC 1xAS4APX

g IwpA==

</ STREAM>
</ Bl NARY>
</ DATA>

</ TABLE>

</ RESOURCE>

</ RESOURCE>

</ VOTABLE>
Note that both tables in the document have been trandated to BINARY format. The basic structure
of the document is unchanged: the only differences are within the DATA elements. If we ran

stilts votcopy format=tabl edata

on either this output or the original input then the output would be identical (apart perhaps from
whitespace) to the input table, since the data are originally in TABLEDATA format.

To generate a VOTable document with the data in external files, the href parameter is used. We
will output in FITS format this time. Executing:

stilts votcopy format=fits href=true cat.vot fcat.vot
writes the following to thefilef cat . vot :

<DATA>
<FI TS>
<STREAM href="fcat-1.fits"/>
</ FI TS>
</ DATA>

<DATA>
<FI TS>
<STREAM href="fcat-2.fits"/>

</ FI TS>
</ DATA>

(the unchanged parts of the document have been skipped here for brevity). The actual data are
written in two additional files in the same directory as the output file, fcat-1.fits and
fcat-2.fits. These filenames are based on the main output filename, but can be altered using the
base flag if required. Note this has also given you FITS binary table versions of al the tablesin the
input VOTable document, which can be operated on by norma FITS-aware software quite
separately from the VOTable if required.

A.13votlint: Validates VOTable documents

The VOTable standard, while not hugely complicated, has a number of subtleties and it's not
difficult to produce VOTable documents which violate it in various ways. In fact it's probably true
to say that most VOTable documents out there are not strictly legal. In some cases the errors are
small and a parser is likely to process the document without noticing the trouble. In other cases, the

SUN/256 92

errors are so serious that it's hard for any software to make sense of it. In many cases in between,
different software will react in different ways, in the worst case appearing to parse aVOTable but in
fact understanding the wrong data.

votlint is a program which can check a VOTable document and spot places where it does not
conform to the VOTable standard, or places which look like they may not mean what the author
intended. It is meant for use in two main scenarios:

1. For authors of VOTables and VOTable-producing software, to check that the documents they
produce are legal and problem-free.

2. For users of VOTables (including authors of VOTable-processing software) who are having
problems with one and want to know whether it is the data or the software at fault.

Validating a VOTable document against the VOTable schema or DTD of course goes a long way
towards checking a VOTable document for errors (though it's clear that many VOTable authors
don't even go this far), but it by no means does the whole job, simply because the schema/DTD
specification languages don't have the facilities to understand the data structure of a VOTable
document. For instance the VOTable schema will allow any plain text content in a TD element, but
whether this makes sense in a VOTable depends on the dat at ype attribute of the corresponding
FI ELD element. There are many other examples. votlint tackles this by parsing the VOTable
document in a way which understands its structure and assessing the content as critically as it can.
For any incorrect or questionable content it finds, it will output a short message describing the
problem and giving its location in the document. What you do with this information is then up to
youl.

Usingvot | i nt isvery straightforward. The vot abl e argument gives the location (filename or URL)
of a VOTable document. Otherwise, the document will be read from standard input. Error and
warning messages will be written on standard error. Each message is prefixed with the location at
which the error was found (if possible the line and column are shown, though this is dependent on
your JVM's default XML parser). The processing is SAX-based, so arbitrarily long tables can be
processed without heavy memory use.

vot | i nt can't guarantee to pick up every possible error in aVOTable document, but it ought to pick
up many of the most serious errors that are commonly made in authoring VOTables.

A.13.1 Usage

Theusageof votlint is

stilts <stilts-flags> votlint validate=true|false version=1.0|1.1
out =<l ocati on>
[vot abl e=] <l ocat i on>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

out = <l ocation>
Destination file for output messages. May be afilename or "-" to indicate standard output.

