STILTS- Starlink TablesInfrastructureLibrary Tool Set

Version 2.3

.

V)
Sarlink User Note256

Mark Taylor
9 May 2011

$ld: sun256.xml 9889 2011-05-09 09:45:56Z mbt $

Abstract

STILTS is aset of command-line tools for processing tabular data. It has been designed for, but is
not restricted to, use on astronomical data such as source catalogues. It contains both generic
(format-independent) table processing tools and tools for processing VOTable documents. Facilities
offered include crossmatching, format conversion, format validation, column calculation and
rearrangement, row selection, sorting, plotting, statistical calculations and metadata display.
Calculations on cell data can be performed using a powerful and extensible expression language.

The package is written in pure Java and based on STIL, the Starlink Tables Infrastructure Library.
This gives it high portability, support for many data formats (including FITS, VOTable, text-based
formats and SQL databases), extensibility and scalability. Where possible the tools are written to
accept streamed data so the size of tables which can be processed is not limited by available
memory. As well as the tutorial and reference information in this document, detailed on-line help is
available from the tools themselves.

STILTSis available under the GNU General Public Licence.

Contents
P o 1= 1 = (o SRR 1
O 1 0o [Te: (o] FA TR O TSRS 6

2 THESEi 1 1S COMIMEABNT.....eeeeeeeeee et e e e et e e et et eeeeeeee e e eeeeeeeeeaaaeeaeeeeeeeeseaaannenees 7

2.1 SHIESTIBGS. ..ottt et e e bbbt n e e e e n e renne e 7

2.2 TASK NBIMIES.... .ottt e s et s e et e e s ae e e teeeaee e beesaeeeteesseeeabeeaseeenseesaeesnseeaneeeseesaeeanns 8
2.3 TASK ATGUIMIENTS. ...ttt sttt ettt sb e bt st ae e e e e e e b e s b e e et e b e sbeese e e et e e et e b e s beebenrennes 9
2.4 GEEING HEIP. ..ttt bbbt e e e et n e ne e 10
G 3 1 LY7o o= o o SRR 12
I O =SSy = | TSRO 13
B2 JAVAFIAGS. ... et b e et e et e nre e 13
3.3 SYSIEM PrOPEITIES. ...ttt bbbt bbb bt b et e et nne e 14
/N B 1= O @0 11 Te [0]7= 1 o o HUR TSP PR PRSP 15
A JyStiltS - STILTSTrOmM PYLNON......ooiee et e e 17
4.1 RUNNING JYSHTTS....ceiitieiieiieeeese sttt bbbttt et st e b e ne s 18
R 1= o = 1 L T 19
4.3 TADIE ODJECES.....c.eeeeeee e bbb ee s 20
4.4 Tablefilter COMMANAS (CIU_*) ..viverrirrereeieiee ettt se e enes 22
4.5 Table OULPUL MOUES (IMDUE_*)..vevevirrerieeieeiieie ettt sttt sttt e bbb b sne s 23
N = S O 23
4.7 CalCUlALiON FUNCLIONS......c.uiiieiieieeie sttt e e te s e e sseeneeneesseeeeeneesseenenns 23
CRLIE= ! o1 [N /L TSSOSO 25
IR = o =] oo 4 o 1S SRRSO 25
I = o =] e g 4 RS ORRTSR 26
5. 2.1 INPUL FOIMIBES. ...ttt b et b e bt e bt sse e s be e b e enn e b e e nennn e 26
5.2.2 OULPUL FOMMIBLS...... .ottt b e b e et e e b e ene e reennenns 27
B TADIE PIPEIINES. ... bbbt b et e e n e b nneene e 29
I I 0o =SS T a0 1 (= £ 29
& 0 00 Y T o') SR 30
G A Yo [[==Y IRV 30
B.1.3 AUUSKYCOOI US 1iiiiiiiiirrirriieeeeeiiiiitrrreeeeeesessiiabrrreeeeeeeeaassbbrreeeeaesesaassstbeseeeeaessassssssseeeseessssasssrrnnees 30
G YooY o S 31
G IR 3 o Vo 1V S 31
G G I Vo 3 TR 31
G300 A0 =Y o1 32
B.1.8 Cl CAI PAT AITE .vveiiiiiriieiiiireeeeiireeeeesitteeeseitbreeeeeibbeeesaaasseeeeabbaeeeeassseessasseeeeaansseeesanssseeesansranesannn 32
L S Yo s =Y 32
G300 00 I 1= oo =S 32
TR I B oY=y RSP 33
LT I 2= g oY I e L= I RSO USRRRRS 33
B.1.13 €XPl OUECOI S terrieiiiiiiiirireieeeee e et eiiitrrreeeesessassbbrreereeesesaaaastraaeeeaaessasasssaseeeeeesssaasssrbrseessassssansnnes 33
G 00 T = Vo Y= SRR 33
G300 00 L =Y Y 33
O I O Y=Y o T =TRSO 34
G0 00 1Y R 34
LT I RS T oY A=Y= RO RSP 34
G 00 - Vo Vo [SR 34
G 2 O I Vo Vo [4 VA T =1 2 35
LT A Y T =Y- Y SO PPN 35
T B Y o =Y oT=Y o o] RSO URRRRIR: 35
B.1.23 1 €P1 BCEVAI uurrrriiiieeiiiiiirireeieeeeeesiiitrreeeeeessesssbrsrrreeeesesaaabrbreeeeasesaaasbbareeeeaeseaaasnrrareeeaesesannanes 35
LT S Y =Y Vo TR OO 36
G 2 oY =Y =Y o S 36
T B Y=Y o LV =T APPSO 36
O B A=Y= 0 T - U F SRR 36
G 2 < =Y O R 36
G 20 IR o B Y=Y Yo SRS 37
G G =3 Y SRR 37

LT3 I =Y oY =Y o - V= O 38

G0 I 7228 oY I PP R O PRSPPI 38

G R I B - Y11 o o1 =S 38
G300 R S 38
6.2 SPeCifying @ SiNGIE COIUMN........coiiiiie e 39
6.3 SpeCifying @ List Of COIUMNS.........cciiiiieieeee et 39
6.4 OULPUL IMIOTES........c.eiieeieeieee ettt bbb bttt e bbbt bt bt et e e e e e et e e e 40
G0 S o T 40
ST T 1U 12 41
SR s I=YoT- 1 41
T Y O Y 41
LSRR SYoY 41
QG0 I T3 T 42
G =Y Y 1 T 42
SRR SR =] A= T 43
G o oo Y SRR 43
G0 0 e Y= o | 43
O30S ¢ g T= 1ot o1 o TSRS 45
8 1V = (o T X (- TS 45
7. 1.1 sKy: SKY MEECHING. ...cuvitirieitiiieeiieiee ettt st b et e bbb b e b e s e e 46
7.1.2 skyerr: SKy Matching with Per-ODjJect EITOrS.........c.ccoeeeiiiinenine e 47
7.1.3 sky3d: Spherical Polar MatChing...........coovviiiiiiiieee s 48
7.1.4 exact : EXCE MEICHING.ciuiiueiiiiieeeiee ettt b e bbb 48
7.1.51d, 2d, ...: Isotropic Cartesian MatChing..........ccceouereeierieneere e 48
7.1.6 2d_ani sot r opi c, Anisotropic Cartesian MaChiNg..........cocceveerierereneneneeeeeeeesee e 49
0 O o g T (= S 50
7.1.8 Matcher COmMDINGLIONS..........cceieiiieiere et aesneesseeneesreenseeneens 50
7.2 MUItI-ODJECE MBICHES........euiiieiieeeeee ettt b e bt eenne b e 51
S 1 d o 1 o TSP S 52
8.1 ParamMEter SUFTIXES......ciueeeieeieseeie et e sttt e et e e reetesseesseesesneesseeneenneens 52
8.2 OULPUL IMOUES........oeitietesiietiee ettt sttt b et be bt a et et e b e b e b b e bt bt st e e e e e et e b 54
S J0200 oL T T TS 54
S T 0| SR 54
S J020C oY S 54
I N TTECY T Ve 55
LT Y- Y0 Ao 55
8.3 OULPUL FOIMIBLS. ...ttt r e bt et e b e e nenaeenn e e e e sne e rennnenns 55
8.4 Comparison With TOPCAT PlOLNG.....c.veueriiriirierienienieie et 56
AN (o< o o= VLol b o =S o g)Y 1 = N TSP 57
9.1 Referencing ColUMIN VAlUES........cc.oiiiiiieiiiesieste sttt nneas 57
9.2 Referencing Parameter ValUES...........oouerieieieiesie sttt st s 58
Q.3 NUI VBIUES......oeeceeeetee ettt sttt et e st et e e st e e beesas e e beesaseeebeesaseebeesaneeareesaseeseess 59
S @01 = 0] £ T PO P RSP PRRPRURPRRPN 59
O.5 FUNCLIONS. ... eeeuteiteesieeeeetees e e e st e ste et e sae e teeseesseeseeaseesseesteaseesseeaseaseesseensesseesseenseaneensennsnnneensnnnsnns 60
ST T00 O I 011 60
ST 1V I 01 63
ST J 0] 01V £ o] 65
0.5, FFOIMELS. ... eee ettt ettt sttt ettt s s e et e s aee e be e saeeea b e e eaeeeaseesaeeenbeesaeeenseenneeenteenneeenne 67
ST N 110 1 0= (oSS 68
0.5.8 THHINGS. .ttt bbbt bt s e et b e bbbt he et et et e b e ens 69
S D 1= 00 S 70
SRS I N 1 = YL TSP P TR PROPO 72
0.5.9 SHINGS. . ettt sttt bbbttt e bbb bt b a et e R R Rt bt bt ae et et et e b e nns 75
ST L o 1) S OSROPT 78
ST T80 I 0 T 0 S 80

0.7 AQVANCED TOPICS.....eeeerteeuieieee ettt sttt ettt b b et ae et e e e b e sb e sb e be bt e st e e e e e s e nne st e nreene e 85

O.7.1 EXPreSSION @VAIUBLION.ciueieeieeiite sttt ettt ettt sttt e e bbb bt e e e e e s e nnennenre 85
0.7.2 INSLANCE MELNOUS. ..ottt sreente e esneenneeneenreenes 85
9.7.3 Adding User-Defined FUNCLIONS..........cooiiiiiieieicseeeee st 85
Appendix A: CommandS BY Cat@JOrY.......ccuiiiieiieiiiieiieciieesieesreeseeesreeseessreesee e e seeenseesnee s 87
Appendix B: Command REfEIENCE........ccoeiiieiie et 89
B.1 cal c: EVAlUALES EXPI ESSIONS.....cueeitieierieesieeiesieesteseesaeesteseesseessessesssesssesseessessessesssesnsessesssens 89
B.2 coneskymat ch: Crossmatchestable on sky position against remote cone service.............. 90
B.3funcs: Browsesfunctions used by algebraic expression langauage............ccccoeererererenne. 96
B.4 pl ot 2d: 2D SCALEr PlOL.......ooiuiiieecee et e e r e ere e 97
B.5pl 0t 3d: 3D SCALEr PIOL......cciiecicieeese et e e resneenenneas 105
B.6 pl 0t hi St 2 HISIOGE BM....iiiiiieie ettt n e e r e e ens 113
B.7regquery: QUENESTNE VO IEQISIIY . ccciieeieeee ettt nne e 119
B.8server: Runsan HTTP server to perform STILTS commands...........cccceveenenereniereene 122
B.9sqlclient: Executes SQL StatEMENTS........ooiiiiiiiieieeiie et s 124
B.10 sql skymat ch: Crossmatchestable on sky position against SQL table...........cccccoeueun...e. 126
B.11 sql updat e: Updatesvaluesin an SQL table.........ccccceveeiiiieericie e 131
B.12 t apquery: Queriesa Table Access ProtOCOl SEFVENccceceeeieeiiee vt 132
B.13t apresune: Resumesa previous query to a Table Access Protocol server..................... 136
B.14 t cat : Concatenates multiple similar tables...........ccooveeiiciiiecec e, 138
B.15t cat n: Concatenates multipletables..........cooveeiicii e 142
B.16t copy: Convertsbetween table formats.........ccovviiveeiicii e 146
B.17 t cube: Calculates N-dimensional histograms..........cceeeceeiieiieecie e 147
B.18tj oi n: Joins multipletables Side-to-SIde..........cocveiieiciieic e 150
B.19tmat chi: Performsacrossmatch internal toasingletable.........c..ccocoeoeeieiiecciecceeen, 152
B.20t mat ch2: Crossmatches 2 tablesusing flexible criteria........cccoooveniiienenciieeeee, 156
B.21t mat chn: Crossmatches multiple tables using flexible criteria.........ccooeoiviieniinennns 162
B.22 tnul ti: Writesmultipletablesto asingle container file..........ccooviriieieienniene 167
B.23 tnul ti n: Writesmultiple processed tablesto single container file...........ccoovvreninnnnen, 169
B.24 t pi pe: Performs pipeline processing on atable............coeiiiiiiiieiiicneeeeeeeee 170
B.25 t skymat ch2: Crossmatches 2 tables on sKy POSItION..........covverererieierese e 175
B.26 vot copy: Transforms between VOTable enCOUINGS......c.cvivererierrieenenieseesie e seeeneeeeens 179
B.27 votlint: Validates VOTable dOCUMENLS...........ccovieeeeereee e 182
APPENdiX C: REIEASE NOLES.......ceiiiieiitirierieeeeee ettt sttt e b e nas 186
C.1 ACKNOWIEAGEMENTS.....cceeieeee ettt sttt e et nae e 186

(O V= g o g o T (o 186

SUN/256

SUN/256 6

1 Introduction

STILTS provides a number of command-line applications which can be used for manipulating
tabular data. Conceptually it sits between, and uses many of the same classes as, the packages STIL,
which is a set of Java APIs providing table-related functionality, and TOPCAT, which is agraphical
application providing the user with an interactive platform for exploring one or more tables. This
document is mostly self-contained - it covers some of the same ground as the STIL and TOPCAT
user documents (SUN/252 and SUN/253 respectively).

Currently, this package consists of commands in the following categories:

Generic table manipulation
t copy, tpi pe,tmul ti,tnultin,tcat,tcatn,tjoinandtcube (See Section 6).

Crossmatching
t mat chl, t mat ch2, t mat chn and t skymat ch2 (See Section 7).

Plotting
pl ot 2d, pl ot 3d and pl ot hi st (See Section 8).

VOTable
vot copy and vot | int.

Virtual Observatory access
coneskymat ch, t apquery t apresune and r egquery.

SQL databases
sql client, sql updat e and sql skymat ch.

Miscellaneous
cal ¢ (Appendix B.1), f uncs (Appendix B.3) and server (Appendix B.8).

See Appendix A for an expanded version of thislist.

There are many ways you might want to use these tools; here are afew possibilities:

I'n conjunction with TOPCAT
you can identify a set of processing steps using TOPCAT's interactive graphical facilities, and
construct a script using the commands provided here which can perform the same steps on
many similar tables without further user intervention.

Format conversion
If you have a separate table processing engine and you want to be able to output the resultsin a
somewhat different form, for instance converting it from FITS to VOTable or from
TABLEDATA-encoded to BINARY-encoded VOTable, or to perform some more
scientifically substantial operation such as changing units or coordinate systems, substituting
bad values etc, you can pass the results through one of the tools here. Since on the whole
operation is streaming, such conversion can easily and efficiently be done on thefly.

Server-side oper ations
The tools provided here are suitable for use on servers, either to generate files as part of aweb
service (perhaps aong the lines of the Format conversion item above) or as configurable
components in a server-based workflow system. The server command may help, but is not
required, for use in these situations.

Quick look
You might want to examine the metadata, or a few rows, or a statistical summary of a table
without having to load the whole thing into TOPCAT or some other table viewer application.

SUN/256 7

2Thestilts command

All the functions available in this package can be used from a single command, which is usually
referred to in this document simply as"sti | t s". Depending on how you have installed the package,
you may just type"sti I ts", or something like

java -jar sone/path/stilts.jar
or

java -classpath topcat-lite.jar uk.ac.starlink.ttools.Stilts
or something else - thisis covered in detail in Section 3.

In general, the form of acommand is

stilts <stilts-flags> <task-nane> <task-args>

The forms of the parts of this command are described in the following subsections, and details of
each of the available tasks along with their arguments are listed in the command reference
(Appendix B) at the end of this document. Some of the commands are highly configurable and have
avariety of parameters to define their operation. In many cases however, it's not complicated to use
them. For instance, to convert the datain a FITS table to VOTable format you might write:

stilts tcopy cat.fits cat.vot

2.1 Stiltsflags

Some flags are common to al the tasks in the STILTS package, and these are specified after the
stilts invocation itself and before the task name. They generally have the same effect regardless
of which task is running. These generic flags are as follows:

-hel p
Prints a usage message for the stilts command itself and exits. The message contains a
listing of all the known tasks.

-version
Printsthe STILTS version number and exits.

-ver bose
Causes more verbose information to be written during operation. Specifically, what this doesis
to boost the logging level by one notch. It may be specified multiple times to increase
verbosity further.

- menory
Encourages the command to use java heap memory for caching large amounts of data rather
than using temporary disk files. The default is to use memory for small tables, and disk for
large ones. This flag is in most cases equivalent to specifying the system property
- Dstartabl e. st orage=nenory.

- di sk
Encourages the command to use temporary files on disk for caching table data. The default is
to use memory for small tables, and disk for large ones. Using this flag may help if you are
running out of memory. Thisflag isin most cases equivalent to specifying the system property
-Dstart abl e. st or age=di sk.

- debug
Sets up output suitable for debugging. The most visible consequence of thisis that if an error
occurs then afull stacktrace is output, rather than just a user-friendly report.

SUN/256 8

pr onpt
Most of the STILTS commands have a number of parameters which will assume sensible
defaults if you do not give them explicit values on the command line. If you use the - pr onpt
flag, then you will be prompted for every parameter you have not explicitly specified to give
you an opportunity to enter avalue other than the default.

-batch

Some parameters will prompt you for their values, even if they offer legal defaults. If you use
the - bat ch flag, then you won't be prompted at all.

-bench

Outputs the elapsed time taken by the task to standard error on successful completion.

- mengui

Displays a graphica window while the command is running which summarises used and
available heap memory. May be useful for profiling or understanding resource constraints.

-checkversi on <vers>

Requires that the version is exactly as given by the string <ver s>. If it isnot, STILTS will exit
with an error. This can be useful when executing in certain controlled environments to ensure
that the correct version of the application is being picked up.

-stdout <file>

Sends all normal output from the run to the given file. By default this goes to the standard

output stream. Supplying an empty string or "- " for <f i | e> will restore this default behaviour.

-stderr <file>

Sends all error output from the run to the given file. By default this goes to the standard error
stream. Supplying an empty string or "- " for <fi | e> will restore this default behaviour.

If you are submitting an error report, please include the result of running stilts -version and the
output of the troublesome command with the - debug flag specified.

2.2 Task Names

The <t ask- nane> part of the command line is the name of one of the tasks listed in Appendix B -
currently the available tasks are:

calc

funcs
coneskymat ch
pl ot 2d

pl ot 3d

pl ot hi st
regquery
server

sql cli ent
sql skymat ch
sql updat e

t apquery

t apresune

t cat

tcatn

t copy

t cube

tjoin
tmatchl

t mat ch2

SUN/256 9

t mat chn
tul ti
trmultin

t pi pe

t skymat ch2
vot copy
vot | i nt

2.3 Task Arguments

The <t ask- ar gs> part of the command lineisalist of parameter assignments, each giving the value
of one of the named parameters belonging to the task which is specified in the <t ask- name> part.

The general form of each parameter assignment is

<par am nane>=<par am val ue>

If you want to set the parameter to the null value, which islegal for some but not all parameters, use
the specia string "nul I . In some cases you can optionally leave out the <par am name> part of the
assignment (i.e. the parameter is positionally determined); this is indicated in the task's usage
description if the parameter is described like [<param name>=] <param val ue> rather than
<par am name>=<par am val ue>. If the <param val ue> contains spaces or other special characters,
then in most cases, such as from the Unix shell, you will have to quote it somehow. How this is
done depends on your platform, but usually surrounding the whole value in single quotes will do the
trick.

Tasks may have many parameters, and you don't have to set all of them explicitly on the comand
line. For a parameter which you don't set, two things can happen. In many cases, it will default to
some sensible value. Sometimes however, you may be prompted for the value to use. In the latter
case, alinelike thiswill be written to the terminal:

mat cher - Nane of matching al gorithm [sky]:

This is prompting you for the value of the parameter named natcher. "Name of matching
algorithm” is a short description of what that parameter does. "sky" is the default value (if there is
no default, no value will appear in square brackets). At this point you can do one of four things:

* Hit return - this will select the default value if there is one. If there is no default, this is
equivalent to entering "nul | .

+ Enter a value for the parameter explicitly. The specia value "nul 1" means the null value,
which islegal for some, but not all parameters. If the value you enter is not legal, you will see
an error message and you will be invited to try again.

» Enter "hel p" or aquestion mark "?". This will output a message giving a detailed description
of the parameter and prompt you again.

» Bail out by hitting ctrl-C or whatever is usual on your platform.

Under normal circumstances, most parameters which have a legal default value will default to it if
they are not set on the command line, and you will only be prompted for those where there is no
default or the program thinks there's a good chance you might not want to use it. Y ou can influence
this however using flagsto the sti | ts command itself (see Section 2.1). If you supply the - pr onpt
flag, then you will be prompted for every parameter you have not explicitly set. If you supply
- bat ch on the other hand, you won't be prompted for any parameters (and if you fail to set any
without legal default values, the task will fail).

If you want to see the actual values of the parameters for a task as it runs, including prompted
values and defaulted ones which you haven't specified explicitly, you can use the - ver bose flag
after thesti 1 ts command:

SUN/256 10

% stilts -verbose tcopy cat.fits cat.vot ifm=fits
INFO tcopy in=cat.fits out=cat.vot ifnm=fits ofnt=(auto)

Extensive help isavailable from sti | t s itself about task and its parameters, as described in the next
section.

2.4 Getting Help

As well as the command descriptions in this document (especially the reference section Appendix
B) you can get help for STILTS usage from the command itself. Typing

stilts -help
resultsin this output:

Usage:
stilts [-help] [-version] [-verbose] [-nmenory] [-disk] [-debug]
[-prompt] [-batch] [-bench] [-mengui] [-checkversion <vers>]
[-stdout <file>] [-stderr <file>]
<t ask- nanme> <t ask-ar gs>

stilts <task-nanme> hel p[=<par am nane>| *]

Known t asks:
calc
coneskymat ch
funcs
regquery
pl ot 2d
p! ot 3d
pl ot hi st
server
sql cli ent
sql skymat ch
sqgl updat e
t apquery
t apresume
t cat
tcatn
t copy
t cube
tjoin
tmat chl
t mat ch2
t mat chn
tmul t
tmultin
t pi pe
t skymat ch2
vot copy
vot | i nt

For help on the individual tasks, including their parameter lists, you can supply the word hel p after
the task name, so for instance

stilts tcopy help
resultsin

Usage: tcopy ifnt=<in-format> of nt =<out -f or mat >
[i n=] <t abl e> [out =] <out -t abl e>

Finaly, you can get help on any of the parameters of a task by writing hel p=<par am nanme>, like
this:

SUN/256 11

stilts tcopy hel p=in
gives

Help for parameter INin task TCOPY

Nanme:
in
Usage:
[in=] <t abl e>

Sunmmar y:
Location of input table

Descri ption:
The |l ocation of the input table. This is usually a filename or URL,
and may point to a file conpressed in one of the supported conpression
formats (Unix conpress, gzip or bzip2). If it is omtted, or equal to
the special value "-", the input table will be read from standard
input. In this case the input format nust be given explicitly using
the ifnt paraneter.
If you use "+" instead of a parameter name in this usage, help for al the parameters will be printed.

Note that in most shells you will probably need to quote the asterisk, so you should write

stilts tcopy hel p="*'

In some cases, as described in Section 2.3, you will be prompted for the value of a parameter with a
line something like this:

mat cher - Nane of matching al gorithm [sky]:

In this case, if you enter "hel p" or a question mark, then the parameter help entry will be printed to
the screen, and the prompt will be repeated.

For more detailed descriptions of the tasks, which includes explanatory comments and examples as
well as the information above, see the full task descriptions in the Command Reference (Appendix
B).

SUN/256 12

3 Invocation

There are a number of ways of invoking the stilts command, depending on how you have
installed the package. This section describes how to invoke it from the command line. An
alternative, using it from Jython (the Java implementation of the Python language), is described in
Section 4.

If you're using a Unix-like operating system, the easiest way isto usethesti | ts script. If you have
a full starjava installation it is in the starjava/ bi n directory. Otherwise you can download it
separately from wherever you got your STILTS installation in the first place, or find it at the top of
thestilts.jar Ortopcat-*.jar that containsyour STILTS installation, so do something like

unzip stilts.jar stilts
chnmod +x stilts

to extract it (if you don't have unzi p, try jar xvf stilts.jar stilts).stilts isasimple shell
script which just invokes java with the right classpath and the supplied arguments.

Torunusing thestilts script, first make sure that both the j ava executable and the sti | ts script
itself are on your path, and that the stilts.jar or topcat-*.jar jar fileisin the same directory as
stilts. Thentheform of invocationis:

stilts <java-flags> <stilts-flags> <task-nane> <task-args>

A simple example would be:

stilts votcopy format=binary t1.xm t2.xm

in this case, as often, there are no <j ava-flags> Or <stilts-flags>. If you use the - cl asspat h
argument or have a CLASSPATH environment variable set, then classpath elements thus specified
will be added to the classpath required to run the command. The examples in the command
descriptions below use this form for convenience.

If you don't have a Unix-like shell available however, you will need to invoke Java directly with the
appropriate classes on your classpath. If you have the file stilts.jar, in most cases you can just
write:

java <java-flags> -jar stilts.jar <stilts-flags> <task-nane> <task-args>
which in practice would look something like

java -jar /some/where/stilts.jar votcopy format=binary t1.xm t2.xm

In the most general case, Javas-j ar flag might be no good, for one of the following reasons:

1. You havethe classesin someform other thanthestilts.jar file(such astopcat-full.jar)

2. You need to specify some extra classes on the classpath, which is required e.g. for use with
JDBC (Section 3.4) or if you are extending the commands (Section 9.7.3) using your own
classes at runtime

In this case, you will need an invocation of thisform:

java <java-flags> -classpath <cl ass- pat h>
uk.ac.starlink.ttools.Stilts <stilts-flags> <task-nane> <task-args>

The example above in this case would ook something like:

java -classpath /sone/where/topcat-full.jar uk.ac.starlink.ttools.Stilts
votcopy format=binary t1.xm t2.xmn

SUN/256 13

Finally, as a convenience, it is possible to run STILTS from a TOPCAT installation by using its
-stilts flag, likethis:

topcat <java-flags> -stilts <stilts-flags> <task-nane> <task-args>
Thisis possible because TOPCAT is built ontop of STILTS, so contains a superset of its code.

The <stilts-flags>, <task-nanme> and <t ask- ar gs> parts of these invocations are explained in
Section 2, and the <class-path> and <java-flags> parts are explained in the following
subsections.

3.1 Class Path

The classpath is the list of places that Javalooks to find the bits of compiled code that it usesto run
an application. Depending on how you have done your installation the core STILTS classes could
be in various places, but they are probably in a file with one of the names stilts.jar,
topcat-lite.jar Or topcat-full.jar. The full pathname of one of these files can therefore be
used as your classpath. In some cases these files are self-contained and in some cases they reference
other jar filesin the filesystem - this means that they may or may not continue to work if you move
them from their original location.

Under certain circumstances the tools might need additional classes, for instance:

» JDBC drivers (see Section 3.4)
» Providing extended algebraic functions (see Section 9.7.3)
* Installing I/O handlers for new table formats (see SUN/252)

In this case the classpath must contain a list of al the jar files in which the required classes can be
found, separated by colons (unix) or semicolons (MS Windows). Note that even if al your jar files
are in a single directory you can't use the name of that directory as a class path - you must name
each jar file, separated by colons/semicolons.

3.2 Java Flags

In most cases it is not necessary to specify any additional arguments to the Java runtime, but it can
be useful in certain circumstances. The two main kinds of options you might want to specify
directly to Java are these:

System properties
System properties are a way of getting information into the Java runtime from the outside,
rather like environment variables. There is a list of the ones which have significance to
STILTS in Section 3.3. You can set them from the command line using a flag of the form
- Dnane=val ue. SO for instance to ensure that temporary files are written to the / hone/ scrat ch
directory, you could use the flag

-Djava.io.tnpdir=/hone/ scratch

Memory size
Java runs with a fixed amount of 'heap’ memory; this is typically 64Mb by default. If one of
the tools fails with a message that says it's out of memory then this has proved too small for the
job in hand. You can increase the heap memory with the - xnx flag. To set the heap memory
size to 256 megabytes, use the flag

- Xnx256M

(don't forget the 'M' for megabyte). You will probably find performance is dreadful if you

SUN/256 14

specify a heap size larger than the physical memory of the machine you're running on.

Y ou can specify other options to Java such as tuning and profiling flags etc, but if you want to do
that sort of thing you probably don't need me to tell you about it.

If you are using the sti | t s command-line script, any flagsto it starting - D or - X are passed directly
to the j ava executable. You can pass other flags to Java with the stilts script's -J flag; for
instance:

stilts -Xnx4M -J-verbose: gc calc 'njdTol so(0)
IS equivalent to

java - Xnx4M -verbose:gc -jar stilts.jar calc 'njdTol so(0)

3.3 System Properties

System properties are a way of getting information into the Java runtime - they are a bit like
environment variables. There are two ways to set them when using STILTS: either on the command
line using arguments of the form - bname=val ue (see Section 3.2) or in afile in your home directory
named . st arj ava. properti es, in the form of anane=val ue line. Thus submitting the flag

-Dvot abl e. strict=true

on the command line is equivalent to having the following in your . st arj ava. properti es file:

Force strict interpretation of the VOTabl e standard.
vot abl e. strict=true

The following system properties have special significanceto STILTS:

j ava. awt . headl ess
May need to be set to "t rue” if running the plotting tasks on a headless server. You only need
to worry about thisif you see error messages complaining about headl essness.

java.io.tnpdir
The directory in which STILTS will write any temporary files it needs. This is usually only
doneif the - di sk flag has been specified (see Section 2.1).

jdbc.drivers
Can be set to a (colon-separated) list of JDBC driver classes using which SQL databases can
be accessed (see Section 3.4).

jel.classes
Can be set to a (colon-separated) list of classes containing static methods which define
user-provided functions for synthetic columns or subsets. (see Section 9.7.3).

mar k. wor kar ound
If set to "true”, this will work around a bug in the mar k() /reset () methods of some java
| nput St r eam classes. These are rather common, including in Sun's J2SE system libraries. Use
thisif you are seeing errors that say something like "Resetting to invalid mark". Currently
defaultsto "false".

startabl e. readers
Can be set to a (colon-separated) list of custom table format input handler classes (see
SUN/252).

startabl e. st orage
Can be set to determine the default storage policy. Setting it to "di sk" has basically the same

SUN/256 15

effect as supplying the "-di sk" argument on the command line (see Section 2.1). Other
possible values are "adaptive", "menory"”, "si deways" and "di scard"; see SUN/252. The
default is"adapt i ve", which means storing smaller tablesin memory, and larger ones on disk.

startable.witers
Can be set to a (colon-separated) list of custom table format output handler classes (see
SUN/252).

vot abl e. nanmespaci ng
Determines how namespacing is handled in VOTable documents. Known values are "none"
(no namespacing, xmins declarations in VOTable document will probably confuse parser),
"l ax" (anything that looks like it is probably a VOTable element will be treated asa VOTable
element) and "strict” (VOTable elements must be properly declared in one of the correct
VOTable namespaces). May aso be st to the classname of a
uk. ac. starlink. vot abl e. Nanespaci ng implementation. The default is"l ax".

vot abl e. stri ct
Set true for strict enforcement of the VOTable standard when parsing VOTables. This
prevents the parser from working round certain common errors, such as missing arr aysi ze
attributes on FI ELD or PARAM el ements with dat at ype="char " . False by default.

3.4 JDBC Configuration

This section describes additional configuration which must be done to alow the commands to
access SQL-compatible relational databases for reading or writing tables. If you don't need to talk to
SQL-type databases, you can ignore the rest of this section. The steps described here are the
standard ones for configuring JDBC (which sort-of stands for Java Database Connectivity),
described in more detail on Sun's JDBC web page.

To use STILTS with SQL-compatible databases you must:

» Have access to an SQL-compatible database locally or over the network
 HaveaJDBC driver appropriate for that database

* Instal that driver for use with STILTS

* Know the format the driver uses for URL S to access database tables

» Have appropriate privileges on the database to perform the desired operations

Installing the driver consists of two steps:

1. Ensurethat the classpath you are using includes this driver class as described in Section 3.1
2. Setthejdbc. drivers system property to the name of the driver class as described in Section
3.3

These steps are all standard for use of the JIDBC system. See SUN/252 for information about JDBC
drivers known to work with STIL (the short story isthat at least MySQL and PostreSQL will work).

Here is an example of using t copy to write the results of an SQL query on a table in a MySQL
database asaVOTable:

stilts -classpath /usr/local/jars/mysql-connector-java.jar \
-D dbc. drivers=com nysql . jdbc. Driver \
tcopy \
i n="] dbc: nysql : //1 ocal host/ db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
of nmt =vot abl e gsc. vot

or invoking Java directly:

java -classpath stilts.jar:/usr/local/jars/ mysql-connect-java.jar \
-Dj dbc. dri vers=com nysql . jdbc. Driver \

SUN/256 16

uk.ac.starlink.ttools.Stilts tcopy \
i n="jdbc: nysql ://local host/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
of nt =vot abl e out =gsc. vot

Y ou have to exercise some care to get the arguments in the right order here - see Section 3.

Alternatively, you can set some of this up beforehand to make the invocation easier. If you set your
CLASSPATH environment variable to include the driver jar file (and the STILTS classes if you're
invoking Javadirectly rather than using the scripts), and if you put the line

j dbc. drivers=com nysql .jdbc. Driver

inthe . starjava. properties filein your home directory, then you could avoid having to give the
-cl asspat h and - Dj dbc. dri ver s flags respectively.

SUN/256 17

4 JyStilts- STILTS from Python

Most of the discussions and examples in this document describe using STILTS as a standalone java
application from the command line; in this case, scripting can be achieved by executing one
STILTS command, followed by another, followed by another, perhaps controlled from a shell
script, with intermediate results stored in files.

However, it is aso possible to invoke STILTS commands from within the Jython environment.
Jython is a pure-java implementation of the widely-used Python scripting language. Using Jython is
almost exactly the same as using the more usual C-based Python, except that it is not possible to use
extensions which use C code. This means that if you are familiar with Python programming, it is
very easy to string STILTS commands together in Jython.

This approach has several advantages over the conventional command-line usage:

* You can make use of python programming constructions like loops, functions and variables

* Intermediate processing stages can be kept in memory (in a python variable) rather than having
to write them out to a file and read them in for the next command; this can be much more
efficient

» Because of the previous point, there are separate read, filter, processing and write commands,
which means command lines can be shorter and less confusing

* The java startup overhead (typically a couple of seconds) happens only once when entering
jython, not once for every STILTS command

Note however that you will not be able to introduce JyStilts commands into your larger existing
Python programs if those rely on C-based extensions, such as NumPy and SciPy, since JyStilts will
only run in JPython, while C-based extensions will only run in CPython. (See however JNumeric
for some of the Numpy functionality from Jython.)

Usage from jython has syntax which is similar to command-line STILTS, but with a few changes.
The following functions are defined by JyStilts:

* A function tread, which reads a table from a file or URL and turns it into a table object in
jython

A table method wr i t e which takes atable object and writesit to file

A table method for each STILTSfilter (e.g. cmd_head, cnd_sel ect, cmd_addcol)

A table method for each STILTS output mode (e.g. node_out , node_nret a, node_sanp),

A function for each STILTS task (e.g. t mat ch2, t cat , pl ot 2d)

A number of table methods which make table objects integrate nicely into the python
environment

Reasonably detailed documentation for these is provided in the usual Python way ("doc strings"),
and can be accessed using the Python "hel p* command, however for full documentation and
examples you should refer to this document.

In JyStilts the input, processing, filtering and output are done in separate steps, unlike in
command-line STILTS where they all have to be combined into a single line. This can make the
flow of execution easier to follow. A typical sequence will involve:

1. Reading one or more tables from file using thet r ead function

2. Perhapsfiltering the input table(s) using one or more of the cnd_* filter methods

3. Performing core processing such as crossmatching

4. Perhapsfiltering the result using one or more of the cnd_* filter methods

5. If running interactively, perhaps examining the intermediate results using one of the node_*
output modes

6. Writing thefinal result to afile using thewr i t e method

SUN/256 18

Here is an example command line invocation for crossmatching two tables:

stilts tskymatch2 inl=survey.fits \
i cmd1=" addskycoords fk4 fk5 RA1950 DEC1950 RA2000 DEC2000' \
i n2=nycat.csv ifnm2=csv \
i cmd2=" sel ect VMAG>18' \
ral=ALPHA dec1=DELTA ra2=RA2000 dec2=DEC2000 \
error=10 joi n=2not1 \
out=matched.fits

and hereiswhat it might look like in JyStilts:

>>> jnport sti I

>>> t1 = stilt tread(survey.fits')

>>>t1 =tl.cmd addskycoords(t 1, 'fk4', 'fk5, 'RA1950', 'DEC1950', 'RA2000', 'DEC2000')
>>> t2 = tread(nycat.csv' csv')

>>> t2 = t2.cnd_sel ect (' VMAG>18')

>>> tm = skyrratch2(| nl=t1l, in2=t2, ral="ALPHA', decl='DELTA', error=10, join='"2notl")
>>> tmwite(' matched. fits')

When running interactively, it can be convenient to examine the intermediate results before
processing or writing as well, for instance:

>>> t m node_count ()
colums: 19 rows: 2102
>>> tm crrd _keepcol s(' 1D ALPHA DELTA").cnd_head(4).wite()

S +
| 1D | ALPHA | DELTA |
. oo oo +
262	149. 82439	-0.11249
263	150.14438	-0.11785
265	149. 92944	-0.11667
273	149.93185	-0.12566
R e e e oo - e me e +

More detail about how to run JyStilts and its usage is given in the following subsections.

4.1 Running JyStilts
Setting up a Jython installation that runs JyStilts is quite easy.

First, make sure that Jython isinstalled; it is available from http://www.jython.org/, and comes as a
self-installing jar file. JyStilts has been tested, and appears to work, on versions 2.2.1, 2.5.0 and
2.5.1; it's recommended to use the latest version if you don't have some reason to use one of the
others.

To use JyStilts, all you need to do is to start jython with thestilts.jar file on your classpath, for
instance like this:

jython -J-cl asspath /sone/where/stilts.jar

or (C-shell):

setenv CLASSPATH /sone/ where/stilts.jar
jython

Finally, you will need to import the stilts module using aline like "i mport stilts" from Jythonin
the usual Python way.

Optionally, you can extract the stilts. py module from the stiltsjar file (using a command like
"unzip stilts.jar stilts.py") and put it in a directory on your jython sys.path (eg.
j ythondi r/ Li b); this may cause jython to compile it to bytecode (stilts$py. cl ass) and thus

SUN/256 19

Improve startup time. Note that in this case you will still need thestilts.jar fileon your classpath
as above.

42 Tablel/O
Thetread function reads tables from an external location into JyStilts. Its arguments are as follows:

tread(l ocation, fm=" (auto)', randonrFal se)

and its return value is a table object, which can be interrogated directly, or used in other JyStilts
commands. Usually, the location argument should be a string which gives the filename or URL at
which a table can be found. Y ou can aternatively use a readable python file (or file-like) object for
the location, but be aware that this may be less efficient on memory. As with command-line
STILTS, thef nmt argument is one of the optionsin Section 5.2.1, but may be left as the default if the
format auto-detectable, which currently meansiif thefileisin VOTable or FITS format. The r andom
argument can be used to ensure that the returned file has random (i.e. not sequential-only) access;
for some table formats the default way of reading them in means that their rows can only be
accessed in sequence. Depending on what processing you are doing, that may or may not be
satisfactory.

Examples of reading atable are:

>>> jnport stilts

>>> t1 = stilts.tread('cat.fits")

>>> t2 = stilts.tread(open('cat.fits', '"rb')) # less efficient
>>> t3 = stilts.tread('data.csv', fnmt="ascii', random=True)

The most straightforward way to write a table (presumably the result of one or a sequence of
JyStilts commands) isusing thewr i t e table method:

write(self, location=None, fnt='"(auto)")

Thel ocat i on gives either a string which is afilename, or awritable python file (or file-like) object.
Again, use of afilename is preferred as it may(?) be more efficient. If no location is supplied, the
table will be written to standard output (useful for inspection, but a bad idea for binary formats or
very large tables). Thef mt argument is one of the output formatsin Section 5.2.2, but may be left as
the default if the format can be guessed from the filename.

Examples of writing atable are:

>>> table.wite(' out. fItS)

>>> tabl e. wrlte(open(out.fits', '"wh')) # less efficient?
>>> table.wite(' catal ogue.dat’', fnt="csv')

>>> table. wite() # display to stdout

Often it's convenient to combine examining the table with filtering steps, for instance:

>>> tabl e.every(100).wite()

would write only every hundredth row, and

>>> (table.cnd sorthead(lo ' BMAG)

.cmd_sel ect (" ! NULL_VMAG)
.cnmd_keepcol s(' BVAG VNAG)
wite())

Would write only the BMAG and VMAG columns for the ten rows in which VMAG is non-null
with the lowest BMAG values.

You can also read and write multiple tables, if you use atable format for which that is appropriate.

SUN/256 20

This generally means FITS (which can store tables in multiple extensions) or VOTable (which can
store multiple TABLE elements in one document). This is done using the treads and twrites
functions. The functions look like this:

treads(location, fnt="(auto)', random=Fal se)

twites(tables, l|ocation=None, fnt="(auto)')
These are similar to the tread and twite functions, except that treads returns a list of tables
rather than a single table, and twrit es'st abl es argument is an iterable over tables rather than a
single table. Here is an example of reading multiple tables from a multi-extension FITS file,
counting the rows in each, and then writing them out to amulti-TABLE VOTablefile:

import stilts

tables = stilts.treads('nulti.fits")
print([t.getRowCount() for t in tables])
stilts.twites(tables, "multi.vot', fnt="votable')

4.3 Table objects

The tables read by the tread function and produced by operating on them within JyStilts have a
number of methods defined on them. These are explained below.

First, a number of specia methods are defined which allow a table to behave in python like a
sequence of rows:

_iter
This special method means that the table can be treated as an iterable, so that for instance "f or
row in table:" will iterate over all rows.

__len__ (random-access tables only)
This special method means that you can use the expression "l en(t abl e) " to count the number
of rows. This method is not available for tables with sequential access only.

__getitem _ (random-access tables only)
Returns a row at a given index in the table. This special method means that you can use
indexing expressions like "t abl e[3] " Or t abl e[0: 10] to obtain the row or rows corresponding
to a given row index or slice. This method is not available for tables with sequential access
only.

add__,
These specia methods allow the addition and multiplication operators "+" and and "*" to be
used with the sense of concatenation. Thus "t abl e1+t abl e2" will produce a new table with the
rows of t abl e1 followed by the rows of t abl e2. Note this will only work if both tables have
compatible columns. Similarly "t abl e*3" would produce a table like t abl e but with al its
rows repeated three times.

mul __, _ rmul

In all of these cases, each row object that is accessed is a tuple of the column values for that row of
the table. The tuple items (table cells) may be accessed using a key which is a numeric index or
dice in the usual way, or with a key which is a column name, or one of the Columninfo objects
returned by col umms() .

Sometimes, the result of a table operation will be a table which does not have random access. For
such tables you can iterate over the rows, but not get their row values by indexing. In order to take a
table which may not have random access and make it capable of random access, use the r andom
filter: "t abl e=t abl e. cnd_r andon() ".

To a large extent it is possible to duplicate the functions of the various STILTS commands by
writing your own python code based on these python-friendly table access methods. Note however

SUN/256 21

that such python-based processing is likely to be much slower than the STILTS equivalents. If
performance is important to you, you should try in most cases to use the various cmd_* commands
etc for table processing.

Second, some additional utility methods are defined:

col umms()
Returns a tuple of the column descriptors for the table. Each item in the tuple is an instance of
the Columninfo class; useful methods include get Name(), get UnitString(), getUCD().
str(col um) Will return its name.

col dat a(key)
Returns a sequence of the values for the given column. The sequence will have the same
number of elements as the number of rows in the table. The key argument may be either an
integer column index (if negative, counts backwards from the end), or the column name or info
object. The returned value will always be iterable (has __iter__), but will only be indexable
(has__len__and __getitem) if thetableisrandom access.

par anet ers()
Returns a name to value mapping of the table parameters (per-table metadata). This does not
include all the available information about those parameters, for instance unit and UCD
information is not included. For more detailed information, use the st ar Tabl e methods. Note
that as currently implemented, changing the values in the returned mapping will not change the
actual table parameter values.

write(l ocati on=None, fnt=None)
Outputs the table. The optional | ocati on argument gives a filename or writable file object,
and the optional fnt argument gives a format, one of the options listed in Section 5.2.1. If
| ocation is not supplied, output is to standard output, so in an interactive session it will be
printed to the terminal. If fnt is not supplied, an attempt will be made to guess a suitable
format based on the location.

Third, a set of cnd_* methods corresponding to the STILTS filters are avail able; these are described
in Section 4.4.

Fourth, a set of mode_* methods corresponding to the STILTS output modes are available; these are
described in Section 4.5.

Finally, tables are also instances of the StarTable interface defined by STIL, which is the table 1/0
layer underlying STILTS. The full documentation can be found in the user manual and javadocs on
the STIL page, and all the java methods can be used from JyStilts, but in most cases there are more
pythonic equivalents provided, as described above.

Here are some examples of these methods in use:

>>> jnport stilts
>>> xsc = stilts.tread('/data/table/2mass_xsc.xm') # read table

>>> xsc. node_count () # count rows and cols

colums: 6 rows: 1646844

>>> print xsc.colums() # full info on colums

(id(string), ra(Doubl e)/degrees, dec(Double)/degrees, jmag(Double)/nmag, hmag(Doubl e)/ mg,
>>> print [str(col) for col in xsc.colums()] # colum nanes only

['id", 'ra", "dec', "jmag', 'hmag', 'kmag']

>>> row = xsc[1000000] # examne mllionth row

>>> print row
(u' 19433000+4003190', 295.875, 40.055286, 14.449, 13.906, 13.374)

>>> print row 0] # cell by index
19433000+4003190
>>> print rowf'ra'], row ' dec'] # cells by col nane

295. 875 40. 055286
>>> print |en(xsc) # count rows

k

SUN/256 22

1646844
>>> print |en(xsc+xsc) # concatenate
3293688
>>> print |en(xsc*100)
164684400
>>> for rowin xsc: # sel ect rows using python commands
. if rowf4] - rowf 3] > 3.0:
print row O]

11165243+2925509
20491597+5119089
04330238+0858101
01182715-1013248
11244075+5218078
>>> # same thing using stilts (50x faster)
>>> (xsc.cnd_select('hmag - jmag > 3.0')
.. .cnmd_keepcol s('id")

wite())

| 11165243+2925509 |
| 20491597+5119089 |
| 04330238+0858101 |
| 01182715-1013248 |
| 11244075+5218078 |

The following are all ways to obtain the value of a given cell in the table from the previous
example.

xsc.getCell (99, 0)
xsc[99] [0]
xsc[99]['id"]

xsc. col dat a(0) [99]
xsc.coldata('id)[99]

Some of these methods may be more efficient than others. Note that none of these methods will
work if the table has sequential-only access.

4.4 Tablefilter commands (cnd_*)

The STILTS table filters documented in Section 6.1 are available in JyStilts as table methods which
start with the "cnd_" prefix. The return value when calling the method on a table object is another
table object. The arguments, which are the same as those required for the command-line version, are
supplied as a list of unnamed arguments of the cnd_* function. In general the arguments are strings,
but numbers are accepted where appropriate. Use the python hel p command to see the usage of
each method.

So, to usethet ai | filter to select only the last ten lines of atable, you can write:

table.cnd_tail (10)
To set units of "Hz" for some columns using the col net a filter write:

table.cnd_colneta(' -units', 'Hz', 'AFREQ BFREQ CFREQ)

Note that where afilter argument is a space-separated list it must appear as a single argument in the
filter invocation, just asin command-line STILTS.

The filter commands are also available as module functions. This means that

stilts.cnd_head(table, 10)
and

SUN/256 23

tabl e. cnd_head(10)
have exactly the same meaning. It's a matter of taste which you prefer.

4.5 Table output modes (node_*)

The STILTS table output modes documented in Section 6.4 are available in JyStilts as table
methods which start with the "node_" prefix. These methods have no return value, but cause
something to happen, in some cases output to be written to standard output. Some of these methods
have named arguments, others have no arguments. Use the python hel p command to see the usage
of each method.

These methods are straightforward to use. The following example calculates statistics for a table
and writes the results to standard output:

>>> tabl e. node_stat s()

and this one attempts to send the table via the SAMP communications protocol to a running
instance of TOPCAT:

>>> t abl e. node_sanp(client="topcat')

The output modes are also available as module functions. This means that

stilts. mde_sanp(table, client="topcat')

and

t abl e. ode_sanp(client="topcat)
have exactly the same meaning. It's a matter of taste which you prefer.

4.6 Tasks

The STILTS tasks documented in Appendix B can be used under their usual names if they are
imported from the sti | ts module. STILTS parameters as are supplied as named arguments of the
python functions. In general they are either table objects for table input parameters or strings, but in
some cases python arrays are accepted, and numbers may be used where appropriate. The STILTS
input format (i fnt, i stream), filter (cmd/i cnd/ocnd) and output mode (onode) parameters are not
used however; instead perform filtering directly on the table inputs and outputs using the python
cnd_* and node_* table methods or functions.

Hereis an example of concatenating two similar tables together and writing the result:

>>> Its inmport tread, tcat

fr st
>>> t1 tread(' datal.csv', fm="csv')
>>> t2 tread(' data2.csv', fm="csv')
>>> t12 = tcat([t1,t2], seqcol ='seq')
>>> t12.wite('tl2.csv', fm="csv')

Note that for those tasks which have a parameter named "i n" in command-line STILTS, it has been
renamed as "i n_" for the python version, to avoid a name clash with the python reserved word. In
most cases, thei n parameter is the first, mandatory parameter in any case, and so can be referenced
by position as in the previous example (we could have written "t cat (i n_=[t 1, t 2]) " instead).

4.7 Calculation Functions

SUN/256 24

The various functions from the expression language listed in Section 9.5 are available directly from
JyStilts. Each of the subsections in that section is a class in the sti | ts module namespace, with
unbound functions representing the functions.

This means you can use them like this:

>>> jnport stilts
>>> print stilts. Tinmes. nj dTol so(54292)
2007-07-11T00: 00: 00

or likethis:

>>> fromstilts inport Coords
>>> di st = Coords. skyDi st anceDegrees(ral, decl, ra2, dec2)

SUN/256 25

5Tablel/O

Most of the tools in this package either read one or more tables as input, or write one or more tables
as output, or both. This section explains what kind of tables the tools can read and write, and how
you tell them where to find the tables to operate on.