[Default: -]

validate = true|false
Whether to validate the input document aganist the VOTable DTD. If true (the default), then as
well as vot lint's own checks, it is validated against an appropriate version of the VOTable
DTD which picks up such things as the presence of unknown elements and attributes, elements

SUN/256 93

in the wrong place, and so on. Sometimes however, particularly when XML namespaces are
involved, the validator can get confused and may produce a lot of spurious errors. Setting this
flag false prevents this validation step so that only vot I i nt 's own checks are performed. In this
case many violations of the VOTable standard concerning document structure will go
unnoticed.

[Default: true]

version = 1.0]1.1

Selects the version of the VOTable standard which the input table is supposed to exemplify.
Currently the version can be 1.0 or 1.1. The version may also be specified within the document
using the "version" attribute of the document's VOTABLE element; if it isand it conflicts with
the value specified by thisflag, awarning isissued.

vot abl e = <l ocati on>

Location of the VOTable to be checked. This may be a filename, URL or "-" (the default), to
indicate standard input. The input may be compressed using one of the known compression
formats (Unix compress, gzip or bzip2).

[Default: -]

A.13.2 Items Checked

Votlint checks that the XML input is well-formed, and, unless the val i d=f al se parameter is
supplied, that it validates against the 1.0 or 1.1 (as appropriate) DTD. Although VOTable 1.1 is
properly defined against an XML Schema rather than a DTD, in conjunction with the other checks
done, the DTD validation turns out to be pretty comprehensive. Some of the DTD validity checks
are also done by vot Ii nt internally, so that some validity-type errors may give rise to more than
one warning. In general, the program errs on the side of verbosity.

In addition to these checks, the following checks are carried out, and lead to ERROR reports if
violations are found:

TD contents incompatible dat at ype/ar r aysi ze attributes declared in FI ELD

BINARY data streams which don't match metadata declared in FI ELD

PARAMVal ues incompatible with declared dat at ype/ar r aysi ze

Meaningless ar r aysi ze declarations

Array-valued TD elements with the wrong number of elements

Array-valued PARAMValues with the wrong number of elements

nrows attribute on TABLE element different from the number of rows actualy in the table
VOTABLE ver si on attribute is unknown

ref attributes without matching I D elements elsewhere in the document

Same | D attribute value on multiple elements.

Additionally, the following conditions, which are not actually forbidden by the VOTable standard,
will generate WARNING reports. Some of these may result from harmless constructions, but it is
wise at least to take alook at the input which caused them:

Wrong number of TD elementsin row of TABLEDATA table

Mismatch between VOTable and FITS column metadata for FITS data encoding

TABLE with no FI ELD elements

Use of deprecated attributes

FI ELD or PARAM elements with datatype of either char or uni codeChar and undeclared
arraysi ze - thisisacommon error which can result in ignoring all but the first character in 7D
elements from a column

ref attributes which reference other elements by 1D where the reference makes no, or
guestionable sense (e.g. FI ELDr ef referencesFi ELDin adifferent table)

SUN/256 94

* Multiple sibling elements (such as FI ELDs) with the same nane attributes

A.13.3 Examples

Here is a brief example of running vot 1 i nt against a (very short) imperfect VOTable document. If
the document looks like this:

<VOTABLE version="1.1">
<RESOURCE>
<TABLE nrows="2">
<FI ELD nane="Identifier" datatype="char"/>
<FI ELD nane="RA" dat at ype="doubl e"/ >
<FI ELD nane="Dec" dat at ype="doubl e"/ >
<DESCRI PTI ON>A very snal | tabl e</ DESCRI PTI ON\>
<DATA>
<TABLEDATA>
<TR>
<TD>Fonal haut </ TD>
<TD>344. 48</ TD>
<TD>- 29. 618</ TD>
<TD>HD 216956</ TD>
</ TR>
</ TABLEDATA>
</ DATA>
</ TABLE>
</ RESOURCE>
</ VOTABLE>

then the output of avot Ii nt runlookslikethis:

INFO (1.4): No arraysize for character, FIELD inplies single character

ERROR (I.7): Element "TABLE" does not allow "DESCRI PTI ON' here.