In most cases input and output table specifications are given by parameters with the following
names (or ssimilar ones):
in
Location of the input table
i fot
Format of the input table

out
Location of the output table

of nt
Format of the output table

The values of these parameters are discussed in more detail below.

5.1 Table Locations

The location of tables for input and output are usually given using the i n and out parameters
respectively. These are often, but not always, filenames. The possibilities are these:

Filename
Very often, you will simply specify a filename as location, and the tool will just read
from/writeto it in the usual way.

URL
Tables can be read from URLs directly, and in some cases written to them as well. Some
non-standard URL protocols are supported as well as the usual ones. Thelistis:

htt p:
Read from HTTP resources.

ftp:
Read from anonymous FTP resources.

file:
Read from local files; not particularly useful since you can do much the same using just
the filename.

jar:
Speciaised protocol for looking inside Java Archive files - see JarURLConnection
documentation.

nmyspace:
Accesses files in the AstroGrid "MySpace" virtua file store. These URLs ook something
like "nyspace: / survey/iras_psc. xm ", and can access files in the myspace are that the
user is currently logged into. These URLSs can be used for both input and output of tables.
To use them you must have an AstroGrid account and the AstroGrid WorkBench or
similar must be running; if you're not currently logged in a dialogue will pop up to ask
you for name and password.

i vo:
Understands ivo-type URLs which signify files in the AstroGrid "MySpace" virtua file
store. These URLs look something like

SUN/256 26

". These URLs can be used for both input and output of tables. To use them you must
have an AstroGrid account and the AstroGrid WorkBench or similar must be running; if
you're not currently logged in adialogue will pop up to ask you for name and password.

j dbc:
Used for communicating with SQL-compliant relational databases. These are a bit
different to normal URLs - see section Section 3.4.

Minussign ("-")
The special location "-" (minus sign) indicates standard input (for reading) or standard output
(for writing). Thisallows you to use STILTS commandsin anormal Unix pipeline.

In any of these cases, for input locations compression is taken care of automatically. That means
that you can give the filename or URL of a file which is compressed using gzi p, bzi p2 or Unix
conpr ess and the program will uncompressit on the fly.

5.2 Table Formats

The generic table commands in STILTS (currently t pi pe, tcopy, tmulti, tmultin, tcat, tcatn,
tcube, tjoin,tmatchl, tmatch2, t mat chn, t skymat ch2, pl ot 2d, pl ot 3d, pl ot hi st, coneskynat ch,
sql skymat ch, tapquery, tapresunme and regquery) have no native format for table storage, they
can process data in a number of formats equally well. STIL has its own model of what a table
consists of, which isbasicaly:

Some per-table metadata (parameters)

A number of columns

Some per-column metadata

A number of rows, each containing one entry per column

Some table formats have better facilities for storing this sort of thing than others, and when
performing conversions STILTS does its best to translate between them, but it can't perform the
impossible: for instance there is nowhere in a Comma-Separated Values file to store descriptions of
column units, so these will be lost when converting from VOTable to CSV formats.

The formats the package knows about are dependent on the input and output handlers currently
installed. The ones installed by default are listed in the following subsections. More may be added
in the future, and it is possible to install new ones at runtime - see the STIL documentation for
details.

Some formats can be used to hold multiple tables in a single file, and others can only hold a single
table per file.

5.2.1 Input Formats

Some of the tools in this package ask you to specify the format of input tables using the i f nt
parameter. The following list gives the values usualy alowed for this (matching is
case-insensitive):

fits
FITS format - FITS binary or ASCII tables can be read. For commands which take a single
input table, by default the first table HDU in the file will used, but this can be atered by
supplying the HDU index after a'# sign, so "table.fits#3" means the third HDU extension.

colfits

Column-oriented FITS format. This is where a table is stored as a BINTABLE extension
which contains a single row, each cell of the row containing a whole column of the table it

SUN/256 27

represents. This has different performance characteristics from normal FITS tables; in
particular it may be considerably more efficient for very large, and especialy very wide tables
where not all of the columns are required at any one time. Only available for uncompressed
fileson disk.

vot abl e
VOTable format - any legal version 1.0, 1.1 or 1.2 format VOTable documents, and many
illegal ones, can be read. For commands which take a single input table, by default the first
TABLE element in the document is used, but this can be altered by supplying the O-based index
after a'#' sign, so "tablexml#4" means the fifth TABLE element in the document.

asci i
Plain text file with one row per column in which columns are separated by whitespace.

Ccsv

Comma-Separated Vaues format, using approximately the conventions used by M S Excel.

t st
Tab-Separated Table format, as used by Starlink's GAIA and ESO's SkyCat amongst other
tools.

i pac

IPAC Table Format.

wdc
World Datacentre Format (experimental).

For more details on these formats, see the descriptionsin SUN/253.

In some cases (when using VOTable or FITS format tables) the tools can detect the table format
automatically, and no explicit specification is necessary. If this isn't the case and you omit the
format specification, the tool will fail with a suitable error message. It is always safe to specify the
format explicitly; this will be slightly more efficient, and may lead to more helpful error messages
in the case that the table can't be read correctly.

5.2.2 Output Formats

Some of the tools ask you to specify the format of output tables using the of nt parameter. The
following list gives the values usually allowed for this; in some cases as you can see there are
several variants of a given format. You can abbreviate these names, and the first match in the list
below will be used, so for instance specifying votable is equivaent to specifying
vot abl e-t abl edata and fits isequivalenttofits- pl us. Matching is case-insensitive.

fits-plus
FITS file; primary HDU contains a VOTable representation of the metadata, subsequent
extensions contain one or more FITS binary tables (behaves the same asfi t s- basi ¢ for most
purposes)

fits-basic
FITSfile; primary HDU is data-less, subsequent extensions contain a FITS binary table

col fits-plus
FITS file containing a BINTABLE with a single row; each cell of the row contains a whole
column's worth of data. The primary HDU aso contains a VOTable representation of the
metadata.

col fits-basic
FITS file containing a BINTABLE with a single row; each cell of the row contains a whole
column’'s worth of data. The primary HDU contains nothing.

vot abl e-t abl edat a

SUN/256 28
V OTable document with TABLEDATA (pure XML) encoding

vot abl e- bi nary-inline
V OTable document with BINARY -encoded data inline within a STREAM&lement

vot abl e- bi nary- hr ef
VOTable document with BINARY -encoded data in a separate file (only if not writing to a
stream)

vot abl e-fits-href
V OTable document with FITS-encoded datain a separate file (only if not writing to a stream)

votable-fits-inline
V OTable document with FITS-encoded data inline within a STREAM &l ement

asci

Simple space-separated ASCI| file format

t ext
Human-readabl e plain text (with headers and column boundaries marked out)

CSvVv
Comma-Separated Vaue format. The first line is a header which contains the column names.

csv- noheader
Comma-Separated Vaue format with no header line.

t st
Tab-Separated Table format.

ht n
Standalone HTML document containing a TABLE element

ht i - el enent
HTML TABLE element

| at ex
LaTeX t abul ar environment

| at ex- docunent
LaTeX standalone document containing at abul ar environment

m rage
Mirage input format

For more details on these formats, see the descriptionsin SUN/253.

In some cases the tools may guess what output format you want by looking at the extension of the
output filename you have specified.

SUN/256 29

6 Table Pipelines

Several of the tasks available in STILTS take one or more input tables, do something or other with
them, and produce one or more output tables. Thisis a pretty obvious way to go about things, and in
the most straightforward case that's exactly what happens. you name one or more input tables,
specify the processing parameters, and name an output table; the task then reads the input tables
from disk, does the processing and writes the output table to disk.

However, many of the tasksin STILTS allow you to do pre-processing of the input tables before the
main job, post-processing of the output table after the main job, and to decide what happens to the
final tabular result, without any intermediate storage of the data. Examples of the kind of
pre-processing you might want to do are to rearrange the columns so that they have the right units
for the main task, or replace 'magic' values such as -999 with genuine blank values; the kind of
post-processing you might want to do is to sort the rows in the output table or delete some of the
columns you're not interested in. As for the destination of the final table, you might want to write it
to disk, but equally you might not want to store it anywhere, but only be interested in counting the
number of rows, or seeing the minima/maxima of a few of the columns, or you might want to send
it straight to TOPCAT or some other table viewing application for interactive analysis.

Clearly, you could achieve the same effect by running multiple applications. preprocess your
original input tables to write intermediate files on disk, run the main processing application which
reads those files from disk and writes a new output file, run another application to postprocess the
output file and write a new final output file, and finally do something with this such as counting the
rows in it or viewing it in TOPCAT. However, by doing it all within a single task instead, no
intermediate results have to be stored, and the whole sequence can be very much more efficient.
You can think of this (if it helps) like a Unix pipeline, except what is being streamed from the start
to the end of the pipe is not bytes, but table metadata and data. In most cases, the table data is
streamed through the pipeline arow at atime, meaning that the amount of memory required is small
(though in some cases, for instance row sorting and crossmatching, thisis not possible).

Tasks which allow this pre/post-processing, or "filtering”, have parameters with names like "cnd"
which you use to specify processing steps. Tasks with multiple input tables (t mat ch2, t skymat ch2,
tcatn, tjoi n) may have parameters named i cnd1, i cnd2, ... for preprocessing the different input
tables and ocnd for postprocessing the output table. t pi pe does nothing except filtering, so there is
no distinction between pre- and post-processing, and its filter parameter is just named cnd. t pi pe
additionally hasascri pt parameter which allows you to use atext file to write the commandsiin, to
prevent the command line getting too long. In both cases there is a parameter named onode which
defines the "output mode", that is, what happens to the post-processed output table that comes out
of the end of the pipeline.

Section 6.1 lists the processing steps available, and explains how to use them, Section 6.2 and
Section 6.3 describe the syntax used in some of these filter commands for specifying columns, and
Section 6.4 describes the available output modes. See the examples in the command reference, and
particularly thet pi pe examples (Appendix B.24.2), for some examples putting all this together.

6.1 Processing Filters

This section lists the filter commands which can be used for table pipeline processing, in
conjunction with crd- or scri pt -type parameters.

Y ou can string as many of these together as you like. On the command line, you can repeat the cnd
(or i cnd1, or ocnd...) parameter multiple times, or use one cnd parameter and separate different
filter specifiers with semicolons (';). The effect is the same.

It's important to note that each command in the sequence of processing steps acts on the table at that

SUN/256 30

point in the sequence. Thus either of the two identical invocations:

stilts tpipe cnd="delcols 1; delcols 1; delcols 1

stilts tpipe cmd="delcols 1' cnd="delcols 1' cnd='delcols 1'
has the same effect as

stilts tpipe cnd="delcols "1 2 3"

since in the first case the columns are shifted | eft after each one is deleted, so the table seen by each
step has one fewer column than the one before. Note also the use of quotes in the latter of the
examples above, which is necessary so that the <colid-list> of the del cols command is
interpreted as one argument not three separate words.

The available filters are described in the following subsections.

6.1.1 addcol

Usage:
addcol [-after <col-id> | -before <col-id>]

[-units <units>] [-ucd <ucd>] [-desc <description>]
<col - name> <expr >

Add a new column called <col - nane> defined by the algebraic expression <expr>. By default the
new column appears after the last column of the table, but you can position it either before or after a
specified column using the - bef ore or - af t er flags respectively. The-units, -ucd and - desc flags
can be used to define metadata values for the new column.

Syntax for the <expr > and <col -i d> argumentsis described in the manual.

6.1.2 addr esol ve

Usage:
addr esol ve <col -i d- obj nane> <col - nanme-ra> <col - nane- dec>

Performs name resolution on the string-valued column >col - i d- obj name< and appends two new
columns >col -nane-ra< and >col - name- dec< containing the resolved Right Ascension and
Declination in degrees.

Syntax for the <col -i d- obj name> argument is described in Section 6.2.

UCDs are added to the new columns in a way which tries to be consistent with any UCDs already
existing in the table.

Since this filter works by interrogating a remote service, it will obviously be slow. The current
implementation is experimental; it may be replaced in a future release by some way of doing the
same thing (perhaps a new STILTS task) which is able to work more efficiently by dispatching
multiple concurrent requests.

This software uses source code created at the Centre de Donnees astronomiques de Strasbourg,
France.

6.1.3 addskycoor ds

Usage:

SUN/256 31

addskycoords [-epoch <expr>] [-inunit deg|rad|sex] [-outunit deg|rad|sex]
<i nsys> <out sys> <col -i d1> <col -i d2> <col - nanel> <col - nane2>

Add new columns to the table representing position on the sky. The values are determined by
converting a sky position whose coordinates are contained in existing columns. The <col -i d>
arguments give identifiers for the two input coordinate columns in the coordinate system named by
<insys>, and the <col - name> arguments name the two new columns, which will be in the
coordinate system named by <out sys>. The <i nsys> and <out sys> coordinate system specifiers are
one of

i crs: ICRS (Hipparcos) (Right Ascension, Declination)

f k5: FK5 J2000.0 (Right Ascension, Declination)

f k4: FK4 B1950.0 (Right Ascension, Declination)

gal acti c: IAU 1958 Galactic (Longitude, L atitude)

super gal act i c: de Vaucouleurs Supergalactic (Longitude, Latitude)
ecliptic: Ecliptic (Longitude, L atitude)

The -inunit and - out uni t flags may be used to indicate the units of the existing coordinates and
the units for the new coordinates respectively; use one of degr ees, radi ans Or sexagesi mal (may
be abbreviated), otherwise degrees will be assumed. For sexagesimal, the two corresponding
columns must be string-valued in forms like hh:mm:ss.s and dd:mm:ss.s respectively.

For certain conversions, the value specified by the - epoch flag is of significance. Where significant
its value defaults to 2000.0.

Syntax for the <expr >, <col -i d1> and <col -i d2> arguments is described in the manual.

6.1.4 assert

Usage:

assert <expr>

Check that a boolean expression is true for each row. If the expression <expr > does not evaluate
true for any row of the table, execution terminates with an error. As long as no error occurs, the
output tableisidentical to the input one.
The exception generated by an assertion violation is of class
uk.ac.starlink.ttools.filter.AssertException athough that is not usually obvious if you are
running from the shell in the usual way.

Syntax for the <expr > argument is described in Section 9.

6.1.5 badval

Usage:
badval <bad-val > <colid-I|ist>

For each column specified in <col i d- 1 i st > any occurrence of the value <bad- val > isreplaced by a
blank entry.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.6 cache

SUN/256 32

Usage:
cache

Stores in memory or on disk a temporary copy of the table at this point in the pipeline. This can
provide improvements in efficiency if there is an expensive step upstream and a step which requires
more than one read of the data downstream. If you see an error like "Can't re-read data from stream”
then adding this step near the start of the filters might help.

The result of thisfilter is guaranteed to be random-access.

See also the r andomfilter, which caches only when the input table is not random-access.

6.1.7 check

Usage:
check

Runs checks on the table at the indicated point in the processing pipeline. This is strictly a
debugging measure, and may be time-consuming for large tables.

6.1.8 cl ear par ans

Usage:

cl ear parans <pname> ..

Clears the value of one or more named parameters. Each of the <pnane> values supplied may be
either a parameter name or a simple wildcard expression matching parameter names. Currently the
only wildcarding is a "*" to match any sequence of characters. cl earparans * will clear al the
parametersin the table.

It is not an error to supply <pname>s which do not exist in the table - these have no effect.

6.1.9col neta
Usage:

colnmeta [-name <nanme>] [-units <units>] [-ucd <ucd>] [-desc <descrip>]
<colid-list>

Modifies the metadata of one or more columns. Some or al of the name, units, ucd and description
of the column(s), identified by <col i d-1ist> can be set by using some or al of the listed flags.
Typically, <col i d-1i st > will simply be the name of a single column.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.10 del col s

Usage:
del cols <colid-Ilist>

Delete the specified columns. The same column may harmlessly be specified more than once.

Syntax for the <col i d- 1 i st > argument is described in Section 6.3.

SUN/256 33

6.1.11 every

Usage:

every <step>
Include only every <st ep>'th row in the result, starting with the first row.

6.1.12 expl odeal |

Usage:

explodeal I [-ifndim<ndinp] [-ifshape <di ns>]

Replaces any columns which is an N-element arrays with N scalar columns. Only columns with
fixed array sizes are affected. The action can be restricted to only columns of a certain shape using
the flags.

If the -i f ndi mflag is used, then only columns of dimensionality <ndi m> will be exploded. <ndi m»
may bel, 2,

If the -i f shape flag is used, then only columns with a specific shape will be exploded; <di ms> isa

Space- or comma-separated list of dimension extents, with the most rapidly-varying first, eg. 2 5'
to explode all 2 x 5 element array columns.

6.1.13 expl odecol s

Usage:
expl odecol s <colid-list>

Takes a list of specified columns which represent N-element arrays and replaces each one with N
scalar columns. Each of the columns specified by <colid-1ist> must have a fixed-length array
type, though not al the arrays need to have the same number of elements.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.14 fi xcol nanes

Usage:

fi xcol names

Renames all columns and parameters in the input table so that they have names which have
convenient syntax for STILTS. For the most part this means replacing spaces and other
non-alphanumeric characters with underscores. This is a convenience which lets you use column
names in algebraic expressions and other STILTS syntax.

6.1.15 head

Usage:

head <nr ows>

Include only the first <nr ows> rows of the table. If the table has fewer than <nr ows> rows then it
will be unchanged.

SUN/256 34

6.1.16 keepcol s

Usage:
keepcol s <colid-Ilist>

Select the columns from the input table which will be included in the output table. The output table
will include only those columns listed in <col i d-1ist>, in that order. The same column may be
listed more than once, in which case it will appear in the output table more than once.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.17 net a

Usage:

nmeta [<itenr ...]

Provides information about the metadata for each column. This filter turns the table sideways, so
that each row of the output corresponds to a column of the input. The columns of the output table
contain metadata items such as column name, units, UCD etc corresponding to each column of the
input table.

By default the output table contains columns for the following items:

I ndex: Position of columnin table

Narre: Column name

C ass: Datatype of objectsin column

Shape: Shape of array values

El Si ze: Size of each element in column (mostly useful for strings)
Uni t s: Unit string

Descri pti on: Description of datain the column

uch: Unified Content Descriptor

aswell as any table-specific column metadata items that the table contains.

However, the output may be customised by supplying one or more <i t em> headings. These may be
selected from the above as well as the following:

* UCD desc: Textua description of UCD

as well as any table-specific metadata. It is not an error to specify an item for which no metadata
existsin any of the columns (such entries will result in empty columns).

Any table parameters of the input table are propagated to the output one.

6.1.18 progress

Usage:

progress

Monitors progress by displaying the number of rows processed so far on the terminal (standard
error). This number is updated every second or thereabouts; if all the processing is done in under a
second you may not see any output. If the total number of rows in the table is known, an ASCI|-art
progress bar is updated, otherwise just the number of rows seen so far is written.

SUN/256 35

6.1.19 r andom

Usage:

random

Ensures that random access is available on thistable. If the table currently has random access, it has
no effect. If only sequential accessis available, the table is cached so that downstream steps will see
the cached, hence random-access, copy.

6.1.20 r andonvi ew

Usage:

randonvi ew

Ensures that steps downstream only use random access methods for table access. If the table is
sequential only, thiswill result in an error. Only useful for debugging.

6.1.21 r epeat

Usage:

repeat <count>

Repeats the rows of a table multiple times to produce a longer table. The output table will have
<count > times as many rows as the input table.

6.1.22 r epl acecol

Usage:

repl acecol [-name <name>] [-units <units>] [-ucd <ucd>] [-desc <descrip>]
<col -i d> <expr>

Replaces the content of a column with the value of an algebraic expression. The old values are
discarded in favour of the result of evaluating <expr>. You can specify the metadata for the new
column using the - nare, -units, -ucd and - desc flags; for any of these items which you do not
specify, they will take the values from the column being replaced.

It islegal to reference the replaced column in the expression, so for example "r epl acecol pi xsi ze
pi xsi ze*2" just multiplies the values in column pi xsi ze by 2.

Syntax for the <col -i d> and <expr > arguments is described in the manual.

6.1.23 r epl aceval

Usage:

repl aceval <ol d-val > <newval > <colid-1list>

For each column specified in <col i d-1i st> any instance of <ol d-val > is replaced by <new val >.
The value string 'nul | ' can be used for either <ol d- val ue> or <new val ue> to indicate a blank value
(but see also the badval filter).

Syntax for the <col i d- I i st > argument is described in Section 6.3.

SUN/256 36

6.1.24 r owr ange

Usage:

row ange <first> <l ast>|+<count>

Includes only rows in a given range. The range can either be supplied as "<fi rst > <l ast >", where
row indices areinclusive, or "<first > +<count >". In either case, the first row is numbered 1.

Thus, to get the first hundred rows, use either "r owr ange 1 100" or "row ange 1 +100" and to get
the second hundred, either "r owr ange 101 200" or "r owr ange 101 +100"

6.1.25 sel ect

Usage:

sel ect <expr>

Include in the output table only rows for which the expression <expr > evaluates to true. <expr >
must be an expression which evaluates to a boolean value (true/false).

Syntax for the <expr > argument is described in Section 9.

6.1.26 seqvi ew

Usage:

seqvi ew

Ensures that steps downstream see the table as sequential access. Any attempts at random access
will fail. Only useful for debugging.

6.1.27 set par am

Usage:

setparam [-type byte|short|int]|long|fl oat|doubl el bool ean|string]
[-desc <descrip>] [-unit <units>] [-ucd <ucd>]
<pnane> <pval >

Sets a named parameter in the table to a given value. The parameter named <pnane> is set to the
value <pval >. By default the type of the parameter is determined automatically (if it looks like an
integer it's an integer etc) but this can be overridden using the - t ype flag. The parameter description
may be set using the - desc flag.

6.1.28 sort

Usage:
sort [-down] [-nullsfirst] <key-Ilist>

Sorts the table according to the value of one or more algebraic expressions. The sort key
expressions appear, as separate (space-separated) words, in <key- | i st >; sorting is done on the first
expression first, but if that resultsin atie then the second oneis used, and so on.

Each expression must evaluate to a type that it makes sense to sort, for instance numeric. If the
- down flag is used, the sort order is descending rather than ascending.

SUN/256 37

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nul I sfirst flagisgiven then they are considered to come at the start instead.

Syntax for the <key- 1 i st > argument is described in Section 9.

6.1.29 sort head

Usage:

sorthead [-tail] [-down] [-nullsfirst] <nrows> <key-Ilist>

Performs a sort on the table according to the value of one or more algebraic expressions, retaining
only <nrows> rows at the head of the resulting sorted table. The sort key expressions appear, as
separate (space-separated) words, in <key- | i st >; sorting is done on the first expression first, but if
that resultsin a tie then the second one is used, and so on. Each expression must evaluate to a type
that it makes sense to sort, for instance numeric.

If the-tail flagisused, thenthelast <nr ows> rows rather than the first ones are retained.
If the - down flag is used the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nul I sfirst flagisgiven then they are considered to come at the start instead.

This filter is functionally equivalent to using sort followed by head, but it can be done in one pass
and is usually cheaper on memory and faster, as long as <nr ows> is significantly lower than the size
of the table.

Syntax for the <key- 1 i st > argument is described in Section 9.

6.1.30stats
Usage:
stats [<itenr ...]

Calculates statistics on the data in the table. This filter turns the table sideways, so that each row of
the output corresponds to a column of the input. The columns of the output table contain statistical
items such as mean, standard deviation etc corresponding to each column of the input table.

By default the output table contains columns for the following items:

Narre: Column name

Mean: Average

St Dev: Population Standard deviation
M ni mumi Numeric minimum

Maxi mumi Numeric maximum

NGood: Number of non-blank cells

However, the output may be customised by supplying one or more <i t em> headings. These may be
selected from the above as well as the following:

NBad: Number of blank cells

Vari ance: Population Variance

Sanpst Dev: Sample Standard Deviation
SanpVar i ance: Sample Variance

SUN/256 38

Skew: Gamma 1 skewness measure

Kurt osi s: Gamma 2 peakedness measure

Sum Sum of values

M nPos: Row index of numeric minimum

MaxPos: Row index of numeric maximum

Car di nal i t y: Number of distinct values in column; values >100 ignored
Medi an: Middle value in sequence

Quartilel: First quartile

Quartil e2: Second quartile

Quartile3: Third quartile

Additionally, the form "Q.nn" may be used to represent the quantile corresponding to the proportion
0.nn, e.q.:

* Q 25: First quartile
e Q 625: Fifth octile

Any parameters of the input table are propagated to the output one.
Note that quantile calculations (including median and quartiles) can be expensive on memory. If
you want to calculate quantiles for large tables, it may be wise to reduce the number of columns to

only those you need the quantiles for earlier in the pipeline. No interpolation is performed when
calculating quantiles.

6.1.31t abl enare

Usage:

t abl enanme <name>
Sets the table's name attribute to the given string.

6.1.32tail

Usage:

tail <nrows>

Include only the last <nr ows> rows of the table. If the table has fewer than <nr ows> rows then it will
be unchanged.

6.1.33 transpose

Usage:
transpose [-namecol <col-id>]

Transposes the input table so that columns become rows and vice versa. The - nanecol flag can be
used to specify a column in the input table which will provide the column names for the output
table. The first column of the output table will contain the column names of the input table.

Syntax for the <col -i d> argument is described in Section 6.2.

6.1.34 uni q

Usage:

SUN/256 39

uniq [-count] [<colid-list>]

Eliminates adjacent rows which have the same values. If used with no arguments, then any row
which has identical valuesto its predecessor is removed.

If the <col i d-1i st > parameter is given then only the values in the specified columns must be equal
in order for the row to be removed.

If the - count flag is given, then an additional column with the name DupCount will be prepended to
the table giving a count of the number of duplicated input rows represented by each output row. A
unique row has a DupCount value of 1.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.2 Specifying a Single Column

If an argument is specified in the help text for a command with the symbol <col -i d> it means you
must give a string which identifies one of the existing columnsin atable.

There are three ways you can specify a column in this context:

Column Name
The name of the column may be used if it contains no spaces and doesn't start with a minus
character (-'). It is usually matched case insensitively. If multiple columns have the same
name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; thisis a useful fallback if the column name isn't
suitable for some reason. The first column is 'l', the second is '2' and so on. You may
alternatively use the forms '$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running t pi pe with
onode=mret a OF onpde=st at s 0n the table may help.

Column ucd$ specifier
If the column has a Unified Content Descriptor (this will usually only be the case for VOTable
or possibly FITS format tables) you can refer to it using an identifier of the form
"ucd$<ucd- spec>". Depending on the version of UCD scheme used, UCDs can contain various
punctuation marks such as underscores, semicolons and dots; for the purpose of this syntax
these should all be represented as underscores ("_"). So to identify a column which has the
UCD "phot.mg; emopt.R"', you should use the identifier "ucd$phot_mag_em opt _r".
Matching is not case-sensitive. Futhermore, atrailing underscore acts as a wildcard, so that the
above column could also be referenced using the identifier "ucd$phot _mag_". If multiple

columns have UCDs which match the given identifer, the first one will be used.

Column utype$ specifier
If the column has a Utype (this will usually only be the case for VOTable or possibly FITS
format tables) you can refer to it using an identifier of the form "ut ype$<ut ype- spec>".
Utypes may contain various punctuation marks such as colons and dots; for the purpose of this
syntax these should all be represented as underscores (*_"). So to identify a column which has
the Utype "ssa: Access. Format ", you should use the identifier "ut ype$ssa_Access_format".
Matching is not case-sensitive. If multiple columns have Utypes which match the given

identifier, the first one will be used.

6.3 Specifying a List of Columns

SUN/256 40

If an argument is specified in the help text for a command with the symbol <col i d-1i st> it means
you must give a string which identifies alist of zero, one or more of the existing columnsin atable.
The string you specify is a separated into separate tokens by whitespace, which means that you will
normally have to surround it in single or double quotes to ensure that it is treated as a single
argument and not several of them.

Each token in the <col i d- Ii st > string may be one of the following:

Column Name
The name of a column may be used if it contains no spaces and doesn't start with a minus
character (-'). It is usually matched case insensitively. If multiple columns have the same
name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; thisis a useful fallback if the column name isn't
suitable for some reason. The first column is ‘1, the second is '2' and so on. You may
aternatively use the forms '$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running t pi pe with
onpde=net a Of onpde=st at s on the table may help.

Wildcard Expression
Y ou can use a simple form of wildcard expression which expands to any columns in the table
whose names match the pattern. Currently, the only special character is an asterisk ' which
matches any sequence of characters. To match an unknown sequence at the start or end of the
string an asterisk must be given explicitly. Other than that, matching is usualy case
insensitive. The order of the expanded list is the same as the order in which the columns
appear in the table.

Thus "col *" will match columns named col 1, Col um2 and COL_1024, but not decd d. "* MAG*"
will match columns named magni t ude, ABS_MAG_U and JMAG. "+ " on its own expands to alist of
al the columns of the table in order.

Specifying a list which contains a given column more than once is not usually an error, but what
effect it has depends on the function you are executing.

6.4 Output Modes

This section lists the output modes which can be used as the value of the onode parameter of t pi pe
and other commands. Typically, having produced a result table by pipeline processing an input one,
you will write it out by specifying onode=out (or not using the onode parameter at all - out isthe
default). However, you can do other things such as calculate statistics, display metadata, etc. In
some of these cases, additional parameters are required. The different output modes, with their
associated parameters, are described in the following subsections.

6.4.1 cqi

Usage:
onmode=cgi of nt =<out - f or mat >

Writes atable to standard output in away suitable for use as output from a CGl (Common Gateway
Interface) program. This is very much like out mode but a short CGI header giving the MIME
Content-Type is prepended to the output

Additional parameters for this output mode are:

SUN/256 41

of M = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters).

[Default: vot abl e]

6.4.2 count

Usage:
onbde=count

Counts the number of rows and columns and writes the result to standard output.

6.4.3 di scard

Usage:
onpde=di scard

Reads al the data in the table in sequential mode and discards it. May be useful in conjunction with
theassert filter.

6.4.4 et a

Usage:
onpde=net a

Prints the table metadata to standard output. The name and type etc of each column is tabulated, and
table parameters are also shown.

See the net a filter for more flexible output of table metadata.

6.4.5 out

Usage:
onode=out out =<out -t abl e> of nt =<out - f or mat >

Writes a new table.

Additional parameters for this output mode are:

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

[Default: -]

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (aut o)]

SUN/256 42

6.4.6 pl astic

Usage:

onmode=pl astic transport=string|file client=<app-nanme>

Broadcasts the table to any registered Plastic-aware applications. PLASTIC, the PLatform for
AStronomical Tool InterConnection, is a tool interoperability protocol. A Plastic hub must be
running in order for thisto work.

Additional parameters for this output mode are:

transport = string|file
Determines the method (PLASTIC message) used to perform the PLASTIC communication.
The choices are

e string: VOTable seridized as a string and passed as a cal parameter
(i vo: //vot ech. or g/ vot abl e/ | oad). Not suitable for very largefiles.

 file: VOTable written to a temporary file and the filename passed as a call parameter
(i vo: //vot ech. or g/ vot abl e/ | oadFr onURL). The file ought to be deleted once it has been
loaded. Not suitable for inter-machine communication.

If novalueisset (nul 1) then adecision will be taken based on the apparent size of the table.

client = <app-nanme>
Gives the name of a PLASTIC listener application which is to receive the broadcast table. If a
non-null value is given, then only the first registered application which reports its application
name as that value will receive the message. If no value is supplied, the broadcast will be to al
listening applications.

6.4.7 sanp

Usage:

onode=sanp format=<val ue> cli ent =<nane-or-i d>

Sends the table to registered SAMP-aware applications subscribed to a suitable table load M Type.
SAMP, the Simple Application Messaging Protocol, is a tool interoperability protocol. A SAMP
Hub must be running for thisto work.

Additional parameters for this output mode are:

format = <val ue>

Gives one or more table format types for attempting the table transmission over SAMP. If
multiple values are supplied, they should be separated by spaces. Each value supplied for this
parameter corresponds to a different MType which may be used for the transmission. If a
single value is used, a SAMP broadcast will be used. If multiple values are used, each
registered client will be interrogated to see whether it subscribes to the corresponding MTypes
in order; the first one to which it is subscribed will be used to send the table. The standard
options are

* votable:useMTypetabl e. | oad. vot abl e
e fits:useMTypetable.load.fits

If any other string is used which corresponds to one of STILTS's known table output formats,
an attempt will be made to use an ad-hoc MType of theformt abl e. | oad. f or mat .

[Default: vot abl e fits]

SUN/256 43

client = <nanme-or-id>
Identifies a registered SAMP client which is to receive the table. Either the client ID or the
(case-insensitive) application name may be used. If a non-null value is given, then the table
will be sent to only the first client with the given name or ID. If no value is supplied the table
will be sent to all suitably subscribed clients.

6.4.8stats

Usage:
onpde=st ats

Calculates and displays univariate statistics for each of the numeric columns in the table. The
following entries are shown for each column as appropriate:

e mean
* population standard deviation
e minimum

e maximum

* number of non-null entries

Seethest at s filter for more flexible statistical calculations.

6.4.9 t opcat

Usage:
onode=t opcat

Attempts to display the output table directly in TOPCAT. If a TOPCAT instance is already running
on the local host, an attempt will be made to open the table in that. A variety of mechanisms are
used to attempt communication with an existing TOPCAT instance. In order:

1. SAMPusing existing hub (TOPCAT v3.4+ only, requires SAMP hub to be running)

2. PLASTIC using existing hub (requires PLASTIC hub to be running)

3. SOAP (requires TOPCAT to run with somewhat deprecated - soap flag, may be limitations on
table size)

4. SAMP using internal, short-lived hub (TOPCAT v3.4+ only, running hub not required, but
may be slow. It's better to start an external hub, e.g. t opcat - ext hub)

Failing that, an attempt will be made to launch a new TOPCAT instance for display. This only
worksif the TOPCAT classes are on the class path.

If large tables are involved, starting TOPCAT with the - di sk flag is probably a good idea.

6.4.10t osql

Usage:

onmode=t osql protocol =<j dbc- prot ocol > host =<val ue> db=<db- nane>
dbt abl e=<t abl e- name> writ e=creat e| dr opcr eat e| append
user =<user nanme> passwor d=<passwd>

Writes a new table to an SQL database. You need the appropriate JDBC drivers and
-Dj dcb. dri vers Set asusual (see Section 3.4).

Additional parameters for this output mode are:

SUN/256 44

protocol = <jdbc-protocol >
The driver-specific sub-protocol specifier for the JDBC connection. For MySQL's Connector/J
driver, thisisnysql , and for PostgreSQL's driver it is post gr esql . For other drivers, you may
have to consult the driver documentation.

host = <val ue>
The host which is acting as a database server.

[Default: | ocal host]

db = <db-nane>
The name of the database on the server into which the new table will be written.

dbt abl e = <t abl e- nane>
The name of the table which will be written to the database.

wite = create|dropcreate| append
Controls how the values are written to atable in the database. The options are:

* create: Creates a new table before writing. It is an error if a table of the same name
aready exists.

* dropcreate: Creates a new database table before writing. If a table of the same name
already exigts, it isdropped first.

* append: Appends to an existing table. An error results if the named table has the wrong
structure (number or types of columns) for the data being written.

[Default: creat e]

user = <user nane>
User name for the SQL connection to the database.

[Default: nbt]

password = <passwd>
Password for the SQL connection to the database.

SUN/256 45

7 Crossmatching

STILTS offers flexible and efficient facilities for crossmatching tables. Crossmatching is
identifying different rows, which may be in the same or different tables, that refer to the same item.
In an astronomical context such an item is usually, though not necessarily, an astronomical source
or object. This operation corresponds to what in database terminology is called ajoin.

There are various complexities to specifying such a match. In the first place you have to define
what is the condition that must be satisfied for two rows to be considered matching. In the second
place you must decide what happensiif, for a given row, more than one match can be found. Finally,
you have to decide what to do having worked out what the matched rows are; the result will
generally be presented as a new output table, but there are various choices about what columns and
rows it will consist of. Some of these issues are discussed in this section, and othersin the reference
sections on the tools themselves in Appendix B.

Matching can in general be a computationally intensive process. The algorithm used by the t mat ch*
tasksin STILTS, except in pathological cases, scales as O(N log(N)) or thereabouts, where N is the
total number of rows in all the tables being matched. No preparation (such as sorting) is required on
the tables prior to invoking the matching operation. It is reasonably fast; for instance an RA, Dec
positional match of two 10°-row catalogues takes of the order of 60 seconds on current (2005
laptop) hardware. Attempting matches with large tables can lead to running out of memory; the
calculation just mentioned required a java heap size of around 200Mb (- Xmx200M).

In the current release of STILTS the following tasks are provided for crossmatching between local
tables:

t mat ch2
Generic crossmatching between two tables.

t skymat ch2
Crossmatching between two tables where the matching criterion is a fixed separation on the
sky. This is smply a stripped-down version of t mat ch2 provided for convenience when the
full generality is not required.

tmat chl
Generic crossmatching internal to a single table. The basic task this performs is to identify
groups of rows within a single table which match each other.

t mat chn
Generic crossmatching between multiple (>2) tables.
tjoin
Trivia join operation between multiple tables in which no row re-ordering is required. This

barely warrants the term "crossmatch” and the concepts explained in the rest of this section are
not relevant to it.

7.1 Match Criteria

Determining whether one row represents the same item as another is done by comparing the values
in certain of their columns to see if they are the same or similar. The most common astronomical
case is to say that two rows match if their celestial coordinates (right ascension and declination) are
within a given small radius of each other on the sky. There are other possibilities; for instance the
coordinates to compare may be in a Cartesian space, or have a higher (or lower) dimensionality than
two, or the match may be exact rather than within an error radius....

If you just need to match two tables according to sky position with fixed errors you are

SUN/256 46

recommended to use the ssmplified t skymat ch2 task. For other cases, this section describes how to
specify much more flexible match criteriafor use with t mat chi, t mat ch2 or t mat chn by setting the
following parameters:

mat cher
Name of the match criteriatype.

par ans
Fixed value(s) giving the parameters of the match (typically an error radius). If more than one
valueisrequired, the values should be separated by spaces.

val ues*
Expressions to be compared between rows. This will typically contain the names of one or
more columns, but each element may be an algebraic expression (see Section 9) rather than
just a column name if required. If more than one value is required, the values should be
separated by spaces. There is one of these parameters for each table taking part in the match,
so for t mat ch2 you must specify both val ues1 and val ues2.

t uni ng

Fixed value(s) supplying tuning parameters for the match algorithm. If there is more than one
value, they should be separated by spaces. This value will have a sensible default, so you do
not need to supply it, but providing adjusted values may make your match run faster or require
less memory (or the reverse). Adjusting tuning parameters will not change the result of any
match, only the resources required to run it. Looking at the progress output of a match will
indicate what tuning values have been used; adjusting the value a bit up or down is a good way
to experiment.

For example, suppose we wish to locate objects in two tables which are within 3 arcseconds of each
other on the sky. One table has columns RA and DEC which give coordinates in degrees, and the
other has columns RArad and DECrad which give coordinates in radians. These are the arguments
which would be used to tell t mat ch2 what the match criteria are:

mat cher =sky

par ans=3

val uesl=' RA DEC

val ues2='r adi ansToDegr ees(RArad) radi ansToDegr ees(DECrad)’
It is clearly important that corresponding values are comparable (in the same units) between the
tables being matched, and in geometrically sensitive cases such as matching on the sky, it's
important that they are the units expected by the matcher as well. To determine what those units are,
either consult the roster below, or run the following command:

stilts tmatch2 hel p=mat cher

which will tell you about all the known matchers and their associated par ans, val ues* and t uni ng
parameters.

The following subsections list the basic nat cher types and the requirements of their associated
parans, val ues* and tuning parameters. The units of the required values are given where
significant.

7.1.1sky: Sky Matching

mat cher =sky val ues* ="' <r a/ degrees> <dec/ degr ees>'
par ams=' <max-error/arcsec>'
t uni ng=' <heal pi x- k>'

val ues*:

SUN/256 47

* raldegrees: Right Ascension
* dec/ degrees: Declination

par ams:

* nmax-error/arcsec. Maximum separation along a great circle - additional
constraint to per-object errors

t uni ng:

* heal pi x-k: Controls sky pixel size. Lega range 0 (60deg) - 20 (0.2"). k =
log2(nside).

The sky matcher compares positions on the celestial sphere with a fixed error radius. Rows are
considered to match when the two (ra, dec) positions are within max-error arcseconds of each
other along a grest circle.

In fact this matching is not restricted to equatorial coordinates - the ra and dec parameters may
represent any longitude-like and latitude-like coordinates in degrees, since the spherical geometry
for the matching is unchanged under such transformations.

7.1.2 skyerr: Sky Matching with Per-Object Errors

mat cher =skyerr val ues*=' <ra/ degrees> <dec/ degrees> <error/arcsec>'
par ams=' <max-error/arcsec>'
t uni ng=' <heal pi x- k>'

val ues*:

* raldegrees: Right Ascension
* dec/ degrees: Declination
* error/arcsec: Per-object error radius along a great circle

par ans:

* max-error/arcsec. Maximum separation along a great circle - additional
constraint to per-object errors

tuni ng:

* heal pi x-k: Controls sky pixel size. Lega range O (60deg) - 20 (0.2"). k =
log2(nside).

The skyerr matcher compares positions on the celestial sphere using error radii which can be
different for each row. Rows are considered to match when the separation between the two r a, dec
positions is smaller than both the fixed max- error value and the sum of the two per-row error
values. If either of the error vauesis blank, then any separation up to max- error is considered a
match.

According to these rules, you might decide to set nax- error to an arbitarily large number so that
only the sum of error swill determine the actual match criteria. However please don't do this, since
max-error also functions as a tuning parameter for the matching algorithm, and ought to be
reasonably close to the actual maximum acceptable separation. Note that if you set the heal pi x- k
parameter explicitly, you may set max- error aslargeasyou like.

SUN/256 48

As with sky matching, other longitude/latitude coordinate pairs may be used in place of right
ascension and declination.

7.1.3 sky3d: Spherical Polar Matching

mat cher =sky3d val ues*=' <r a/ degr ees> <dec/ degrees> <di st ance>"'
parans='<error/Units of distance>'
tuni ng=' <scal e-fact or>'

val ues*:

* raldegrees: Right Ascension
* dec/ degrees: Declination
* distance: Distance along the line of sight

par ans:

 error/Units of distance: Maximum Cartesian separation for match

t uni ng:

* scale-factor: Scaling factor to adjust bin size; larger values mean larger bins.
Minimum legal valueis 1.

The sky3d matcher compares positions in the volume of the sky taking account of distance from the
observer. The position in three-dimensional space is calculated for each row using the ra, dec and
di stance as spherical polar coordinates, where di st ance is the distance from the observer along
the line of sight. Rows are considered to match when their positions in this space are within err or
units of each other. The units of err or are the same as those of di st ance.

As with sky matching, other longitude/latitude coordinate pairs may be used in place of right
ascension and declination.

7.1.4 exact : Exact Matching

mat cher =exact val ues*=' <mat ched- val ue>'

val ues*.

* matched-val ue: Vauefor exact match

The exact matcher compares arbitrary key values for exact equality. Rows are considered to match
only if the values in their mat ched- val ue columns are exactly the same. These values can be
strings, numbers, or anything else. A blank value never matches, not even with another blank one.
Since the par ans parameter holds no values, it does not have to be specified. Note that the values
must also be of the same type, so for instance a Long (64-bit) integer value will not match an
Integer (32-bit) value.

7.1.51d, 2d, ...: Isotropic Cartesian Matching

mat cher =1d val ues*=" <x>'
parans=' <error>'

SUN/256 49

t uni ng=' <scal e-fact or>

val ues*:

» x: Cartesian co-ordinate #1

par ans:

e error: Maximum Cartesian separation for match

tuni ng:

* scale-factor: Scaling factor to adjust bin size; larger values mean larger bins.
Minimum legal valueis 1.

mat cher =2d val ues*=' <x> <y>
paranms=' <error>'
t uni ng=' <scal e-factor>
val ues*:
* x: Cartesian co-ordinate #1
e y: Cartesian co-ordinate #2

par ams:

* error: Maximum Cartesian separation for match

t uni ng:

» scale-factor: Scaling factor to adjust bin size; larger values mean larger bins.
Minimum legal valueis 1.

The 1d matcher compares positions in 1-dimensional Cartesian space. Rows are considered to
match if their x column values differ by no morethanerror.

The 2d matcher compares postions in 2-dimensional Cartesian space. Rows are considered to match
if the difference in their (x,y) positions reckoned using Pythagorasislessthanerror.

Matching in any number of Cartesian dimensions can be done by extending this syntax in the
obvious way.

7.1.6 2d_ani sot r opi c, Anisotropic Cartesian Matching

mat cher =2d_ani sotropi ¢ val ues*=' <x> <y>'
parans='<error-in-x> <error-in-y>
t uni ng=' <scal e-fact or>
val ues*:
» x: Cartesian co-ordinate #1
» y: Cartesian co-ordinate #2

par ans:

e error-in-x: Radiusof error elipsein Cartesian co-ordinate #1 direction

SUN/256 50

* error-in-y: Radiusof error ellipsein Cartesian co-ordinate #2 direction

t uni ng:

» scale-factor: Scaling factor to adjust bin size; larger values mean larger bins.
Minimum legal valueis 1.

The 2d_ani sot ropi ¢ matcher compares positions in 2-dimensional Cartesian space using an
anisotropic metric. Rows are considered to match if their (x,y) positions fall within an error elipse
with radii error-in-x,error-in-y of each other. This kind of match will typically be used for
non-'spatial’ spaces, for instance (magnitude,redshift) space, in which the metrics along different
axes are not related to each other.

Matching in any number of dimensions of Cartesian space using an anisotropic metric can be done
by extending this syntax in the obvious way.

7.1.7 Custom Matchers

For advanced users, it is possible to supply the name of a class on the classpath which implements
the uk. ac. starlink. tabl e. j oi n. Mat chEngi ne interface and which has a no-arg constructor. This
allows java programmers to write their own matchers using any match criteria and binning
algorithms they choose.

7.1.8 Matcher Combinations

In addition to the matching criteria listed in the previous subsections, you can build your own by
combining any of these. To do this, take the two (or more) matchers that you want to use, and
separate their names with a"+" character. The val ues* parameters of the combined matcher should
then hold the concatenation of the val ues* entries of the constituent matchers, and the same for the
par ans parameter.

So for instance the matcher "sky+1d" could be used with the following syntax:

mat cher =sky+1d val ues*=' <ra/ degr ees> <dec/ degrees> <x>'
parans=' <max-error/arcsec> <error>'
t uni ng=' <heal pi x- k> <scal e-fact or>'

val ues*:

* raldegrees: Right Ascension
* dec/ degrees: Declination
» x: Cartesian co-ordinate #1

par ans:

* max-error/arcsec. Maximum separation along a great circle - additional
constraint to per-object errors
e error: Maximum Cartesian separation for match

tuni ng:

* heal pi x-k: Controls sky pixel size. Lega range O (60deg) - 20 (0.2"). k =
log2(nside).

* scale-factor: Scaling factor to adjust bin size; larger values mean larger bins.
Minimum legal valueis 1.

SUN/256 51

This would compare positions on the sky with an additional scalar constraint. Rows are considered
to match if both their r a, dec positions are within max- er r or arcseconds of each other along a great
circle (asfor mat cher =sky) and their x values differ by no more than error (asfor mat cher =1d).

This example might be used for instance to identify objects from two catalogues which are within a
couple of arcseconds and also 0.5 blue magnitudes of each other. Rolling your own matchersin this
way can give you very flexible match constraints.

7.2 Multi-Object Matches

The generic matching in STILTS is determined by specified match criteria, as described in Section
7.1. These criteria give conditions for whether two items (table rows) count as matched with each
other. In the case of a pair match, as provided by t mat ch2, it is clear how thisisto be interpreted.

However, some of the matching tasks (t mat chn in group mode and t mat ch1) search for match
groups which may have more than two members. This section explains precisely how STILTS
applies the pair-wise matching criteriait is given to identifying multi-object groups.

In a multi-object match context, the matcher identifies a matched group as the largest possible
group of objects in which each is linked by a pair match to any other object in the group. Formally,
the set of matched groups is a set of disoint graphs whose nodes are input table rows and whose
edges are successful pair matches, where no successful pair match exists between nodes in different
elements of that set. Thus the set has a minimal number of elements, and each of its elements is a
matched group of maximal size. The important point to note is that for any particular pair in a
matched group, there is no guarantee that the two objects match each other, only that you can hop
from one to the other via pairs which do match.

So in the case of a multi-object sky match on a field which is very crowded compared to the
specified error radius, it is quite possible for all the objects in the input table(s) to end up as part of
the same large matching group. Results at or near this percolation threshold are (a) probably not
useful and (b) likely to take a long time to run. Some care should therefore be exercised when
specifying match criteriain multi-object match contexts.

SUN/256 52

8 Plotting

As of Version 2.0 (October 2008), STILTS offers table plotting commands. These acquire a data
point from each line of one or more input tables, perhaps influenced by the pipelining operations
described in Section 6, and generate some kind of graphical plot from the result. At time of writing,
the following plot types are available;

e plot2d: 2D Scatter Plot
e plot3d: 3D Scatter Plot
* plothist: Histogram

but see also t cube for generating N-dimensional histograms as FITS files. It is hoped to add more
plot types in future releases.

The plotting commands offer considerable control over what is plotted and how it is represented,
and thus unavoidably have rather a large number of parameters. When looking at the command
documentation in Appendix B the Usage sections may look rather daunting. However, the
discusson below and the Examples sections should help. Generating a simple plot is
straightforward and can be done with only three or four parameters; if you have more complicated
requirements for data selection or specific preferences for appearance then you can consult the
documentation for the additional options.

As asimple example, if afile "cat.fits' contains the columns RMAG and BMAG for red and blue
magnitudes, you can draw atwo-dimensional colour-magnitude scatter plot with the command:

stilts plot2d in=cat.fits xdata=RVAG ydat a=BVAG RVAG

Since an output file is not specified, the plot is shown on the screen for convenience. To send the
output to a PNG file, do instead:

stilts plot2d in=cat.fits xdata=RVAG ydat a=BMAG out =pl ot . png of nt =png

In some cases (including the above), the of nt parameter is not required since STILTS may be able
to guess the format from the output file name. Various other options for output and graphics formats
are described in Section 8.2 and Section 8.3

Some of the parameters use suffixes to define data sets and therefore behave a bit differently from
the parameters elsewhere in STILTS - a discussion of these is given in the following subsection.
Some other plotting-specific topics are a so discussed below.

8.1 Parameter Suffixes

Some of the parameters for the plotting tasks behave a little bit differently to other parameters in
STILTS, in order to accommodate related sets of values. If you look at the usage of one of the
plotting commands, for instance in Appendix B.4.1, you will see that a number of the parameters
have the suffixes "N' or "Ns". These suffixes can be substituted with any convenient string to
identify parameters which relate to the same input datasets or subsets. Specificaly:
Suffix " N*:
Denotes an input dataset. At least the i nN parameter must be given to identify the source of the
data; any other parameters with the same value of the N suffix relate to that dataset. A dataset
here refers to a particular set of plot data from a table; in most cases each input table
corresponds to a different dataset, though two datasets may correspond to different sets of
columns from the same table.
Suffix " NS":
Denotes a particular subset of the rows in dataset N. At least the subset NS parameter must be
given to identify the expression by which the subset is defined; any other parameters with the

SUN/256 53

same vaue of the Ns suffix relate to that subset.