WARNI NG (I .11): Characters after first in char scalar ignored (nmissing arraysize?)
WARNI NG (I .15): Wong nunber of TDs in row (expecting 3 found 4)

ERROR (I.18): Row count (1) not equal to nrows attribute (2)

Note the warning at line 11 has resulted from the same error as the one at line 4 - because the FI ELD
element has no arr aysi ze attribute, arraysi ze="1" (single character) is assumed, while the author
almost certainly intended ar r aysi ze="*" (unknown length string).

By examining these warnings you can see what needs to be done to fix this table up. Here is what it
should look like:

<VOTABLE version="1.1">
<RESOURCE>
<TABLE nrows="1"> <!-- change row count -->
<DESCRI PTI ON>A very snal | tabl e</ DESCRI PTION> <!-- npve DESCRI PTION -->
<FI ELD nane="Ildentifier" datatype="char"
arraysi ze="*"/> <l-- add arraysize -->
<FI ELD nane="RA" dat at ype="doubl e"/ >
<FI ELD nane="Dec" dat at ype="doubl e"/>
<DATA>
<TABLEDATA>
<TR>
<TD>Fonal haut </ TD>
<TD>344. 48</ TD>
<TD>- 29. 618</ TD>
</ TR> <l-- renmpove extra TD -->
</ TABLEDATA>
</ DATA>
</ TABLE>
</ RESOURCE>
</ VOTABLE>

When fed thisversion, vot I i nt gives no warnings.

SUN/256 95

B Release Notes

Thisis STILTS, Starlink Tables Infrastructure Library Tool Set. It is a collection of non-graphical
utilites for general purpose table and VVOTable manipul ation developed by Starlink.

Author
Mark Taylor (Starlink, Bristol University)

Email
m.b.taylor@bristol.ac.uk

WWW
http://www.starlink.ac.uk/stilts/

User comments, suggestions, requests and bug reports to the above address are welcomed.

B.1 Acknowledgements

The initial development of STILTS was done under the UK's Starlink project (1980-2005, R.1.P.),
without which it would not have been written. From July 2005 until June 2006, it was supported by
grant PP/D002486/1 from the UK's Particle Physics and Astronomy Research Council. Its author is
funded from July 2006 until (at least) June 2007 by the European VOTech project within the UK's
AstroGrid, and it is expected that support and development of the software will continue over that
time.

Apart from the excellent Java 2 Standard Edition itself, the following external libraries provide
important parts of STILTS's functionality:

» JEL (GNU) for algebraic expression evaluation

* PixTools (Fermilab EAG) for HEAL Pix-based celestial sphere row matching

e HTM (Sloan Digital Sky Survey) for HTM-based celestial sphere row matching (now
deprecated within STILTS)

Thanks in particular to Nickolai Kouropatkine and Chris Stoughton of Fermilab for writing the
PixTools specialy for usein STIL.

Many people have contributed ideas and advice to the development of STILTS and its related
products. | can't list all of them here, but my thanks are especially due to the following:

e Malcolm Currie (Starlink, RAL)
* Clive Davenhall (Royal Observatory Edinburgh)
* Peter Draper (Starlink, Durham)

* David Giaretta (Starlink, RAL)

» Clive Page (AstroGrid, Leicester)

B.2 Version History

Releases to date have been as follows;

Version 0.1b (29 April 2005)
First public release

Version 0.2b (30 June 2005)
* Added Times func class for MJD-1S0O8601 time conversions.
» Fixed bug when doing NULL _ test expressions on first column in table.

Version 1.0b (30 September 2005)
This is the first non-experimental release of STILTS, and it incorporates major changes and

SUN/256 96

backward incompatibilities since version 0.2b.

Parameter system

The parameter system has undergone a complete rewrite; there is now only a single
command "stilts", invoked using the stilts script or thestilts.jar jar file, and the
various tasks are named as subsequent arguments on the command line. Command
arguments are supplied after that. The new invocation syntax is described in detail
elsewhere in this document. As well as invocation features such asimproved on-line help,
optional prompting, parameter defaulting, and more uniform access to common features,
this will make it more straightforward to wrap these tasks for use in non-command-line
environments, such as behind a SOAP or CORBA interface, or in a CEA-like execution
environment.