Some examples will help to illustrate. The following will generate a Cartesian plot of catalogue
position from a single dataset:

stilts plot2d in=gals.fits xdata=RA ydat a=DEC

In this case the N suffix is present on each of the parametersi n, xdat a and ydat a, but is equal to the
empty string, hence invisible. This is perfectly legal, and convenient when only a single table isin
use. If we wish to overplot two datasets however, the dataset suffixes (or one of them at least) have
to be made explicit so that different ones can be used, for instance:

stilts plot2d inl=gals.fits xdatal=RA ydat al=DEC
in2=stars.fits xdata2=RAJ2000 ydat a2=DEJ2000
The suffix values "1" and "2" are quite arbitrary and can be chosen as convenient, so the following
would do exactly the same as the previous example:

stilts plot2d in_GAL=gals.fits xdat a_GAL=RA ydat a_GAL=DEC
i n_STAR=stars.fits xdata STAR=RAJ2000 ydata_ STAR=DEJ2000
The other parameters which have the N suffix apply only to the matching dataset, so for instance the
following:

stilts plot2d inl=gals.fits xdatal=RA ydat al=DEC t xt| abel 1=NGC_|I D
in2=stars.fits xdata2=RAJ2000 ydat a2=DEJ2000
would draw text labels adjacent to the points from only the galsfits file giving the contents of its
NGC_ID column.

The Ns suffix identifies distinct row subsets within the same or different datasets. A subset is
defined by supplying a boolean inclusion expression (each row is included only if the expression
evaluates true for that row) as the value of asubset NS parameter. If, asin al the examples we have
seen so far, no subset NS parameter is supplied for a given dataset, then it is treated as a special
case, asif asingle subset with a name equal to the empty string (s="") containing all rows has been
specified. So our earlier simple example:

stilts plot2d in=gals.fits xdata=RA ydata=DEC
Isequivaent to

stilts plot2d in=gals.fits xdata=RA ydata=DEC subset=true

If we wish to split the plotted points into two sets based on their R-B colours, we can write
something like:

stilts plot2d in=gals.fits xdata=RA ydata=DEC
subset X=' RVAG BMAG>0' subset Y=' RVAG- BVAG<=0'
This will generate a plot with two subsets shown using different colours and/or plotting symbols.
These colours and symbols are selected automatically. More control over the appearance can be
exercised by setting values for some of the other parameters with Ns suffixes, for instance

stilts plot2d in=gals.fits xdata=RA ydat a=DEC
subset _A=" RMAG- BMAG>0' col our _A=bl ue
subset B=' RMAG BMAG<=0"' col our_B=red

Again, the suffix strings can be chosen to have any value as convenient.

The dataset- and subset-specific parameters must be put together if there are multiple datasets with
multiple subsets to plot simultaneously, for instance:

SUN/256 54

stilts plot2d in_1l=gals.fits xdata_1=RA ydata_1=DEC
subset _1_ A=' RVAG BMAG>0' col our _1_ A=bl ue
subset _1 B=' RVAG BMAG<=0"' col our_1 B=red
in_2=stars.fits xdata_2=RAJ2000 ydat a_2=DEJ2000
col our _2=green

Finaly, it's not quite true that the suffixes chosen have no effect on the plot; they may influence the
order in which sets are plotted. Markers drawn for sets plotted earlier may be obscured by the
markers drawn for sets plotted later, so this can affect the appearance of the plot. If you want to
control this, use the sequence parameter. For instance, to ensure that star data appears on top of
galaxy datain the plot, do the following:

stilts plot2d in_GAL=gals.fits xdat a_GAL=RA ydat a_ GAL=DEC
i n_STAR=stars.fits xdata_STAR=RAJ2000 ydat a_STAR=DEJ2000
sequence=_CAL, _STAR

More examples can be found in the Examples subsections of the individual plotting command
descriptionsin Appendix B.

8.2 Output Modes

The plots generated by the plotting commands can be used in various different ways. One thing you
might want to do is to write the output to a file in a given graphics format (out); another is to
preview it directly on the screen (swi ng). By default one or other of these will happen depending on
whether you specify an output file. However there are other possibilities; these are listed in the
following subsections.

Except for display to the screen, these modes should work happily on a headless machine (one with
no graphics display, as may be the case for a web server). When running headless, you may find it
necessary to set the java system property "j ava. awt . headl ess" tOt r ue - see Section 3.3.

The default output mode is aut o, which means that output isto afileif an output file is specified, or
to the screen if it is not. So often you don't need to specify the onode parameter explicitly.

8.2.1swing

Usage:

onbde=sw ng
Plot will be displayed in awindow on the screen.

8.2.2 out

Usage:
onode=out out=<out-file> of m=png|gif|jpeg| pdf]|eps|eps-gzip

Plot will be written to afile given by out using the graphics format given by of nt .

8.2.3 cgi

Usage:
onode=cgi of nt=png| gi f|]j peg| pdf | eps| eps-gzi p

SUN/256 55

Plot will be written in a way suitable for CGI use direct from a web server. The output is in the
graphics format given by of nt , preceded by a suitable "Content-type" declaration.

8.2.4 di scard

Usage:
onpde=di scard

Plot isdrawn, but discarded. Thereis no output.

8.25auto

Usage:
onpde=aut o [out=<out-file>]

Behaves as swi ng or out mode depending on presence of out parameter

8.3 Output Formats

Severa of the plot output modes write the plot in some graphics format or other. When selecting an
output format it is important to understand the distinction between bitmapped and vector formats;
basically bitmapped formats represent the image as a grid of finite-sized pixels while vector formats
notionally draw smooth lines. Bitmapped formats are fine for a computer screen, but for high
quality paper printouts you will want a vector format. You can convert from vector to bitmapped
but not (usefully) in the other direction. There are a couple of subtleties to this distinction specific
to STILTS graphical output as discussed below.

The following formats are the available values for the of mt parameter of the various plot
commands:

png
PNG format. This is a flexible bitmapped format providing transparency and an unlimited
number of colours with good compression. It is fairly widely supported by browsers and other
image viewers, but perhaps not as widely as GIF.

gif
GIF format. This is a very widely-supported bitmapped format providing transparency. The
number of colours is limited to 255 however, so if you are using auxiliary axes (colour
variation to represent higher dimensionality) or other plot features which use a wide range of
colours you may see image degradation.

j peg
JPEG format. Thisis a bitmapped format intended primarily for photographs. Transparency is
not supported, and although there is no limit on the maximum number of colours, its lossiness
means that plots generated using it generally look a bit smudged.

pdf
Portable Document Format. This is the format which can be read by Adobe's Acrobat Reader.
It is a widely portable vector format, and is suitable for printing at high resolution, either
standalone or imported into some other presentation format. However, there are a couple of
caveats when it comesto using it with STILTS plots.

1. If used to plot a very large number of points, the output PDF file can get quite large,
though it's much better than for eps output (see below).

2. Because of the way that STILTS does its transparency rendering, the only way that plots
with partially transparent points can be rendered is to draw the body of the plot as a

SUN/256 56

bitmap rather than as vector graphics. This is probably a blessing in disguise since with
very large numbers of points avector PDF file could get unmanageably large in any case.
So if there is any transparency in the plot, the interior of the plot will be pixellated. The
axes and annotations outside of the plot will still be drawn in vector format however.

eps
Encapsulated Postscript. Thisis avector format which is suitable for printing at high resolution
either standalone or imported into some other presentation format (you may need to convert it
via PDF depending on the intended destination). However, there are a couple of caveats when
it comesto using it with STILTS plots.

1. Unfortunately the postscript driver used by STILTS is not very efficient and can result in
large, sometimes very large, postscript output files. Thisis likely to be a problem for plots
with a large number of non-transparent points. For this reason eps- gzi p or pdf may be a
better choice.

2. Postscript has no support for partial transparency, so if plots are drawn with partially
transparent points (common for very large data sets) the only way they can be rendered is
by drawing the body of the plot as a bitmap rather than as vector graphics. This is
probably a blessing in disguise since with very large numbers of points a vector postscript
filewould likely be unmanageably large in any case. So if there is any transparency in the
plot, the interior of the plot will be pixellated. The axes and annotations outside of the
plot will still be drawn in vector format however.

eps-gzip
Just like the eps format above except that the output is automatically compressed using the
GZIP format as it iswritten. Postscript compresses well (typically afactor of 5-10).

8.4 Comparison with TOPCAT plotting

The intention is in future releases for STILTS to provide al the plot types and facilities which are
available from TOPCAT. STILTS may additionally offer more detailed options for controlling plot
appearance, for instance of font and colour selection and tick mark placement. At time of writing
however, only the 2d scatter plot, 3d Cartesian scatter plot and histogram plot types are available,
though these do include the most useful plot types and the most of the options from TOPCAT for
these plot types are available from STILTS too.

As well as the advantage (in some contexts) of being able to generate plots in a scriptable fashion
rather than from a graphical interactive interface, STILTS allows plots to be made from datasets of
unlimited size. While TOPCAT has an effective limit of a few million rows, STILTS can stream
data from tables to do its plotting, so a plot can be made representing an unlimited number of rows
without large memory requirements. In some cases this might lead to plotting times which are a bit
slower than TOPCAT - if this becomes an issue something may be done about it.

SUN/256 57

9 Algebraic Expression Syntax

Many of the STILTS commands alow you to use algebraic expressions based on table columns
when doing things like making row selections, defining new columns, selecting values to plot or
match, and so on. In these cases you are defining an expression which has a value in each row as a
function of the values in the existing columns in that row. This is a powerful feature which permits
you to manipulate and select table data in very flexible ways. The syntax for entering these
expressionsis explained in this section.

What you write are actually expressions in the Java language, which are compiled into Java
bytecode before evaluation. However, this does not mean that you need to be a Java programmer to
write them. The syntax is pretty similar to C, but even if you've never programmed in C most
simple things, and many complicated ones, are quite intutitive.

The following explanation gives some guidance and examples for writing these expressions.
Unfortunately a complete tutorial on writing Java is beyond the scope of this document, but it
should provide enough information for even a novice to write useful expressions.

The expressions that you can write are basically any function of all the column values which apply
to a given row; the function result can then be used where STILTS needs a per-row value, for
instance to define a new column. If the built-in operators and functions are not sufficient, or it's
unwieldy to express your function in one line of code, it is possible to add new functions by writing
your own classes - see Section 9.7.3.

Note that since these algebraic expressions often contain spaces, you may need to enclose them in
single or double quotes so that they don't get confused with other parts of the command string.

Note: if Java is running in an environment with certain security restrictions (a security manager
which does not permit creation of custom class loaders) then algebraic expressions won't work at
al. It's not particularly likely that security restrictions will be in place if you are running from the
command line though.

9.1 Referencing Column Values

To create a useful expression which can be evaluated for each row in atable, you will have to refer
to cellsin different columns of that row. Y ou can do thisin three ways:

By Name
The Name of the column may be used if it is unique (no other column in the table has the same
name) and if it has a suitable form. This means that it must have the form of a Java variable -
basically starting with a letter and continuing with letters, numbers, underscores and currency
symbols. In particular it cannot contain spaces, commas, parentheses etc.

As a specia case, if an expression contains just a single column name, rather than some more
complicated expression, then any column name may be used, even one containing
non-al phanumeric characters.

Column names are treated case-insensitively.

By $ID
The "$ID" identifier of the column may aways be used to refer to it; thisis a useful fallback if
the column name isn't suitable for some reason (for instance it contains spaces or is not
unique). Thisisjust a"$" sign followed by the column index - the first column is $1.

By ucd$ specifier
If the column has a Unified Content Descriptor (this will usually only be the case for VOTable
or possibly FITS format tables) you can refer to it using an identifier of the form

SUN/256 58

ucd$<ucd- spec>". Depending on the version of UCD scheme used, UCDs can contain various
punctuation marks such as underscores, semicolons and dots; for the purpose of this syntax
these should all be represented as underscores ("_"). So to identify a column which has the
UCD "phot. nmag; emopt.R', you should use the identifier "ucd$phot_nmag_em opt _r".
Matching is not case-sensitive. Futhermore, atrailing underscore acts as a wildcard, so that the
above column could also be referenced using the identifier "ucd$phot _mag_". If multiple

columns have UCDs which match the given identifer, the first one will be used.

Note that the same syntax can be used for referencing table parameters (see the next section);
columns take preference so if a column and a parameter both match the requested UCD, the
column value will be used.

By utype$ specifier

If the column has a Utype (this will usually only be the case for VOTable or possibly FITS
format tables) you can refer to it using an identifier of the form "ut ype$<ut ype- spec>".
Utypes can contain various punctuation marks such as colons and dots; for the purpose of this
syntax these should all be represented as underscores (*_"). So to identify a column which has
the Utype "ssa: Access. Format ", you should use the identifier "ut ype$ssa_Access_For mat .
Matching is not case-sensitive. If multiple columns have Utypes which match the given
identifier, the first one will be used.

Note that the same syntax can be used for referencing table parameters (see the next section);
columns take preference so if a column and a parameter both match the requested Utype, the
column value will be used.

There is a specia column whose name is "Index" and whose ID is "$0". The value of this is the
same as the row number (thefirst row is 1).

The value of the variables so referenced will be a primitive (boolean, byte, short, char, int, long,
float, double) if the column contains one of the corresponding types. Otherwise it will be an Object
of the type held by the column, for instance a String. In practice this means: you can write the name
of a column, and it will evaluate to the numeric (or string) value that that column contains in each
row. Y ou can then use thisin normal algebraic expressions such as"B_MAG- U_MAG' as you'd expect.

9.2 Referencing Parameter Values

Some tables have constant values associated with them; these may represent such things as the
epoch at which observations were taken, the name of the catalogue, an angular resolution associated
with all observations, or any number of other things. Such constants are known as table parameters
(not to be confused with parameters passed to STILTS commands) and can be thought of as extra
columns which have the same value for every row. The values of such parameters can be referenced
in STILTS algebraic expressions as follows:

param$name
If the parameter name has a suitable form (starting with a letter and continuing with letters or
numbers) it can be referenced by prefixing that name with the string par ans.

ucd$ucd-spec
If the parameter has a Unified Content Descriptor it can be referenced by prefixing the UCD
specifier with the string ucd$. Any punctuation marks in the UCD should be replaced by
underscores, and a trailing underscore is interpreted as a wildcard. See Section 9.1 for more
discussion.

utype$utype-spec
If the parameter has a Utype, it can be referenced by prefixing the Utype specifier with the
string ut ypes$. Any punctuation marks in the Utype should be replaced by underscores. See
Section 9.1 for more discussion.

SUN/256 59

Note that if a parameter has a name in an unsuitable form (e.g. containing spaces) and has no UCD
then it cannot be referenced in an expression.

9.3 Null Values

When no special steps are taken, if a null value (blank cell) is encountered in evaluating an
expression (usually because one of the columns it relies on has a null value in the row in question)
then the result of the expression is also null.

It is possible to exercise more control than this, but it requires a little bit of care, because the
expressions work in terms of primitive values (numeric or boolean ones) which don't in general
have a defined null value. The name "nul I " in expressions gives you the java nul | reference, but
this cannot be matched against a primitive value or used as the return value of a primitive
expression.

For most purposes, the following two tips should enable you to work with null values:

Testing for null
To test whether a column contains a null value, prepend the string "NULL_" (use upper case) to
the column name or $ID. Thiswill yield a boolean value which istrue if the column contains a
blank, and false otherwise.

Returning null
To return anull value from a numeric expression, use the name "NULL" (upper case). To return
anull value from a non-numeric expression (e.g. a String column) use the name "nul 1 " (lower
case).

Null values are often used in conjunction with the conditional operator, "2 :"; the expression

test ? tval : fval

returns the value t val if the boolean expressiont est evaluatestrue, or fval if t est evaluatesfalse.
So for instance the following expression:

Vmag == -99 ? NULL : Vmag

can be used to define a new column which has the same value as the vimag column for most values,
but if vmag has the "magic" value -99 the new column will contain a blank. The opposite trick
(substituting a blank value with a magic one) can be done like this:

NULL_Vmag ? -99 : Vmag
Some more examples are given in Section 9.6.

9.4 Operators

The operators are pretty much the same asin the C language. The common ones are:
Arithmetic

+ (add)

- (subtract)
* (multiply)
/ (divide)
%(modulus)

Boolean

SUN/256 60

I (not)

&& (and)

Il (or)

~ (exclusive-or)

== (numeric identity)

I = (numeric non-identity)
< (lessthan)

> (greater than)

<= (lessthan or equal)

>= (greater than or equal)

Numeric Typecasts

(byte) (numeric-> signed byte)

(short) (numeric-> 2-byteinteger)

(i nt) (numeric-> 4-byte integer)

(1 ong) (numeric -> 8-byteinteger)

(float) (numeric -> 4-type floating point)
(doubl e) (numeric -> 8-byte floating point)

Note you may find the Maths (Section 9.5.2) conversion functions more convenient for
numeric conversions than these.

Other

+ (string concatenation)

[1 (array dereferencing)

?: (conditional switch)

i nst anceof (class membership)

9.5 Functions

Many functions are available for use within your expressions, covering standard mathematical and
trigonometric functions, arithmetic utility functions, type conversions, and some more specialised
astronomical ones. You can use them in just the way you'd expect, by using the function name
(unlike column names, this is case-sensitive) followed by comma-separated arguments in brackets,
SO

max(| MAG, JMAG)
will give you the larger of the valuesin the columns IMAG and IMAG, and so on.

The functions available for use by default are listed by class in the following subsections with their
arguments and short descriptions. The funcs command provides another way to browse these
function descriptions online.

95.1Times

Functions for conversion of time values between various forms. The forms used are

Modified Julian Date (M JD)
A continuous measure in days since midnight at the start of 17 November 1858. Based on
UTC.

| SO 8601
A string representation of the form yyyy- nm ddThh: nm ss. s, where the T is aliteral character
(a space character may be used instead). Based on UTC.

SUN/256 61

Julian Epoch
A continuous measure based on a Julian year of exactly 365.25 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a'J; J2000.0 is defined as 2000 January 1.5 inthe TT
timescale.

Besselian Epoch
A continuous measure based on a tropical year of about 365.2422 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a'B'.

Decimal Year
Fractional number of years AD represented by the date. 2000.0, or equivalently
1999.99recurring, is midnight at the start of the first of January 2000. Because of leap years,
the size of a unit depends on what year itisin.

Therefore midday on the 25th of October 2004 is 2004- 10-25T12: 00: 00 in 1SO 8601 format,
53303.5 as an MJD value, 2004.81588 as a Julian Epoch and 2004.81726 as a Besselian Epoch.

Currently thisimplementation cannot be relied upon to better than a millisecond.

i soToM d(isoDate)
Converts an 1SO8601 date string to Modified Julian Date. The basic format of the i soDat e
argument iSyyyy- mm ddThh: mm ss. s, though some deviations from this form are permitted:

The 'T" which separates date from time can be replaced by a space
The seconds, minutes and/or hours can be omitted

The decimal part of the seconds can be any length, and is optional
A 'Z' (which indicates UTC) may be appended to the time

Some legal examples are therefore: "1994-12-21T14:18:23.2", "1968-01-14", and
"2112- 05-25 16: 45Z".

* isoDate (String): datein 1SO 8601 format
» return value (floating point): modified Julian date corresponding to i soDat e

dat eToM d(year, nonth, day, hour, min, sec)
Converts a calendar date and time to Modified Julian Date.

year (integer): year AD

nont h (integer): index of month; January is 1, December is 12

day (integer): day of month (thefirst day is 1)

hour (integer): hour (0-23)

m n (integer): minute (0-59)

sec (floating point): second (0<=sec<60)

return value (floating point): modified Julian date corresponding to arguments

dateToM d(year, nonth, day)
Converts a calendar date to Modified Julian Date.

year (integer): year AD

nont h (integer): index of month; January is 1, December is 12

day (integer): day of month (thefirst day is 1)

return value (floating point): modified Julian date corresponding to 00:00:00 of the date
specified by the arguments

decYear ToM d(decYear)
ConvertsaDecimal Y ear to aModified Julian Date.

SUN/256 62

* decYear (floating point): decimal year
» return value (floating point): modified Julian Date

nj dTolso(njd)
Converts a Modified Julian Date value to an 1SO 8601-format date-time string. The output
format isyyyy- nm ddThh: nm ss.

* njd (floating point): modified Julian date
* return value (Sring): 1SO 8601 format date corresponding to nj d

nj dToDate(njd)
Converts a Modified Julian Date value to an SO 8601-format date string. The output format is

yyyy- mm dd.

* njd (floating point): modified Julian date
* return value (Sring): 1SO 8601 format date corresponding to nj d

nj dToTi me(njd)
Converts a Modified Julian Date value to an 1SO 8601-format time-only string. The output
format ishh: mm ss.

* njd (floating point): modified Julian date
* return value (String): 1SO 8601 format time corresponding to nj d

n dToDecYear(nmjd)
Converts aModified Julian Date to Decimal Y ear.

* njd (floating point): modified Julian Date
» return value (floating point): decimal year

formtMd(nd, format)
Converts a Modified Julian Date value to a date using a customisable date format. The format
is as defined by the j ava. text. Si npl eDat eFor mat
(http://java.sun.com/j2se/1.5.0/docs/api/javaltext/SimpleDateFormat.html) class. The default
output corresponds to the string "yyyy- Mt dd' T' HH: rm ss”

* njd (floating point): modified Julian date
e format (String): formatting patttern
e return value (String): custom formatted time corresponding to nj d

nj dToJdulian(njd)
Converts a Modified Julian Date to Julian Epoch. For approximate purposes, the result of this
routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

* njd (floating point): modified Julian date
» return value (floating point): Julian epoch

julianToM d(julianEpoch)
Converts a Julian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

* juliangpoch (floating point): Julian epoch
» return value (floating point): modified Julian date

nj dToBesselian(nmd)
Converts Modified Julian Date to Besselian Epoch. For approximate purposes, the result of

SUN/256 63

this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

* njd (floating point): modified Julian date
» return value (floating point): Besselian epoch

bessel i anToM d(bessel i anEpoch)
Converts Besselian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

* bessel i anEpoch (floating point): Besselian epoch
* return value (floating point): modified Julian date

uni xM I 1isToM d(uni xM11is)
Converts from milliseconds since the Unix epoch (1970-01-01T00:00:00) to a modified Julian
date value

* unixMIlis (longinteger): milliseconds since the Unix epoch
* return value (floating point): modified Julian date

nj dToUni xM 1 1is(njd)
Converts from modified Julian date to milliseconds since the Unix epoch
(1970-01-01T00:00:00).
* njd (floating point): modified Julian date
» return value (long integer): milliseconds since the Unix epoch

9.5.2 Maths

Standard mathematical and trigonometric functions.

E
Euler's number e, the base of natural logarithms.

Pl
Pi, the ratio of the circumference of acircleto its diameter.

RANDOM
Evaluates to a random number in the range O<=x<1. Thisis different for each cell of the table.
The quality of the randomness may not be particularly good.

sin(theta)
Sine of an angle.

* theta (floating point): an angle, in radians.
» return value (floating point): the sine of the argument.
cos(theta)

Cosine of an angle.

* theta (floating point): an angle, in radians.
» return value (floating point): the cosine of the argument.

SUN/256 64

tan(theta)
Tangent of an angle.

* theta (floating point): an angle, in radians.
» return value (floating point): the tangent of the argument.

asin(x)
Arc sine of an angle. The result isin the range of -pi/2 through pi/2.

* x (floating point): the value whose arc sineis to be returned.
» return value (floating point): the arc sine of the argument (radians)

acos(x)
Arc cosine of an angle. Theresult isin the range of 0.0 through pi.

* x (floating point): the value whose arc cosine is to be returned.
» return value (floating point): the arc cosine of the argument (radians)

atan(x)
Arc tangent of an angle. The result isin the range of -pi/2 through pi/2.

* x (floating point): the value whose arc tangent is to be returned.
» return value (floating point): the arc tangent of the argument (radians)

exp(x)
Euler's number e raised to a power.

* x (floating point): the exponent to raise e to.
« return vaue (floating point): the value e X, where e is the base of the natural logarithms.

l 0g1l0(x)
L ogarithm to base 10.

* x (floating point): argument
» return value (floating point): Ioglo(x)

In(x)
Natural logarithm.

* x (floating point): argument
» return value (floating point): Ioge(x)

sgrt(x)
Square root. The result is correctly rounded and positive.

* x (floating point): avalue.
» return value (floating point): the positive square root of x. If the argument is NaN or less
than zero, the result is NaN.

atan2(y, x)
Converts rectangular coordinates (x,y) to polar (r,theta). This method computes the phase
t het a by computing an arc tangent of y/ x in the range of -pi to pi.

* vy (floating point): the ordinate coordinate

* x (floating point): the abscissa coordinate

» return value (floating point): the t heta component (radians) of the point (r,theta) in
polar coordinates that corresponds to the point (x,y) in Cartesian coordinates.

pow(a, b)
Exponentiation. The result is the value of the first argument raised to the power of the second

SUN/256 65

argument.

* a(floating point): the base.
* b (floating point): the exponent.
« return value (floating point): the value a® .

sinh(x)

Hyperbolic sine.

* x (floating point): parameter

» return value (floating point): result
cosh(x)

Hyperbolic cosine.

* x (floating point): parameter

» return value (floating point): result
tanh(x)

Hyperbolic tangent.

* x (floating point): parameter

» return value (floating point): result
asi nh(x)

Inverse hyperbolic sine.

* x (floating point): parameter

» return value (floating point): result
acosh(x)

Inverse hyperbolic cosine.

* x (floating point): parameter

» return value (floating point): result
atanh(x)

Inverse hyperbolic tangent.

* x (floating point): parameter
» return value (floating point): result

9.5.3 Conversions

Functions for converting between strings and numeric values.

toString(val ue)
Turns anumeric value into a string.

* val ue (floating point): numeric value
e return value (String): a string representation of val ue

parseByte(str)
Attempts to interpret a string as a byte (8-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

e str (String): string containing numeric representation
» return value (byte): byte value of str

SUN/256 66

parseShort(str)
Attempts to interpret a string as a short (16-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

* str (String): string containing numeric representation
* return value (short integer): byte value of st r

parselnt(str)
Attempts to interpret a string as an int (32-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

* str (String): string containing numeric representation
» return value (integer): byte value of str

parseLong(str)
Attempts to interpret a string as along (64-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

* str (String): string containing numeric representation
» return value (long integer): byte value of st r

parseFl oat (str)
Attempts to interpret a string as a float (32-bit floating point) value. If the input string can't be
interpreted in thisway, a blank value will result.

* str (String): string containing numeric representation
» return value (floating point): byte value of st r

par seDoubl e(str)
Attempts to interpret a string as a double (64-bit signed integer) value. If the input string can't
be interpreted in this way, a blank value will result.

e str (String): string containing numeric representation
» return value (floating point): byte value of st r

toByte(val ue)
Attempts to convert the numeric argument to a byte (8-bit signed integer) result. If it is out of
range, a blank value will result.

* val ue (floating point): numeric value for conversion
» return value (byte): val ue converted to type byte

toShort(val ue)
Attempts to convert the numeric argument to a short (16-bit signed integer) result. If it is out of
range, a blank value will result.

* val ue (floating point): numeric value for conversion
* return value (short integer): val ue converted to type short

tol nteger(val ue)
Attempts to convert the numeric argument to an int (32-bit signed integer) result. If it is out of
range, a blank value will result.

* val ue (floating point): numeric value for conversion
* return value (integer): val ue converted to type int

toLong(val ue)
Attempts to convert the numeric argument to along (64-bit signed integer) result. If it is out of
range, a blank value will result.

SUN/256 67

» val ue (floating point): numeric value for conversion
» return value (long integer): val ue converted to type long

t oFl oat (val ue)
Attempts to convert the numeric argument to afloat (32-bit floating point) result. If it is out of
range, a blank value will result.

* val ue (floating point): numeric value for conversion
» return value (floating point): val ue converted to type float

t oDoubl e(val ue)
Converts the numeric argument to a double (64-bit signed integer) resullt.

» val ue (floating point): numeric value for conversion
» return value (floating point): val ue converted to type double

t oHex(val ue)
Converts the integer argument to hexadecimal form.

» val ue (long integer): integer value
* return value (String): hexadecimal representation of val ue

fronHex(hexVal)
Converts a string representing a hexadecimal number to its integer value.

* hexVal (String): hexadecimal representation of value
» return value (integer): integer value represented by hexVal

9.5.4 Formats

Functions for formatting numeric values.

for mat Deci mal (val ue, dp)
Turns afloating point value into a string with a given number of decimal places using standard
settings.

* val ue (floating point): value to format
» dp (integer): number of decimal places (digits after the decmal point)
» return value (String): formatted string

f or mat Deci mal Local (val ue, dp)
Turns afloating point value into a string using current locale settings. For instance if language
is set to French, decimal points will be represented as a comma "," instead of a full stop ".".
Otherwise behaves the same as the corresponding f or mat Deci mal function.

* val ue (floating point): value to format
* dp (integer): number of decimal places (digits after the decmal point)
» return value (String): formatted string

format Deci mal (val ue, format)
Turns a floating point value into a formatted string using standard settings. The f or mat String
is as defined by Javas j ava. t ext. Deci mal For mat
(http://java.sun.com/j2se/1.5.0/docs/api/javaltext/Decimal Format.html) class.

* val ue (floating point): value to format
e format (Sring): format specifier
e return value (String): formatted string

SUN/256 68

f ormat Deci mal Local (val ue, format)
Turns afloating point value into aformatted string using current locale settings. For instance if
language is set to French, decimal points will be represented as a comma "," instead of a full
stop ".". Otherwise behaves the same as the corresponding f or mat Deci mal function.

» val ue (floating point): value to format
e format (Sring): format specifier
* return value (String): formatted string

9.5.5 Arithmetic

Standard arithmetic functions including things like rounding, sign manipulation, and
maxi mum/minimum functions.

roundUp(x)
Rounds a value up to an integer value. Formally, returns the smallest (closest to negative
infinity) integer value that is not less than the argument.

* x (floating point): avalue.
* return value (integer): x rounded up

roundDown(x)
Rounds a value down to an integer value. Formally, returns the largest (closest to positive
infinity) integer value that is not greater than the argument.

* x (floating point): avalue
* return value (integer): x rounded down

round(x)
Rounds a value to the nearest integer. Formally, returns the integer that is closest in value to
the argument. If two integers are equally close, the result is the even one.

* x (floating point): afloating point value.
» return value (integer): x rounded to the nearest integer

roundDeci mal (x, dp)
Rounds a value to a given number of decimal places. The result is a float (32-bit floating
point value), so this is only suitable for relatively low-precision values. It's intended for
truncating the number of apparent significant figures represented by a value which you know
has been obtained by combining other values of limited precision. For more control, see the
functionsin the For mat s class.

» x (floating point): afloating point value

» dp (integer): number of decimal places (digits after the decimal point) to retain

» return value (floating point): floating point value close to x but with a limited apparent
precision

abs(x)
Returns the absolute value of an integer value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned.

* x (integer): the argument whose absolute value is to be determined
* return value (integer): the absolute value of the argument.

abs(x)
Returns the absolute value of a floating point value. If the argument is not negative, the

SUN/256 69

argument is returned. If the argument is negative, the negation of the argument is returned.

* x (floating point): the argument whose absolute value is to be determined
» return value (floating point): the absolute value of the argument.

max(a, b))
Returns the greater of two integer values. If the arguments have the same value, the result is
that same value.

* a(integer): an argument.
* b (integer): another argument.
» return value (integer): the larger of a and b.

meax(a, b))
Returns the greater of two floating point values. If the arguments have the same value, the
result is that same value. If either value is blank, then the result is blank.

* a(floating point): an argument.
* b (floating point): another argument.
* return value (floating point): the larger of a and b.

maxReal (a, b)
Returns the greater of two floating point values, ignoring blanks. If the arguments have the
same value, the result is that same value. If one argument is blank, the result is the other one. If
both arguments are blank, the result is blank.

* a (floating point): an argument
* b (floating point): another argument
» return value (floating point): the larger non-blank value of a and b

mn(a, b)
Returns the smaller of two integer values. If the arguments have the same value, the result is
that same value.

* a(integer): an argument.
* b (integer): another argument.
* return value (integer): the smaller of a and b.

mn(a, b)
Returns the smaller of two floating point values. If the arguments have the same value, the
result isthat same value. If either valueis blank, then the result is blank.

* a (floating point): an argument.
* b (floating point): another argument.
» return value (floating point): the smaller of a and b.

mnReal (a, b))
Returns the smaller of two floating point values, ignoring blanks. If the arguments have the
same value, the result is that same value. If one argument is blank, the result is the other one. If
both arguments are blank, the result is blank.

* a (floating point): an argument
* b (floating point): another argument
» return value (floating point): the larger non-blank value of a and b

9.5.6 Tilings

Pixel tiling functions for the celestial sphere.

SUN/256 70

ht m ndex(| evel, ra, dec)
Givesthe HTM (Hierachical Triangular Mesh) pixel index for a given sky position.

* level (integer): HTM level
* ra (floating point): right ascension in degrees
» dec (floating point): declination in degrees
» return value (long integer): pixel index
heal pi xNest | ndex(k, ra, dec)
Givesthe pixel index for a given sky position in the HEALPix NEST scheme.

k (integer): resolution parameter - log to base 2 of nside
ra (floating point): right ascension in degrees

dec (floating point): declination in degrees

return value (long integer): pixel index

heal pi xRi ngl ndex(k, ra, dec)
Givesthe pixel index for a given sky position in the HEALPix RING scheme.

k (integer): resolution parameter - log to base 2 of nside
ra (floating point): right ascension in degrees

dec (floating point): declination in degrees

return value (long integer): pixel index

heal pi xK(pi xel si ze)
Gives the HEALPix resolution parameter suitable for a given pixel size. This k value is the
logarithm to base 2 of the Nside parameter.

* pixel size (floating point): pixel sizein degrees
» return value (integer): HEALPix resolution parameter k

heal pi xResol ution(k)
Gives the approximate resolution in degrees for a given HEALPix resolution parameter k This
k value isthe logarithm to base 2 of the Nside parameter.

* k (integer): HEALPix resolution parameter k

» return value (floating point): approximate angular resolution in degrees
ht mLevel (pi xel si ze)

Givesthe HTM | evel parameter suitable for a given pixel size.

* pixel si ze (floating point): required resolution in degrees

* return value (integer): HTM level parameter
ht nResol ution(|evel)

Gives the approximate resolution in degrees for agiven HTM depth level.

* level (integer): HTM depth
» return value (floating point): approximate angular resolution in degrees

9.5.7 Distances
Functions for converting between different measures of cosmological distance.

The following parameters are used:

ez redshift
e HO: Hubble constant in km/sec/Mpc (example value ~70)

SUN/256 71

* omegaM: Density ratio of the universe (example value 0.3)
* omegal ambda: Normalised cosmological constant (example value 0.7)

For aflat universe, onegaMtonegalLanmbda=1

The terms and formulae used here are taken from the paper by D.W.Hogg, Distance measures in
cosmology, astro-ph/9905116 (http://arxiv.org/abs/astro-ph/9905116) v4 (2000).

SPEED OF LI GHT
Speed of light in m/s.

METRE_PER_PARSEC
Number of metresin a parsec.

SEC_PER_YEAR
Number of secondsin ayear.

MpocToM di st Mpc)
Converts from M egaParsecs to metres.

* di st Mpc (floating point): distancein Mpc
* return value (floating point): distancein m

nlroMpc(di stM)
Converts from metres to M egaParsecs.

» di st M(floating point): distancein m
» return value (floating point): distance in Mpc

zToDist(z)
Quick and dirty function for converting from redshift to distance.

Warning: this makes some reasonable assumptions about the cosmology and returns the
luminosity distance. It is only intended for approximate use. If you care about the details, use
one of the more specific functions here.

* 7 (floating point): redshift
» return value (floating point): some distance measure in Mpc

zToAge(z)
Quick and dirty function for converting from redshift to time.

War ning: this makes some reasonable assumptions about the cosmology. It is only intended
for approximate use. If you care about the details use one of the more specific functions here.

» 7 (floating point): redshift
» return value (floating point): ‘age’ of photons from redshift z in Gyr

conovi nghi stanceL(z, HO, onmegaM onegalLanbda)
Line-of-sight comoving distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe

omegalanbda (floating point): normalised cosmological constant
return value (floating point): line-of-sight comoving distance in Mpc

conovi nghi stanceT(z, HO, onegaM onegalLanbda)

SUN/256

72

Transverse comoving distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe

omegalLanbda (floating point): normalised cosmological constant
return value (floating point): transverse comoving distance in Mpc

angul ar Di anet er Di stance(z, HO, onegaM onegalLanbda)
Angular diameter distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): angular diameter distancein Mpc

| um nosityDi stance(z, HO, onmegaM onegalanbda)
Luminosity distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalanbda (floating point): normalised cosmological constant
return value (floating point): luminosity distance in Mpc

| ookbackTi me(z, HO, onegaM onegalLanbda)
Lookback time. This returns the difference between the age of the universe at time of
observation (now) and the age of the universe at the time when photons of redshift z were

emitted.

» z (floating point): redshift

» Ho (floating point): Hubble constant in km/sec/Mpc

» onegaM(floating point): density ratio of the universe

* onegalanbda (floating point): normalised cosmologica constant

return value (floating point): lookback timein Gyr

conmovi ngVol ume(z, HO, onegaM onegalanbda)
Comoving volume. Thisreturns the all-sky total comoving volume out to a given redshift z.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): comoving volumein Gpc3

9.5.8 Arrays

Functions which perform aggregating operations on array-valued cells. The functions in this class
such as nean, sum maxi mumetc can only be used on values which are already arrays. In most cases
that means on values in table columns which are declared as array-valued. FITS and VOTable
tables can have columns which contain array values, but other formats such as CSV cannot.

There is also a set of functions named array with various numbers of arguments, which let you
assemble an array value from alist of scalar numbers. This can be used for instance to get the mean
of a set of three magnitudes by using an expression like "nean(array(j mag, hmg, kmag))".

SUN/256 73

sum(array)
Returns the sum of al the non-blank elements in the array. If array is not a numeric array,
nul | isreturned.

* array (Object): array of numbers
» return value (floating point): sum of al the numeric valuesin arr ay

mean(array)
Returns the mean of all the non-blank elements in the array. If array is not a numeric array,
nul | isreturned.

* array (Object): array of numbers
» return value (floating point): mean of all the numeric valuesin ar r ay

variance(array)
Returns the population variance of al the non-blank elements in the array. If array is not a
numeric array, nul | isreturned.

e array (Object): array of numbers
» return value (floating point): variance of the numeric valuesin arr ay

stdev(array)
Returns the population standard deviation of all the non-blank elements in the array. If array
isnot anumeric array, nul | isreturned.

* array (Object): array of numbers
» return value (floating point): standard deviation of the numeric valuesin ar r ay

m ni mum(array)
Returns the smallest of the non-blank elements in the array. If array is not a numeric array,
nul | isreturned.

e array (Object): array of numbers
» return value (floating point): minimum of the numeric valuesin ar r ay

maxi mum(array)
Returns the largest of the non-blank elements in the array. If array IS not a numeric array,
nul | isreturned.

e array (Object): array of numbers
» return value (floating point): maximum of the numeric valuesin ar r ay

nmedi an(array)
Returns the median of the non-blank elements in the array. If array iS not a numeric array,
nul | isreturned.

e array (Object): array of numbers
» return value (floating point): median of the numeric valuesin arr ay

quantile(array, quant)
Returns a quantile value of the non-blank elements in the array. Which quantile is determined
by the quant vaue; values of 0, 0.5 and 1 give the minimum, median and maximum
respectively. A value of 0.99 would give the 99th percentile.

e array (Object): array of numbers
» quant (floating point): number in the range 0-1 deterining which quantile to calculate
» return value (floating point): quantile corresponding to quant

size(array)

SUN/256 74

Returns the number of elementsin the array. If array isnot an array, zero isreturned.

* array (Object): array
» return value (integer): size of arr ay

count (array)
Returns the number of non-blank elements in the array. If array is not an array, zero is
returned.

* array (Object): array (may or may not be numeric)
» return value (integer): number of non-blank elementsin ar r ay

array(x1)
Returns a numeric array built from a given element.

* x1 (floating point): array element 1
* return value (array of floating point): 1-element array

array(x1, x2)
Returns a numeric array built from given elements.

* x1 (floating point): array element 1
* x2 (floating point): array element 2
* return value (array of floating point): 2-element array

array(x1, x2, x3)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
return value (array of floating point): 3-element array

array(x1, x2, x3, x4)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
return value (array of floating point): 4-element array

array(x1, x2, x3, x4, x5)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
x5 (floating point): array element 5
return value (array of floating point): 5-element array

array(x1, x2, x3, x4, x5, x6)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
x5 (floating point): array element 5

SUN/256 75

» x6 (floating point): array element 6
» return value (array of floating point): 6-element array

array(x1, x2, x3, x4, x5, x6, x7)
Returns anumeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
x5 (floating point): array element 5
x6 (floating point): array element 6
x7 (floating point): array element 7
return value (array of floating point): 7-element array

array(x1, x2, x3, x4, x5, x6, x7, x8)
Returns anumeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
x5 (floating point): array element 5
x6 (floating point): array element 6
x7 (floating point): array element 7
x8 (floating point): array element 8
return value (array of floating point): 8-element array

9.5.9 Strings

String manipulation and query functions.

concat(sl1, s2)
Concatenates two strings. In most cases the same effect can be achieved by writing s1+s2, but
blank values can sometimes appear as the string "nul | " if you do it like that.

e s1(String): first string
e s2(String): second string
» return value (Sring): s1 followed by s2

concat(sl1, s2, s3)
Concatenates three strings. In most cases the same effect can be achieved by writing s1+s2+s3,
but blank values can sometimes appear asthe string "nul | " if you do it like that.

s1 (String): first string

s2 (String): second string

s3 (String): third string

return value (String): s1 followed by s2 followed by s3

concat (sl1, s2, s3, s4)
Concatenates four strings. In most cases the same effect can be achieved by writing
s1+s2+s3+s4, but blank values can sometimes appear as the string "nul | " if you do it like that.

e s1(String): first string
e s2 (String): second string
* s3(Sring): third string

SUN/256 76

* s4 (String): fourth string
* return value (Siring): s1 followed by s2 followed by s3 followed by s4

equal s(sl1, s2)
Determines whether two strings are equal. Note you should use this function instead of s1==s2,
which can (for technical reasons) return false even if the strings are the same.

* s1(String): first string
e s2(String): second string
» return value (boolean): trueif sl and s2 are both blank, or have the same content

equal sl gnoreCase(sl1, s2)
Determines whether two strings are equal apart from possible upper/lower case distinctions.

* s1 (String): first string

e s2 (String): second string

» return value (boolean): true if sl and s2 are both blank, or have the same content apart
from case folding

startsWth(whole, start)
Determines whether a string starts with a certain substring.

* whol e (Sring): the string to test
* start (Sring): the sequence that may appear at the start of whol e
» return value (boolean): trueif the first few characters of whol e arethe same asst art

endsWth(whole, end)
Determines whether a string ends with a certain substring.

* whol e (Sring): the string to test
* end (String): the sequence that may appear at the end of whol e
» return value (boolean): trueif the last few characters of whol e are the same asend

contai ns(whole, sub)
Determines whether a string contains a given substring.

* whol e (Sring): the string to test
* sub (String): the sequence that may appear within whol e
» return value (boolean): trueif the sequence sub appears within whol e

I ength(str)
Returns the length of a string in characters.

e str (String): string
» return value (integer): number of charactersinstr

mat ches(str, regex)
Tests whether a string matches a given regular expression.

o str (String): string to test
* regex (Sring): regular expression string
» return value (boolean): trueif r egex matchesstr anywhere

mat chG oup(str, regex)
Returns the first grouped expression matched in a string defined by a regular expression. A
grouped expression is one enclosed in parentheses.

o str (String): string to match against
* regex (Sring): regular expression containing a grouped section
e return value (String): contents of the matched group (or null, if regex didn't match st r)

SUN/256 77

replaceFirst(str, regex, replacenment)
Replaces the first occurrence of a regular expression in a string with a different substring

value.

e str (String): string to manipulate

* regex (Sring): regular expression to match in st r
* replacement (String): replacement string

return value (String): same as st r, but with the first match (if any) of r egex replaced by
repl acenent

replaceAl |l (str, regex, replacenent)
Replaces all occurrences of aregular expression in a string with a different substring value.

str (String): string to manipulate

regex (Sring): regular expression to match in st r

repl acenent (String): replacement string

return value (String): same as str, but with all matches of regex replaced by
repl acenent

substring(str, startlndex)
Returns the last part of a given string. The substring begins with the character at the specified
index and extends to the end of this string.

o str (String): the input string
* startlndex (integer): the beginning index, inclusive
» return value (String): last part of st r, omitting the first st art | ndex characters

substring(str, startlndex, endlndex)
Returns a substring of a given string. The substring begins with the character at st art | ndex
and continues to the character at index endl ndex-1 Thus the length of the substring is
endl ndex- start | ndex.

str (Sring): the input string

start | ndex (integer): the beginning index, inclusive
endl ndex (integer): the end index, inclusive

return value (String): substring of st r

t oUpper Case(str)
Returns an uppercased version of astring.
e str (String): input string
* return value (Sring): uppercased version of st r

t oLower Case(str)
Returns an uppercased version of astring.
e str (String): input string
* return value (Sring): uppercased version of st r
trim str)
Trims whitespace from both ends of a string.
e str (String): input string
» return value (String): str with any spaces trimmed from start and finish

padWthzZeros(value, ndigit)
Takes an integer argument and returns a string representing the same numeric value but
padded with leading zeros to a specified length.

* val ue (long integer): numeric value to pad

SUN/256 78

* ndigit (integer): the number of digitsin the resulting string
e return value (String): a string evaluating to the same as val ue with at least ndigit
characters

9.5.10 Fluxes

Functions for conversion between flux and magnitude values. Functions are provided for
conversion between flux in Janskys and AB magnitudes.

Some constants for approximate conversions between different magnitude scales are also provided:

* Constants JOHNSON_AB_*, for Johnson <-> AB magnitude conversions, from Frei and Gunn,
Astronomical Journal 108, 1476 (1994), Table 2 (1994AJ...108.1476F
(http://adsabs.harvard.edu/abs/1994AJ....108.1476F)).

* Constants VEGA AB *, for Vega <-> AB magnitude conversions, from Blanton et al.,
Astronomical Journal 129, 2562 (2005), Egs. (5 (2005AJ....129.2562B
(http://adsabs.harvard.edu/abs/2005AJ....129.2562B)).

JOHNSON_AB_V
Approximate offset between Johnson and AB magnitudes in VvV band.
\ J~=V A TIOHNSON_AB_V.

JOHNSON_AB_B
Approximate offset between Johnson and AB magnitudes in B band.
B J~=B A TIOHNSON_AB_B.

JOHNSON_AB_Bj
Approximate offset between Johnson and AB magnitudes in Bj band.
Bj J~:Bj ag TJOHNSON_AB_Bj .

JOHNSON_AB_R
Approximate offset between Johnson and AB magnitudes in R band.
R;=R,gtJOHNSON_AB_R.

JOHNSON_AB |

Approximate offset between Johnson and AB magnitudesin | band. | 7=l AgTIONSON_AB_I .

A

JOHNSON_AB_g

Approximate offset between Johnson and AB magnitudes in g band. g ' +JOHNSON_AB_g.

=OaB

JOHNSON_AB_r
Approximate offset between Johnson and AB magnitudesin r band. r T Ag TIOHNSON_AB T

JOHNSON_AB i

Approximate offset between Johnson and AB magnitudesin i band. i J~:i +JOHNSON_AB i .

AB

JOHNSON_AB_Rc
Approximate offset between Johnson and AB magnitudes in Rc band.

Rc;~=Rc, ; +IOHNSON_AB_Rc.

SUN/256 79

JOHNSON_AB_| ¢
Approximate offset between Johnson and AB magnitudes in Ic band.
|CJ~:|CAB+JG-|NSO\I_AB_I c.

JOHNSON_AB_uPri ne
Offset between Johnson and AB magnitudes in u band (zero).

UJ=UAB+J OHNSON_AB_uPri ne=u

AB’

JOHNSON_AB_gPri ne
Offset between Johnson and AB magnitudes in g band (zero).
g J=g' AgTIOHNSON_AB_gPri me=¢' AB'

JOHNSON_AB_r Pri ne
Offset between Johnson and AB magnitudes in ' band (zero).

rJ:r AB+JC]—|NSCJ\I_AB_r Pri me=rAB.

JOHNSON_AB i Pri ne
Offset between Johnson and AB magnitudes in i* band (zero).

IJ=I AB+JCJ—|NSCJ\I_AB_| Pri me=I AB.

JOHNSON_AB _zPri nme
Offset between Johnson and AB magnitudes in Z band (zero).

z J=Z AB+‘] CHNSON_AB_zPri ne=z

AB’
VEGA_AB_J
Approximate offset between Vega (as in 2MASS) and AB magnitudes in J band.

JVega~:J)\ FVEGA AB J.

VEGA AB_H

Approximate offset between Vega (as in 2MASS) and AB magnitudes in H band.
H\/ qqa=HAB+VEGA AB H.
ega
VEGA_AB K
Approximate offset between Vega (as in 2MASS) and AB magnitudes in K band.

K ~=KAB+VEGA AB K.
Vega

abToJansky(magAB)
Converts AB magnitude to flux in Jansky.

F/Jy=10(23 (AB+48.6)/25)

* magAB (floating point): AB magnitude value
» return value (floating point): equivalent flux in Jansky

j anskyToAb(fl uxJansky)
Converts flux in Jansky to AB magnitude.
AB=2.5%(23-log, ,(F/Jy))-48.6
* fluxJansky (floating point): flux in Jansky
» return value (floating point): equivalent AB magnitude

| um nosityToFl ux(lumn, dist)
Converts luminosity to flux given aluminosity distance.

SUN/256
F=lumin/(4 x Pi x dist?)

* | unin (floating point): luminosity
» dist (floating point): luminosity distance
» return value (floating point): equivalent flux

fluxToLum nosity(flux, dist)

Converts flux to luminosity given aluminosity distance.

lumin=(4 x Pi x dist?) F

* flux (floating point): flux
» dist (floating point): luminosity distance
* return value (floating point): equivalent luminosity

9.5.11 Coords

80

Functions for angle transformations and manipulations. In particular, methods for translating
between radians and HH:MM:SS.S or DDD:MM:SS.S type sexagesimal representations are

provided.

DEGREE
The size of one degreein radians.

HOUR
The size of one hour of right ascension in radians.

ARC_M NUTE
The size of one arcminute in radians.

ARC_SECOND
The size of one arcsecond in radians.

radi ansToDns(rad)
Converts an angle in radians to a formatted degrees:minutes.seconds string. No fractional part
of the secondsfield is given.

* rad (floating point): anglein radians
* return value (Sring): DM S-format string representing r ad

radi ansToDns(rad, secFig)
Converts an angle in radians to a formatted degrees.minutes:.seconds string with a given
number of decimal placesin the seconds field.

* rad (floating point): anglein radians
* secFi g (integer): number of decimal placesin the secondsfield
* return value (Sring): HMS-format string representing r ad

radi ansToHns(rad)
Converts an angle in radians to a formatted hours:minutes.seconds string. No fractional part of
the seconds field is given.

* rad (floating point): anglein radians
e return value (Sring): HMS-format string representing r ad

SUN/256 81

radi ansToHs(rad, secFig)
Converts an angle in radians to a formatted hours:minutes:seconds string with a given number
of decimal placesin the seconds field.