Crossmatching
A new command t match2 has been introduced. This provides flexible and efficient
crossmatching between two input tables. Future releases will provide commands for
intra-table and multi-table matching.

Concatentation
A new command t cat has been introduced, which allows two tables to be glued together
top-to-bottom. This is currently working but very rudimentary - improvements will be
forthcoming in future releases.

Calculator
A new utility command cal ¢ has been introduced, which performs one-line expression
evaluations from the command line.

Pipelinefilters
The following new filter commands for use in tpi pe and other commands have been
introduced:

* addskycoords: calculates new celestial coordinate pair from existing ones (FK4,
FK?5, ecliptic, galactic, supergalactic)

repl acecol : replaces column data, using existing metadata

badval : replaces given 'magic' value with null

repl aceval : replaces given 'magic’ value with any specified value

t abl ename: edits table name

expl odecol s and expl odecol s commands replace expl ode

The new st ream parameter of t pi pe now allows you to write filter commands in an
external file, to facilitate more manageable command lines.

Wildarding for column specification is now alowed for some filter commands.
Algebraic functions

 New functions for converting time values between different coordinate systems
(Modified Julian Date, | SO-8601, Julian Epoch and Besselian Epoch).
* New RANDOM special function.

Documentation
SUN/256 has undergone many changes. Much of the tool documentation is now
automatically generated from the code itself, which goes along way to ensuring that the
documentation is correct with respect to the current state of the code.

Version 1.0-1b (7 October 2005)
Fixed jar file manifest bug which prevented working on Java 1.5

Version 1.1 (10 May 2006)
A number of new features and capabilities have been introduced:

SUN/256 97

t cube Command
The new tcube (Appendix A.8) command calculates N-dimensional histograms (density
maps) from N columns of an input table and writes the result to a FITSfile.

Processing Filters
The following new filters have been added:

» stats filter provides the same information as the old st at s output mode, but alows
much more flexible use of the results. It can also calculate many new quantities,
including quantiles, skew and kurtosis.

* neta filter provides the same information as the old met a output mode, but alows
much more flexible use of the results.

» assert filter providesin-pipelinelogical assertions.

* uni q filter collapses multiple adjacent identical or similar rows.

* sorthead filter provides a (usually) more efficient method of doing what you could
previously do by combining sort and head filters.

* col net a filter adds/modifies metadata for selected columns.

* check filter checkstable in stream - for debugging purposes only.

Additionally usage of the sort filter has been changed so that it can now do everything
that sort expr used to be able to do; sort expr ishow withdrawn.

Output Modes
The following new output modes have been introduced:

* plasti c mode broadcasts the table to one or all registered PLASTIC listeners.

* cgi mode writesthe table to standard output in aform suitable for output from a CGI
script.

* di scar d mode throws away the table.

and usage of the following has been modified:

* topcat mode now attempts to use PLASTIC (amongst other methods) to contact
TOPCAT.

* stats and neta modes are mildly deprecated in favour of the corresponding new
filters (see above).

Other new features

* New IPAC table format input handler added.

* New csv-noheader format variant output handler added.

* roundDeci mal and f or mat Deci mal functions introduced for more control over visual
appearance of numeric values.

» Experimenta facilities for automatically generating a CEA application description
file.

Bug fixes and minor improvements

* Now copeswith 'K'-format FITS binary table columns (64-bit integers).

* Improved, though still imperfect, retention of table-wide metadatain VOTables.

» Distinctions between null and false values in boolean columns are handled more
carefully for FITSand VOTablefiles.

o Efficiency improvement when writing FITS-plus format (now only requires a
maximum of two passes rather than three of the input rows).

* Added the mar k. wor kar ound System property which can optionally work around a
bug in some input streams (" Resetting to invalid mark™ errors).

» Fixed abug in Cartesian matching which failed to match if the required error in any
dimension was zero.

» Fixed erroneous reports about unknown ucd and ut ype attributes of TABLE element
INvotlint.

SUN/256 98

* When joining tables, column name comparison to determine whether deduplication
isrequired is now case-insensitive.

» Error message improved when no automatic format detection is attempted for
streamed tables.

o Settingi strean¥t rue isnow lesslikely to cause a"Can't re-read stream” error.