* rad (floating point): angle in radians
* secFi g (integer): number of decimal placesin the secondsfield
* return value (String): HM S-format string representing r ad

dnsToRadi ans(dns)
Converts a formatted degrees.minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters dnis], or some others. Additional spaces and leading +/- are
permitted.

o dns (String): formatted DM S string
» return value (floating point): angle in radians specified by dns

hmsToRadi ans(hns)
Converts a formatted hours:minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters hnis], or some others. Additional spaces and leading +/- are
permitted.

* hms (Sring): formatted HM S string
» return value (floating point): angle in radians specified by hns

dmsToRadi ans(deg, min, sec)
Converts degrees, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 degrees. This routine uses the sign bit of the deg argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values). It isillegal for the mi n or sec arguments to be negative.

deg (floating point): degrees part of angle
m n (floating point): minutes part of angle
sec (floating point): seconds part of angle
return value (floating point): specified angle in radians

hmsToRadi ans(hour, mn, sec)
Converts hours, minutes, secondsto an anglein radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 hours. This routine uses the sign bit of the hour argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values).

hour (floating point): degrees part of angle

m n (floating point): minutes part of angle

sec (floating point): seconds part of angle

return value (floating point): specified angle in radians

skyDi stance(ral, decl, ra2, dec2)
Calculates the separation (distance around a great circle) of two points on the sky.

ral (floating point): right ascension of point 1 in radians

dec1 (floating point): declination of point 1 in radians

ra2 (floating point): right ascension of point 2 in radians

dec2 (floating point): declination of point 2 in radians

return value (floating point): angular distance between point 1 and point 2 in radians

skyDi st anceDegrees(ral, decl, ra2, dec2)

SUN/256 82

Calculates the separation (distance around a great circle) of two points on the sky in degrees.

ral (floating point): right ascension of point 1 in degrees

dec1 (floating point): declination of point 1 in degrees

ra2 (floating point): right ascension of point 2 in degrees

dec2 (floating point): declination of point 2 in degrees

return value (floating point): angular distance between point 1 and point 2 in degrees

hour sToRadi ans(hours)
Converts hours to radians.

* hours (floating point): anglein hours
» return value (floating point): angle in radians

degreesToRadi ans(deg)
Converts degreesto radians.

* deg (floating point): angle in degrees
» return value (floating point): angle in radians

radi ansToDegrees(rad)
Converts radians to degrees.

* rad (floating point): angle in radians
» return value (floating point): angle in degrees

r aFKat oFK5(raFK4, decFK4)
Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Right
Ascension. This assumes zero proper motion in the FK5 frame.

* raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
* decFk4 (floating point): declination in B1950.0 FK4 system (radians)
» return value (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4t oFK5(raFK4, decFk4)
Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Declination
This assumes zero proper motion in the FK5 frame.

* raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
* decFk4 (floating point): declination in B1950.0 FK4 system (radians)
» return value (floating point): declination in J2000.0 FK5 system (radians)

r aFK5t oFK4(raFK5, decFK5)
Converts a J2000.0 FK5 position to B1950.0 FK4 at an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

* raFks (floating point): right ascension in J2000.0 FK5 system (radians)
» decFkKs (floating point): declination in J2000.0 FK5 system (radians)
» return value (floating point): right ascension in the FK4 system (radians)

decFK5t oFK4(raFK5, decFK5)
Converts a J2000.0 FK5 position to B1950.0 FK4 at an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

* rafFks (floating point): right ascension in J2000.0 FK5 system (radians)
* decFkKs (floating point): declination in J2000.0 FK5 system (radians)
» return value (floating point): right ascension in the FK4 system (radians)

r aFK4t oFK5(raFK4, decFK4, bepoch)
Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Right Ascension. This assumes

SUN/256 83

zero proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position
in the FK4 frame was determined.

r aFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
decFK4 (floating point): declination in B1950.0 FK4 system (radians)

bepoch (floating point): Besselian epoch

return value (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4t oFK5(raFK4, decFK4, bepoch)
Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Declination. This assumes zero
proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position in
the FK4 frame was determined.

r aFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
decFk4 (floating point): declination in B1950.0 FK4 system (radians)
bepoch (floating point): Besselian epoch

return value (floating point): declination in J2000.0 FK5 system (radians)

r aFK5t oFK4(raFK5, decFK5, bepoch)
Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

raFks (floating point): right ascension in J2000.0 FK5 system (radians)
decFks (floating point): declination in J2000.0 FK5 system (radians)
bepoch (floating point): Besselian epoch

return value (floating point): right ascension in the FK4 system (radians)

decFK5t oFK4(raFK5, decFK5, bepoch)
Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

* raFks (floating point): right ascension in J2000.0 FK5 system (radians)

* decFkKs (floating point): declination in J2000.0 FK5 system (radians)

» bepoch (floating point): Besselian epoch

» return value (floating point): right ascension in the FK4 system (radians)
9.6 Examples

Here are some examples for defining new columns; the expressions below could appear as the
<expr>inatpi pe addcol Of sortexpr command).

Average

(first + second) * 0.5
Squar e root

sqrt (vari ance)
Angle conversion

radi ansToDegr ees(DEC r adi ans)
degr eesToRadi ans(RA_degr ees)

Conversion from string to number

par sel nt ($12)
par seDoubl e(i dent)

SUN/256 84

Conversion from number to string

toString(i ndex)

Conversion between numeric types

toShort (obs_type)
t oDoubl e(range)

or

(short) obs_type
(doubl e) range

Conversion from sexagesimal to radians

hnms ToRadi ans(RA1950)
dnsToRadi ans(decDeg, decM n, decSec)

Conversion from radiansto sexagesimal

r adi ansToDns($3)
radi ansToHms (RA, 2)

Outlier clipping
m n(1000, max(val ue, 0))
Converting a magic value to null
jmag == 9999 ? NULL : jmag
Converting a null valueto a magic one
NULL_jrmag ? 9999 : jnag
Taking thethird scalar element from an array-valued column

psf Count s[2]

and here are some examples of boolean expressions that could be used for row selection (appearing
inat pi pe sel ect command)

Within anumeric range

RA > 100 &% RA < 120 && Dec > 75 && Dec < 85

Within acircle

$2*$2 + $3*$3 < 1
skyDi st ance(r a0, decO, degr eesToRadi ans(RA) , degr eesToRadi ans(DEC)) <15* ARC_M NUTE

First 100 rows
i ndex <= 100

(though you could uset pi pe cnd=' head 100' instead)
Every tenth row

SUN/256 85

i ndex % 10 ==
(though you could uset pi pe cnd='every 10' instead)
String equality/matching

equal s(SECTOR, "ZZ9 Plural Z Al pha")

equal sl gnoreCase(SECTOR, "zz9 plural z al pha")
startsWth(SECTOR, "Zzz")

contai ns(ph_qual, "U")

String regular expression matching

mat ches(SECTOR, "[XYZ] Al pha")

Test for non-blank value

| NULL_ellipticity

9.7 Advanced Topics

This section contains some notes on getting the most out of the algebraic expressions facility. If
you're not a Java programmer, some of the following may be a bit daunting - read on at your own
risk!

9.7.1 Expression evaluation

This note provides a bit more detail for Java programmers on what is going on here; it describes
how the use of functionsin STILTS algebraic expressions relates to normal Java code.

The expressions which you write are compiled to Java bytecode when you enter them (if thereisa
‘compilation error' it will be reported straight away). The functions listed in the previous
subsections are al the publ i ¢ stati c methods of the classes which are made available by default.
The classes listed are al in the package uk. ac. starlink.ttools. func. However, the public static
methods are all imported into an anonymous namespace for bytecode compilation, so that you write
(sart(x,y) and not Mat hs. sqrt (x, y) . The same happens to other classes that are imported (which
can be in any package or none) - their public static methods all go into the anonymous namespace.
Thus, method name clashes are a possibility.

This clevernessis all made possible by the rather wonderful JEL (http://kinetic.ac.donetsk.ua/JEL/).

9.7.2 Instance M ethods

There is another category of functions which can be used apart from those listed in Section 9.5.
These are caled, in Java/object-oriented parlance, "instance methods" and represent functions that
can be executed on an object.

It is possible to invoke any of its public instance methods on any object (though not on primitive
values - numeric and boolean ones). The syntax is that you place a "." followed by the method
invocation after the object you want to invoke the method on, hence NAMVE. subst ri ng(3) instead of
subst ri ng(NAME, 3) . If you know what you're doing, feel free to go ahead and do this. However,
most of the instance methods you're likely to want to use have equivalents in the normal functions
listed in the previous section, so unless you're a Java programmer or feeling adventurous, you may
be best off ignoring this feature.

SUN/256 86

9.7.3 Adding User-Defined Functions

The functions provided by default for use with algebraic expressions, while powerful, may not
provide all the operations you need. For this reason, it is possible to write your own extensions to
the expression language. In this way you can specify abritrarily complicated functions. Note
however that this will only allow you to define new columns or subsets where each cell is a
function only of the other cellsin the same row - it will not allow values in one row to be functions
of valuesin another.

In order to do this, you have to write and compile a (probably short) program in the Java language.
A full discussion of how to go about this is beyond the scope of this document, so if you are new to
Java and/or programming you may need to find a friendly local programmer to assist (or mail the
author). The following explanation is aimed at Java programmers, but may not be incomprehensible
to non-specialists.

The steps you need to follow are:

1. Write and compile a class containing one or more static public methods representing the
function(s) required

2. Makethisclass available on the application's classpath at runtime as described in Section 3.1

3. Specify the class's name to the application, as the value of the j el . cl asses system property
(colon-separated if there are several) as described in Section 3.3

Any public static methods defined in the classes thus specified will then be available for use. They
should be defined to take and return the relevant primitive or Object types for the function required.
For instance a class written as follows would define a three-value average:

public class AuxFuncs {
public static double average3(double x, double y, double z) {
return (x +y +z) [/ 3.0
}

}
and the command

stilts tpipe cnd="addcol AVERAGE "average3($1, $2, $3)""

would add a new column named AVERAGE giving the average of the first three existing columns.
Exactly how you would build this is dependent on your system, but it might involve doing
something like the following:

1. Writing afile named AuxFuncs. j ava containing the above code
2. Compiling it using acommand like "j avac AuxFuncs. j ava"
3. Runningt pi pe using theflags"stilts -classpath . -Djel.classes=AuxFuncs t pi pe"

SUN/256 87

A Commands By Category

This section lists the commands available broken down by the category of function they provide.
Some commands appear in more than one category. Detailed descriptions and examples for each
command can be found in Appendix B.

Format conversion:

* tcopy (Appendix B.16): Converts between table formats
* votcopy (Appendix B.26): Transforms between V OTable encodings

See also Section 5.
Generic table manipulation:

t copy (Appendix B.16): Converts between table formats

t pi pe (Appendix B.24): Performs pipeline processing on atable

tmul ti (Appendix B.22): Writes multiple tables to a single container file

tmul ti n (Appendix B.23): Writes multiple processed tables to single container file
t cat (Appendix B.14): Concatenates multiple similar tables

t cat n (Appendix B.15): Concatenates multiple tables

tj oi n (Appendix B.18): Joins multiple tables side-to-side

t cube (Appendix B.17): Calculates N-dimensional histograms

See also Section 6.
Crossmatching:

t mat ch1 (Appendix B.19): Performs a crossmatch internal to asingle table

t mat ch2 (Appendix B.20): Crossmatches 2 tables using flexible criteria

t mat chn (Appendix B.21): Crossmatches multiple tables using flexible criteria

t skymat ch2 (Appendix B.25): Crossmatches 2 tables on sky position

coneskymat ch (Appendix B.2): Crossmatches table on sky position against remote cone
service

* sql skymat ch (Appendix B.10): Crossmatches table on sky position against SQL table

See also Section 7.
Plotting:

e plot2d (Appendix B.4): 2D Scatter Plot
* plot3d (Appendix B.5): 3D Scatter Plot
* plothist (Appendix B.6): Histogram

See also Section 8.
VOTables:

* votcopy (Appendix B.26): Transforms between VOTable encodings
e votlint (Appendix B.27): Vaidates VOTable documents

Virtual Observatory service access:

* coneskymatch (Appendix B.2): Crossmatches table on sky position against remote cone
service

* tapquery (Appendix B.12): Queries a Table Access Protocol server

* tapresume (Appendix B.13): Resumes a previous query to a Table Access Protocol server

* regquery (Appendix B.7): Queriesthe VO registry

SQL Database access:

e sqlclient (Appendix B.9): Executes SQL statements
e sql updat e (Appendix B.11): Updates valuesin an SQL table

SUN/256 88
* sql skymat ch (Appendix B.10): Crossmatches table on sky position against SQL table

Miscellaneous:

* server (Appendix B.8): Runsan HTTP server to perform STILTS commands
* cal c (Appendix B.1): Evaluates expressions
* funcs (Appendix B.3): Browses functions used by algebraic expression langauage

SUN/256 89

B Command Reference

This appendix provides the reference documentation for the commands in the package. For each
one a description of its purpose, a list of its command-line arguments, and some examples are
given.

B.1 cal c: Evaluates expressions

cal c isavery smple utility for evaluating expressions. It uses the same expression evaluator as is
used in t pi pe and the other generic table tasks for things like creating new columns, so it can be
used as a quick test to see what expressions work, or in order to evaluate expressions using the
various algebraic functions documented in Section 9.5. Since usually no table is involved, you can't
refer to column names in the expressions. It has one mandatory parameter, the expression to
evaluate, and writes the result to the screen.

B.1.1 Usage
The usage of cal ¢ is
stilts <stilts-flags> cal c tabl e=<tabl e>

[expressi on=] <expr >

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

expression = <expr>
An expression to evaluate. The functionsin Section 9.5 can be used.

table = <tabl e>
A table which provides the context within which expressi on is evaluated. This parameter is
optional, and will usualy not be required; its only purpose is to allow use of constant
expressions (table parameters) associated with the table. These can be referenced using
identifiers of the form par ans*, ucd$* or ut ype$* - see Section 9.2 for more detail.

B.1.2 Examples

Here are some examples of using cal c:

stilts calc 1+2
Calculates one plus two. Writes "3" to standard output.

stilts calc 'isoToM d("2005-12-25T00: 00: 00")"
Works out the Modified Julian Day corresponding to Christmas 2005. The output is "53729.0".

stilts cal ¢ 'parantaut hor' tabl e=catal ogue. xni

In this case the expression is evaluated in the context of the supplied table, which means that
the table's parameters can be referenced in the expression. This example just outputs the value
of the table parameter named "author".

SUN/256 90

B.2 coneskynmat ch: Crossmatchestable on sky position against remote cone service

coneskymat ch is a utility which performs a cone search-like query to a remote server for each row
of an input table. Each of these queries returns a table with one row for each item held by the server
in the region of sky represented by the input row. The results of all the queries are then
concatenated into one big output table which is the output of this command.

The type of virtual observatory service queried is determined by the servicetype parameter.
Typicaly it will be a Cone Search service, which queries a remote catalogue for astronomical
objects or sources in a particular region. However, you can also query Simple Image Access and
Simple Spectral Access services in just the same way, to return tables of available image and
spectral resources in the relevant regions.

The identity of the server to query is given by the servi ceurl parameter. Some advice about how
to locate URL s for suitable servicesis given in Appendix B.2.3.

The effect of this command is like doing a positional crossmatch where one of the catalogues is
local and the other is remote and exposes its data via a cone search/SIA/SSA service. Because of
both the network communication and the necessarily naive crossmatching algorithm (which scales
linearly with the size of the local catalogue) however, it is only suitable if the local catalogue has a
reasonably small number of rows, unless you are prepared to wait along time.

Theparal | el parameter alows you to perform multiple cone searches concurrently, so that instead
of completing the first cone search, then the second, then the third, the program can be executing a
number of them at once. This can speed up operation considerably, especialy in the face of network
latency, but beware that submitting a very large number of queries ssimultaneously to the same
server may overload it, resulting in some combination of failed queries, ultimately slower runtimes,
and unpopularity with server admins. Best to start with alow parallelism and cautiously increase it
to see whether there are gains in performance.

Note that when running, coneskymat ch can generate a lot of WARNING messages. Most of these
are complaining about badly formed VOTables being returned from the cone search services.
STILTS does its best to work out what the service responses mean in this case, and usually makes a
good enough job of it.

Note: this task was known as mul ti cone in its experimental formin STILTSv1.2 and v1.3.

B.2.1 Usage
The usage of coneskymat ch is

stilts <stilts-flags> coneskymatch ifnt=<in-format> istreanrtrue|false
i cmd=<cnds> ocnd=<cnds>
onpde=<out - nnde> <node- ar gs>
out =<out - t abl e> of nt =<out - f or nat >
ra=<expr> dec=<expr> sr=<expr>
find=best|all|each copycol s=<colid-1list>
scor ecol =<col - name> paral | el =<n>
erract=abort|ignore|retry|retry<n>
ostreanrtrue| fal se fixcol s=none| dups]| al
suf fi x0=<I abel > suffix1=<| abel >
servi cet ype=cone| si a| ssa
serviceurl =<url -val ue> verb=1| 2| 3
dat af or mat =<val ue> enpt yok=t rue| f al se
[in=] <tabl e>

If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

SUN/256 91

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

copycols = <colid-list>
List of columns from the input table which are to be copied to the output table. Each column
identified here will be prepended to the columns of the combined output table, and its value for
each row taken from the input table row which provided the parameters of the query which
produced it. See Section 6.3 for list syntax. The default setting is "*", which means that all
columns from the input table are included in the output.

[Default: +]

dat af ormat = <val ue>
Indicates the format of data objects described in the returned table. The meaning of this is
dependent on the value of the ser vi cet ype parameter:

* servicetype=cone: not used

* servicetype=sia: gives the MIME type of images referenced in the output table, also
special values "GrAPHI C" and "ALL".(value of the SIA FORMAT parameter)

* servicetype=ssa: gives the MIME type of spectra referenced in the output table, also
special values "vot abl ", "fits", "conpliant"”, "graphic"”, "al 1", and others (value of
the SSA FORMAT parameter).

dec = <expr>
Expression which evaluates to the declination in degrees in the ICRS coordinate system for the
request at each row of the input table. This will usually be the name or ID of a column in the
input table, or afunction involving one.

emptyok = true|fal se

Whether the table metadata which is returned from a search result with zero rows is to be
believed. According to the spirit, though not the letter, of the cone search standard, a cone
search service which returns no data ought nevertheless to return the correct column headings.
Unfortunately this is not always the case. If this parameter is set true, it is assumed that the
service behaves properly in this respect; if it does not an error may result. In that case, set this
parameter fal se. A consequence of setting it false is that in the event of no results being
returned, the task will return no table at all, rather than an empty one.

[Default: t rue]

erract = abort|ignore|lretry|retry<n>
Determines what will happen if any of the individual cone search requests fails. By default the
task aborts. That may be the best thing to do, but for unreliable or poorly implemented services
you may find that some searches fail and others succeed so it can be best to continue operation
in the face of afew failures. The options are:

* abort: failure of any query terminates the task

* ignore: fallure of aquery istreated the same as a query which returns no rows

* retry: faled queries are retried until they succeed; use with care - if the failure is for
some good, or at least reproducible reason this could prevent the task from ever
completing

* retry<n>: failed queries are retried at most a fixed number <n> of times If they still fail
the task terminates.

[Default: abort]

find = best|all|each
Determines which matches are retained.

* best: Only the matching query table row closest to the input table row will be output.

SUN/256 92

Input table rows with no matches will be omitted.

* all: All query table rows which match the input table row will be output. Input table rows
with no matches will be omitted.

* each: There will be one output table row for each input table row. If matches are found,
the closest one from the query table will be output, and in the case of no matches, the
query table columns will be blank.

[Default: al I]

fixcols = none| dups]all
Determines how input columns are renamed before use in the output table. The choices are:

* none: columns are not renamed

* dups: columns which would otherwise have duplicate names in the output will be
renamed to indicate which table they came from

* all:al columnswill be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suf fi x* parameters.
[Default: dups]

icnmd = <cnds>
Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cnd=@i | enanme" causes the filefi | enanme to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifnt = <in-formt>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <tabl e>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

i stream = true|fal se
If set true, the i n table will be read as a stream. It is necessary to give thei f nt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

SUN/256 93

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "ocmd=@i | enane” causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of m = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

ostream = true|fal se
If set true, this will cause the operation to stream on output, so that the output table is built up
as the results are obtained from the cone search service. The disadvantage of thisis that some
output modes and formats need multiple passes through the data to work, so depending on the
output destination, the operation may fail if thisis set. Use with care (or be prepared for the
operation to fail).

[Default: f al se]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

SUN/256 94

parallel = <n>
Allows multiple cone searches to be performed concurrently. If set to the default value, 1, the
cone query corresponding to the first row of the input table will be dispatched, when that is
completed the query corresponding to the second row will be dispatched, and so on. If set to
<n>, then queries will be overlapped in such a way that up to approximately <n> may be
running at any one time. Whether this is a good idea, and what might be a sensible maximum
value for <n>, depends on the characteristics of the service being queried.

[Default: 1]

ra = <expr>
Expression which evaluates to the right ascension in degrees in the ICRS coordinate system for
the request at each row of the input table. This will usually be the name or ID of a column in
the input table, or afunction involving one.

scorecol = <col - nane>
Gives the name of a column in the output table to contain the distance between the requested
central position and the actual position of the returned row. The distance returned is an angular
distance in degrees. If a null value is chosen, no distance column will appear in the output
table.

[Default: Separat i on]

servi cetype = cone|si al ssa
Selects the type of data access service to contact. Most commonly this will be the Cone Search
service itself, but there are one or two other possibilities:

* cone: Cone Search protocol - returns a table of objects found near each location. See

Cone Search standard.

* sia: Simple Image Access protocol - returns a table of images near each location. See
SIA standard.

* ssa: Simple Spectral Access protocol - returns a table of spectra near each location. See
SSA standard.

[Default: cone]

serviceurl = <url-val ue>
The base part of a URL which defines the queries to be made. Additional parameters will be
appended to this using CGI syntax ("nane=val ue”, separated by '&"' characters). If this value
doesnot end in either a'? or a'&", one will be added as appropriate.

See Appendix B.2.3 for discussion of how to locate service URLSs corresponding to given
datasets.

sr = <expr>
Expression which evaluates to the search radius in degrees for the request at each row of the
input table. This will often be a constant numerical value, but may be the name or ID of a
column in the input table, or afunction involving one.

suffix0 = <l abel >
If thefixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: o]

suf fi x1 = <l abel >
If thefixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to al renamed columns from the cone result table.

[Default: _1]

SUN/256 95

verb = 1] 2|3
Verbosity level of the tables returned by the query service. A vaue of 1 indicates the bare
minimum and 3 indicates all available information.

B.2.2 Examples

Here are some examples of coneskymat ch:

stilts coneskymatch serviceurl =http://archive. stsci.edu/ hst/search. php \

i n=nessi er.xm ra=RA dec=DEC sr=0.05 \

out =mat ches. xmi
This queries the HST cone search service from Space Telescope for records within .05 degrees
of each Messier object contained in alocal VOTable nessi er. xn . The result is written to a
new VOTable, mat ches. xni . The J2000 positions of each record in the input file are held in
columns named RA and DEC respectively. Since the ser vi cet ype parameter is not given, the
default (cone search) servicetypeis assumed.

stilts coneskymatch

servi cetype=sia \

serviceurl =http://irsa.ipac. caltech. edu/ cgi - bi n/ 2MASS/ | M nph-i m si a?t ype=qgl &ds=asky

i n=ressi er.xm ra=RA dec=DEC \

dat af or mat =i mage/fits \

out =fitsi mages. xm
Thisis similar to the previous example, but instead of querying an HST cone search server for
catalogue objects near the input table positions, it queries a 2MASS Simple Image Access
(SIA) server for images. The search radius parameter (sr) is not set here; for SIA queries the
default search radius is zero, which has the special meaning of including any image which
covers the requested position. Setting dat af or mat =i mage/ fi ts (which is the default) requests
only records describing FITS-format images to be returned; setting it to an empty value might
return other formats such as JPEG too.

stilts coneskymatch \
serviceurl =" http://ww. nofs. navy. m | /cgi-bin/vo_cone. cgi 2CAT=NOVAD \
i n=vi zi er. xm #7 \
i cnd=" addskycoords -inunit sex fk4 fk5 RAB1950 DEB1950 RAJ2000 DEJ2000' \
i cnd=" progress'
ra=RAJ2000 dec=DEJ2000 sr=0.01 \
ocnd='repl acecol -units rad RA hmsToRadi ans(RA[0], RA[1], RA[2])" \
ocnmd='repl acecol -units rad DEC dnmsToRadi ans(DEC 0], DEC[1], DEC[2])" \
onode=t opcat

In this example some pre-processing of the input catalogue and post-processing of the output

catalogue is performed as well as the multiple cone search itself.

The input catalogue, which is the 8th TABLE element in a VOTable file, contains sky
positions in sexagesmal FK4 (B1950) coordinates. The i cnd=addskycoords. .. parameter
specifies a filter which will add new columns in FK5 (J2000) degrees, which are what the
coneskymat ch command requires. The i cnd=pr ogr ess parameter specifies a filter which will
write progress information to the terminal so you can see how the queries are progressing.

The NOMAD service specified by the serviceurl parameter used here happens to return
results with the RA/DEC columns represented in a rather eccentric format, namely 3-element
floating point arrays representing (hours,minutes,seconds)/(degrees,minutes,seconds). The two
ocmd=r epl acecol . .. filters replace the values of these columns with the scalar equivalents in
radians. Finally, the onode=t opcat parameter causes the result table to be loaded directly into
TOPCAT (if itisavailable).

stilts coneskymatch serviceurl =" http://archive.stsci.edu/iue/search. php? \

SUN/256 96

i n=queries.txt ifnt=ascii \

ra='$1' dec=' $2' \

sr="$3" copycol s="$4' \

out=found.fits
Here the input is a plain text table with four unnamed columns, giving in order the right
ascension, declination, positional error and name of target objects. The command carries out a
cone search to the named service for each one. Note in this case the search radius (sr
parameter) is taken from the table and so varies for each query. The copycol s parameter has
the value '$4', which means that the value of the fourth column of the input table will be
prepended to each row of the output table for which it isresponsible. Output isto a FITS table.