Version 1.2 (7 July 2006)

Column-oriented Storage
New features for permitting column-oriented storage (colfits format, new
startabl e. storage policy "sideways") have been introduced. These can provide
considerable efficiency improvements for certain tasks when working with very large
(and especially wide) tables.

New VO commands
Added two new commands for querying Virtual Observatory services:

* nmulticone - Makes multiple cone search queries to the same service
* regquery - Queriesthe VO registry

These tasks are experimental and may be modified or renamed in future rel eases.
Other items

* transpose filter added.
* Added flux conversion functions (Jansky<->magnitude).
e 1S0-8601 strings now permit times of 24:00:00 as they should.

Version 1.2-1 (3 August 2006)

Tab-Separated Table (TST) format now supported for reading and writing.

New set par amand cl ear par ans filters.

Added ICRS coordinate system for addskycoor ds.

TUCDNNn header cards now used in FITS files to transmit UCDs (non-standard
mechanism).

» Efficiency improvements for column-oriented access.

Version 1.3 (5 October 2006)

Table Concatenation
The old t cat command has been replaced by more capable t cat and t cat n commands.
Between them these provide concatenation of an unlimited number of homogeneous or
heterogeneous input tables. Additional columns may be added to indicate which of the
input tables given output rows originated from.

Parameter value indirection
Certain parameters (in in tcat, cmd and friends) may now be specified in the form
"@filename". This indicates that the value for the parameter is to be obtained by reading
it from the named file. Thisis useful if avery long value is required for the parameter in
guestion. The scri pt parameter of t pi pe has therefore been withdrawn, since it did just
the same thing.

MySpace access
Direct access to the MySpace virtua file system is now provided by use of ivo: - or
nyspace: -type URLS.

Conversion functions

« Time conversion functions between MJD and Decimal Year have been added
(Section 7.4.7).

SUN/256 99

* toHex andfronmHex numeric conversion functions have been added (Section 7.4.9).

Documentation improvements

e The HTML version of SUN/256 now uses CSS to provide better highlighting of
commands €fC.

* The Output Modes and Processing Filter sections are now split into subsections to
make the table of contents clearer.

* The Command Reference section now has only one level of subsection listed in the
table of contents to make it clearer.

Other new features and improvements

Added - J flagtosti | t s script for passing flags directly to Java.

Added new out parameter tovot lint.

Added -i f ndi mand - i f shape flags to explodeal filter.

The exact match mode int mat ch2 now copes with array-valued columns.

Added force parameter to nulticone task as a workaround for some broken

services.

* Added Sample (as opposed to Population) Standard Deviation/Variance calculation
optionsto the st at s filter.

» Improved CEA description file output - now contains details of all tasks rather than

just afew, aswell as various improvements in documentation etc.

Bug fixes

» Fixed erroneous complaints from vot I i nt about utype attribute on RESOURCE
elements.
» Fixed acouple of minor crossmatching bugs (which wouldn't have affected results).

Version 1.3-1 (Starlink Hokulei release)

New command t j oi n introduced.

Output to MySpace can now be streamed, if running under J2SE1.5 or later.

Slight changes to parametersfor vot | i nt and vot copy.

Fixed bug in handling of single quotes in FITS file metadata.

Added - bench flagto sti | t s command.

Various scalability improvements for use with very large (Tb?) files.

Improved efficiency for t ext and ascii output formats (now one-pass not two-pass).
Improved CEA app-description file, including especially option lists for things like input
and output formats.

Added README.ceafile to distribution.

Fixed problem which could mis-report VOTable out of memory errors as Broken Pipe.
Added Vega<->AB magnitude conversion constants to Fluxes functions.

Added dupt ag parameters to tmatch2 task for customised renaming of columns with
duplicated names.

Added hyperbolic trig functions (si nh, cosh, t anh and inverses) Maths class (sinh, cosh,
tanh and inverses).

Added cosmology distance calculations in class Distances.

Added f uncs, abrowser for expression language function documentation.

Added - checkversiontolist of stilts flags.