B.2.3 Locating Cone Query Service URLs

To use the coneskymat ch command you need the service URL (also known as the base URL or
access URL) of a cone search, SIA or SSA service to use. If you know one of these representing a
service that you wish to use, you can useit directly.

If you don't, you will need to find the URL from somewhere. It isthe job of the Virtual Observatory
Registry to keep arecord of where you can find various astronomical services, so thisis where you
should look.

There are various ways you can interrogate the registry; the easiest is probably to use a graphical
registry search tool. One such tool is AstroGrid's VOExplorer, which alows you to perform
sophisticated searches for cone search, SIA or SSA services. Another option isto use TOPCAT; the
Cone Search, SIA and SSA load dialogues allow you to search the registry for these services prior
to performing a query; you can just use the registry part and cut'n'paste the URL which is shown.

Other registry querying tools are available, including STILTSS regquery (Appendix B.7)
command. See that section of the manua for details, but for instance to locate registered Cone
Search services which have something to do with SDSS data, you could execute the following:

stilts regquery query="capability/ @tandardlD = "ivo://ivoa.net/std/ ConeSearch' and title
ocnd="keepcol s ' short Name AccessUrl"'" \
of mt =asci |
Writing just query="capability/ @tandardlD = 'ivo://ivoa.net/std/ ConeSearch' " with no

further qualification would give you all registered cone search services.

B.3funcs: Browses functions used by algebraic expression langauage

funcs is a utility which allows you to browse the functions you can use in STILTS's algebraic
expression language. Invoking the command causes a window to pop up on the display with two
parts. The left hand panel contains a tree-like representation of the functions available - the top level
shows the classes (categories) into which the functions are divided, and if you open these up (by
double clicking on them) each contains alist of functions and constants in that class. If you click on
any of these classes or their constituent functions or constants, a full descritption of what they are
and how to use them will appear in the right hand panel.

The information available from this command is the same as that given in Section 9.5, but the

graphical browser may be a more convenient way to view the documentation. There are no
parameters.

B.3.1 Usage

The usage of f uncs is

SUN/256

stilts <stilts-flags> funcs

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Thistask has no parameters.

B.4 pl ot 2d: 2D Scatter Plot

pl ot 2d performs two-dimensional scatter plots, sending the output to a graphical display or writing
it to afile in some vector or bitmapped graphics format. Y ou need to supply it with values for one
or more X and Y datasets, in terms of table columns, and it will generate a plot with a point for each
row. There are many options available to configure the detailed appearance of the plot, but in its
simplest form invocation is quite straightforward. See Section 8 for more discussion on use of the

plotting commands.

B.4.1 Usage

The usage of pl ot 2d is

stilts <stilts-flags> plot2d xpix=<int-val ue> ypi x=<i nt-val ue>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

font=di al og| serif|... fontsize=<int-val ue>
fontstyle=plain|bold|litalic|bold-italic

| egend=true|fal se titl e=<val ue>
onmode=swi ng| out | cgi | di scard]| aut o

out =<out -fil e>

of mt =png| gi f | j peg| pdf | eps| eps-gzi p i nN=<t abl e>
ifntN=<in-format> | streanN=true|fal se
cmdN=<cnmds> xdat aN=<expr > ydat aN=<expr >
auxdat aN=<expr> x| o=<f| oat - val ue>

yl o=<f | oat - val ue> auxl o=<f | oat - val ue>

xhi =<f | oat - val ue> yhi =<f| oat - val ue>

auxhi =<f | oat - val ue> x|l og=true|fal se

yl og=true| f al se auxl og=true|fal se
xflip=true|false yflip=true|false
auxflip=true|fal se x|l abel =<val ue>

yl abel =<val ue> auxl| abel =<val ue>

xer ror N=<expr>| [<l o- expr>], [<hi - expr>]

yerror N=<expr>| [<l o- expr>], [<hi - expr>]
auxshader =r ai nbow| pastel |... txtl abel N=<val ue>
subset NS=<expr > naneNS=<val ue>

col our NS=<rrggbb>| red| bl ue| ..
shapeNS=filled_circl el open_circle|..

si zeNS=<i nt - val ue> transpar encyNS=<i nt - val ue>
| i neNS=Dot ToDot | Li near Regr essi on

i newi dt hNS=<i nt - val ue>
dashNS=dot | dash|...|<a,b,...>

hi deNS=t r ue| f al se

errstyl eNS=l i nes| capped_Il i nes|...
grid=true|fal se antialias=true|false
sequence=<suffi x>, <suffi x>, ..

see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as

follows:

antialias = true|fal se
Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false smply sets each pixel in the
line to on or off. For vector-type graphics output formats, or for cases in which no diagonal

SUN/256 98

lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down dlightly.

[Default: t rue]

auxdat aN = <expr>
Gives a column name or expression for the aux axis data for table N. The expression is a
numeric algebraic expression based on column names as described in Section 9

auxflip = true|fal se
If set true, the scale on the aux axis will increase in the opposite sense from usual (e.g. right to
|eft rather than left to right).

[Default: f al se]

auxhi = <fl oat-val ue>
The upper limit for the plotted aux axis. If not set, a value will be chosen which is high enough
to accommodate all the data.

auxl abel = <val ue>
Specifies a label to be used for annotating axis aux. A default values based on the plotted data
will be used if no valueis supplied for this parameter.

auxl o = <fl oat-val ue>
The lower limit for the plotted aux axis. If not set, a value will be chosen which islow enough
to accommodate all the data.

auxl og = true|false
If false (the default), the scale on the aux axisislinear; if trueit islogarithmic.

[Default: f al se]

auxshader = rainbow pastel|...
Determines how data from auxiliary axes will be displayed. Generaly this is some kind of
colour ramp. These are the available colour fixing options:

rai nbow
past el

st andard
heat

col our
hue
greyscal e
red- bl ue

and these are the avail able colour modifying options:

hsv_h
hsv_s
hsv_v
intensity
rgb_red
rgb_green
rgb_bl ue
yuv_y
yuv_u
yuv_v
transpar ency

[Default: r ai nbow]

cmdN = <cnds>
The value of this parameter is one or more of the filter commands described in Section 6.1. If

SUN/256 99

more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus"cnmiN=@i | enane” causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

col our NS = <rrggbb>| red| bl ue| ..
Defines the colour of markers plotted. The value may be a 6-digit hexadecimal number giving
red, green and blue intensities, e.g. "f f 00f f " for magenta. Alternatively it may be the name of
one of the pre-defined colours. These are currently red, blue, green, grey, magenta, cyan,
orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter
name.

dashNS = dot|dash|...|<a,b,...>
Defines the dash style for any lines drawn in data set NS To generate a dashed line the value
may be one of the named dash types:

dot

dash

| ongdash
dot dash

or may be a comma-separated string of on/off length values such as "4, 2, 8, 2". A nul | value
indicates asolid line.

Only has an effect if thel i neNs parameter is set to draw lines.

errstyleNS = |ines|capped_|lines|...
Defines the way in which error bars (or ellipses, or...) will be represented for data set NS if
errors are being displayed. The following options are available:

none
l'i nes

capped_Il i nes

caps

arrows

el lipse
crosshair_el li pse
rectangl e
crosshair_rectangl e
filled_ ellipse
filled_rectangle

[Default: I'i nes]

font = dialog|serif]|...
Determines the font that will be used for textual annotation of the plot, including axes etc. At
least the following fonts will be available:

serif
sansseri f
nonospaced
di al og

di al ogi nput

aswell asarange of system-dependent fonts, possibly including

SUN/256 100

bi t stream charter

bi t stream vera_sans

bi t stream vera_sans_nono
bitstreamvera_serif
century_school book_|
courier

courier_10_pitch

cursor

dej avu_I| gc_sans

dej avu_I| gc_sans_condensed
dej avu_| gc_sans_li ght

dej avu_I| gc_sans_nono

dej avu_l gc_serif

dej avu_|l gc_serif_condensed
di ngbhat s

her shey

|'i beration_nono

| i beration_sans

i beration_serif

| uci da_bri ght

| uci da_sans

| uci da_sans_typewiter

| uxi _nono

| uxi _sans

[Default: di al og]

fontsize = <int-val ue>
Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic
Gives a style in which the font is to be applied for plot annotations. Options are pl ai n, bol d,
italicandbold-italic.

[Default: pl ai n]

grid = true|fal se
If true, grid lines are drawn on the plot. If false, they are absent.

[Default: true]

hi deNS = true|fal se
Indicates whether the actual markers plotted for each point should be hidden. Normally thisis
false, but you may want to set it to true if the point positions are being revealed in some other
way, for instance by error markers or lines drawn between them.

[Default: f al se]

ifn N = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the specia value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

i nN = <tabl e>
The location of the input table. This is usualy a filename or URL, and may point to a file

SUN/256 101

compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

istreanN = true|false
If set true, thei nN table will be read as a stream. It is necessary to give thei f nt N parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

| egend = true|false
Determines whether a legend showing which plotting style is used for each data set. Defaults
to trueif there is more than one set, false otherwise.

I i neNS = Dot ToDot | Li near Regr essi on
Determines what line if any will be plotted along with the data points. The options are:

* null:Nolineisplotted.

* Dot ToDot : Each point isjoined to the next one in sequence by a straight line.

* LinearRegression: A linear regression line is plotted based on all the points which are
visible in the plot. Note that the regression coefficients take no account of points out of
the visible range.

i newi dt hNS = <int-val ue>
Sets the line width in pixels for any lines drawn in data set NS.

Only has an effect if thel i neNs parameter is set to draw lines.
[Default: 1]

nameNS = <val ue>
Provides a name to use for a subset with the symbolic label NS. This name will be used for
display in thelegend, if oneisdisplayed.

ofm = png|gif|j pegl p.df|eps|eps'-gzi.|o ‘
Graphics format in which the plot is written to the output file. One of:

png: image/png format

gi f : image/gif format

j peg: image/jpeg format

pdf : application/pdf format

eps: application/postscript format

eps- gzi p: application/postscript (gzip) format

May default to a sensible value depending on the filename given by out .

onmode = swing| out|cgi|discard|auto
Determines how the drawn plot will be output.

* swing: Plot will be displayed in awindow on the screen.

* out: Plot will bewrittento afile given by out using the graphics format given by of nt .

e cgi: Plot will be written in a way suitable for CGI use direct from a web server. The
output is in the graphics format given by of nt, preceded by a suitable "Content-type"
declaration.

e discard: Plotisdrawn, but discarded. There is no output.

* auto: Behavesasswi ng or out mode depending on presence of out parameter

[Default: aut o]

SUN/256 102

out = <out-file>
The location of the output file. Thisis usualy afilename to write to. If it is equal to the special
value"-" the output will be written to standard output.

sequence = <suffix>, <suffix>,..

Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.
The value of this parameter is a comma-separated list of the "Ns" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably aphabetic by suffix).

shapeNS = filled_circle|lopen_circle|..
Defines the shapes for the markers that are plotted in data set NS. The following shapes are
available:

filled_circle
open_circle

Cross

X

open_squar e
open_di anond
open_triangl e_up
open_triangl e_down
filled_square
filled_di anond
filled_ triangle_up
filled_triangl e_down

si zeNS = <int-val ue>
Defines the marker size in pixels for markers plotted in data set NS. If the value is negative, an
attempt will be made to use a suitable size according to how many points there are to be
plotted.

[Default: - 1]

subset NS = <expr>
Gives the selection criterion for the subset labelled "NsS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

title = <val ue>

A one-linetitle to display at the top of the plot.

transparencyNS = <int-val ue>
Determines the transparency of plotted markers for data set NS. A value of <n> means that
opacity is only achieved (the background is only blotted out) when <n> pixels of this colour
have been plotted on top of each other.

The minimum valueis 1, which means opague markers.

t xtl abel N = <val ue>
Gives an expression which will label each plotted point. If given, the text (or number) resulting
from evaluating the expression will be written near each point which is plotted.

xdat aN = <expr >
Gives a column name or expression for the x axis data for table N. The expression is anumeric

SUN/256 103

algebraic expression based on column names as described in Section 9

xerrorN = <expr>|[<l o-expr>], [<hi-expr>]
Gives expressions for the errors on X coordinates for table N. The following forms are
permitted:

* <expr>: Symmetric error value

* <l o-expr>, <hi-expr>:distinct lower and upper error values
* <l o-expr>,:lower error value only

* , <hi-expr>: upper error value only

* null:noerors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

xflip = true|false
If set true, the scale on the x axis will increase in the opposite sense from usua (e.g. right to
|eft rather than left to right).

[Default: f al se]

xhi = <fl oat-val ue>
The upper limit for the plotted x axis. If not set, avalue will be chosen which is high enough to
accommodate all the data.

x| abel = <val ue>

Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no valueis supplied for this parameter.

xl o = <fl oat-val ue>
The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xlog = true|fal se
If false (the default), the scale on the x axisislinear; if trueit islogarithmic.

[Default: f al se]

Xpi X = <int-val ue>

The width of the output graphic in pixels.
[Default: 400]

ydat aN = <expr >
Gives a column name or expression for the y axis data for table N. The expression is anumeric
algebraic expression based on column names as described in Section 9

yerrorN = <expr>|[<l o-expr>], [<hi-expr>]
Gives expressions for the errors on Y coordinates for table N. The following forms are
permitted:

e <expr>: Symmetric error value

e <l o-expr>, <hi-expr>:distinct lower and upper error values
e <lo-expr>,: lower error value only

e, <hi-expr>: upper error value only

* null:noerors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

yflip = true|fal se
If set true, the scale on the y axis will increase in the opposite sense from usua (e.g. right to
left rather than left to right).

[Default: f al se]

SUN/256 104

yhi = <fl oat-val ue>
The upper limit for the plotted y axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

yl abel = <val ue>
Specifies a label to be used for annotating axis y. A default values based on the plotted data
will be used if no valueis supplied for this parameter.

ylo = <fl oat -val ue>
The lower limit for the plotted y axis. If not set, a value will be chosen which islow enough to
accommodate all the data.

ylog = true|fal se
If false (the default), the scale on the y axisislinear; if trueit islogarithmic.

[Default: f al se]

ypi X = <int-val ue>

The height of the output graphic in pixels.
[Default: 300]

B.4.2 Examples

Here are some examples of pl ot 2d in use:

stilts plot2d in=cat.xm xdata=RVAG BMAG ydat a=BVAG

Plots a colour-magnitude diagram. Since no onode or out value has been specified, the plot is
posted directly to the graphics display for inspection. By adding the parameter
out =xypl ot . eps the plot could be written to an Encapsulated Postscript file instead.

The generated plot is here.

stilts plot2d i n=6dfgs_m ni.xnl xdata=RMAG BMAG ydat a=BVAG
subset 1=SGFLAG==1 nanel=gal axy col our 1=bl ue shapel=open_circle
subset 2=SGFLAG==2 nane2=st ar col our 2=e010f 0 shape2=x si ze2=3
xl0o=-1 xhi =4.5 yl 0=10 yhi =20 xpi x=500 ypi x=250
out =xypl ot 2. png

Plots a colour-magnitude diagram with multiple subsets. The subsets are labelled "1" and "2"
with separate sets of parameters applying to each. The selections for the sets are given by the
subset * parameters; set 1 isthose rows with the SGFLAG column equal to 1 and set 2 is those
rows with the SGFLAG column equal to 2. The boundaries of the plot in data coordinates are
set explicitly rather than being determined from the data (this is faster) and the plot size in
pixelsisaso set explicitly rather than taking the default values. Output isto a PNG file.

The generated plot is here.

stilts plot2d inl=iras_psc.fits cndl="addskycoords fk5 galactic RA DEC GLON GLAT
xdat al=GLON ydat al=G_.AT
auxdat al=FNU_100 auxl og=true auxflip=true sizel=0 transparencyl=3
i n2=nessi er. xm cnd2=" addskycoords fk5 gal actic RA DEC GLON GLAT
xdat a2=CGLON ydat a2=G_AT
t xt | abel 2=RADI US>16?("M +I D): "" cnmd2="addcol SIZE sqrt (RADI US/ 2)'
xerror2=SlI ZE yerror 2=S| ZE
subset 2a=true hi de2a=true col our2a=bl ack errstyl e2a=elli pse
subset 2b=t rue hi de2b=true col our2b=bl ack errstyl e2b=filled_ellipse

t ranspar ency2b=6

x| abel =" Gal acti ¢ Longitude' ylabel =" Galactic Latitude' title="The Sky
| egend=f al se grid=fal se fontsize=12 fontstyle=bold-italic
xl 0=0 xhi =360 yl 0=-90 yhi =+90 xpi x=600 ypi x=300
out =skypl ot . png

SUN/256 105

Y ou can do quite complicated things.
The generated plot is here.

B.5 pl ot 3d: 3D Scatter Plot

pl ot 3d performs three-dimensiona scatter plots, sending the output to a graphical display or
writing it to afile in some vector or bitmapped graphics format. Y ou need to supply it with values
for one or more X, Y and Z datasets, in terms of table columns, and it will generate a plot with a
point for each row. There are many options available to configure the detailed appearance of the
plot, but in its simplest form invocation is quite straightforward. See Section 8 for more discussion
on use of the plotting commands.

B.5.1 Usage
The usage of pl ot 3d is

stilts <stilts-flags> plot3d xpix=<int-val ue> ypi x=<i nt-val ue>
font=di al og| serif|... fontsize=<int-val ue>
fontstyle=plain|bold|litalic|bold-italic
| egend=true|fal se titl e=<val ue>
onbde=sw ng| out | cgi | di scard| auto
out =<out -fil e>
of mt =png| gi f | j peg| pdf | eps| eps-gzi p i nN=<t abl e>
i fntN=<in-format> | streanN=true|fal se
cmdN=<cnmds> xdat aN=<expr > ydat aN=<expr >
zdat aN=<expr > auxdat aN=<expr >
x| o=<f| oat - val ue> yl o=<f1| oat - val ue>
z| o=<f| oat - val ue> auxl o=<f | oat - val ue>
xhi =<f | oat - val ue> yhi =<f| oat - val ue>
zhi =<f | oat - val ue> auxhi =<f| oat - val ue>
xl og=true|fal se yl og=true|fal se
zl og=true| fal se auxl og=true|fal se
xflip=true|false yflip=true|false
zflip=true|fal se auxflip=true|false
x| abel =<val ue> yl abel =<val ue> zl abel =<val ue>
aux| abel =<val ue>
xerror N=<expr>| [<l o- expr>], [<hi - expr>]
yerror N=<expr>| [<l o- expr>], [<hi - expr>]
zerror N=<expr>| [<l o-expr>], [<hi - expr>]
auxshader =r ai nbow| pastel |... txtlabel N=<val ue>
subset NS=<expr > naneNS=<val ue>
col our NS=<rrggbb>| red| bl ue| ..
shapeNS=filled_circle|open_circle|..
si zeNS=<i nt - val ue> transpar encyNS=<i nt - val ue>
| i neNS=Dot ToDot | Li near Regr essi on
I i newi dt hNS=<i nt - val ue>
dashNS=dot | dash|...|<a,b,...>
hi deNS=t r ue| f al se
errstyl eNS=l i nes| capped_lI i nes| ..
grid=true|fal se antialias=true|false
sequence=<suffi x>, <suffix>, ..
f og=<f | oat - val ue> phi =<f| oat - val ue>
t het a=<f| oat - val ue>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

antialias = true|fal se
Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false simply sets each pixel in the

SUN/256 106

line to on or off. For vector-type graphics output formats, or for cases in which no diagonal
lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down dlightly.

[Default: t rue]

auxdat aN = <expr>
Gives a column name or expression for the aux axis data for table N. The expression is a
numeric algebraic expression based on column names as described in Section 9

auxflip = true|fal se
If set true, the scale on the aux axis will increase in the opposite sense from usual (e.g. right to
|eft rather than left to right).

[Default: f al se]

auxhi = <fl oat-val ue>
The upper limit for the plotted aux axis. If not set, a value will be chosen which is high enough
to accommodate all the data.

aux| abel = <val ue>

Specifies a label to be used for annotating axis aux. A default values based on the plotted data
will be used if no valueis supplied for this parameter.

auxl o = <fl oat-val ue>
The lower limit for the plotted aux axis. If not set, a value will be chosen which islow enough
to accommodate all the data.

auxl og = true|fal se
If false (the default), the scale on the aux axisislinear; if trueit islogarithmic.

[Default: f al se]

auxshader = rai nbow pastel|...
Determines how data from auxiliary axes will be displayed. Generaly this is some kind of
colour ramp. These are the available colour fixing options:

rai nbow
past el

st andard
heat

col our
hue
greyscal e
red- bl ue

and these are the avail able colour modifying options:

hsv_h
hsv_s
hsv_v
intensity
rgb_red
rgb_green
rgb_bl ue
yuv_y
yuv_u
yuv_v
transpar ency

[Default: r ai nbow]
cmdN = <cmds>

SUN/256 107

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "cnmiN=@i | enane" causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

col our NS = <rrggbb>| red| bl ue| ..
Defines the colour of markers plotted. The value may be a 6-digit hexadecimal number giving
red, green and blue intensities, e.g. "f f 00f f " for magenta. Alternatively it may be the name of
one of the pre-defined colours. These are currently red, blue, green, grey, magenta, cyan,
orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter
name.

dashNS = dot|dash|...|<a,b,...>
Defines the dash style for any lines drawn in data set NS To generate a dashed line the value
may be one of the named dash types:

e dot

* dash

* | ongdash

e dotdash

or may be a comma-separated string of on/off length values such as "4, 2, 8, 2". A nul | value
indicates asolid line.

Only has an effect if thel i neNs parameter is set to draw lines.

errstyl eNS = |ines|capped_|lines|...
Defines the way in which error bars (or ellipses, or...) will be represented for data set NS if
errors are being displayed. The following options are available:

none
l'i nes

capped_Il i nes

caps

arrows

cuboi d

el lipse
crosshair_el lipse
rectangl e
crosshair_rectangl e
filled_ ellipse
filled_rectangle

[Default: I'i nes]

fog = <fl oat-val ue>
Sets the level of fogging used to provide a visual indication of depth. Object plotted further
away from the viewer appear more washed-out by a white fog. The default value gives a bit of
fogging; increase it to make the fog thicker, or set to zero if no fogging is required.

[Default: 1. 0]

font = dialog|serif]|...
Determines the font that will be used for textual annotation of the plot, including axes etc. At

SUN/256 108

least the following fonts will be available:

e serif

* sansserif

* nonospaced
e dialog

e dial ogi nput

aswell asarange of system-dependent fonts, possibly including

* bitstreamcharter

* bitstreamvera_sans

* bitstreamvera_sans_nobno
* Dbitstreamyvera_serif

e century_school book_|I

* courier

* courier_10_pitch

* cursor

* dejavu_l gc_sans

* dejavu_l gc_sans_condensed
e dejavu_l gc_sans_light

* dejavu_l gc_sans_nono

e dejavu_lgc_serif

* dejavu_lgc_serif_condensed

e dingbats

* hershey

e |iberation_nono

e |iberation_sans

* Jliberation_serif

* |ucida_bright

* |ucida_sans

* Jucida_sans_typewiter
. | uxi _nono

. | uxi _sans

[Default: di al og]

fontsize = <int-val ue>
Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic
Gives a style in which the font is to be applied for plot annotations. Options are pl ai n, bol d,
italicandbold-italic.
[Default: pl ai n]

grid = true|fal se
If true, grid lines are drawn on the plot. If false, they are absent.

[Default: true]

hi deNS = true|fal se
Indicates whether the actual markers plotted for each point should be hidden. Normally thisis
false, but you may want to set it to true if the point positions are being revealed in some other
way, for instance by error markers or lines drawn between them.

[Default: f al se]

ifn N = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This

SUN/256 109

flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

i nN = <tabl e>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

istreamN = true|fal se
If set true, thei nN table will be read as a stream. It is necessary to give thei f nt N parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

| egend = true|false
Determines whether a legend showing which plotting style is used for each data set. Defaults
to trueif there is more than one set, false otherwise.

i neNS = Dot ToDot | Li near Regr essi on
Determines what line if any will be plotted along with the data points. The options are:

* null:Nolineisplotted.

* Dot ToDot : Each point isjoined to the next one in sequence by a straight line.

* LinearRegression: A linear regression line is plotted based on all the points which are
visible in the plot. Note that the regression coefficients take no account of points out of
the visible range.

i newi dt hNS = <int-val ue>
Sets the line width in pixels for any lines drawn in data set NS.

Only has an effect if thel i neNs parameter is set to draw lines.
[Default: 1]

nameNS = <val ue>
Provides a name to use for a subset with the symbolic label NS. This name will be used for
display inthelegend, if oneisdisplayed.

ofmt = png|gif|j peg| p.dfleps|eps.-gzi.p ‘
Graphics format in which the plot is written to the output file. One of:

png: image/png format

gi f: image/gif format

j peg: image/jpeg format

pdf : application/pdf format

eps: application/postscript format

eps- gzi p: application/postscript (gzip) format

May default to a sensible value depending on the filename given by out .

onmode = swing| out|cgi|discard|auto
Determines how the drawn plot will be output.

* swing: Plot will be displayed in awindow on the screen.

SUN/256 110

out : Plot will be written to afile given by out using the graphics format given by of nt .
cgi : Plot will be written in a way suitable for CGI use direct from a web server. The
output is in the graphics format given by of nt, preceded by a suitable "Content-type"
declaration.

di scard: Plot isdrawn, but discarded. Thereis no output.

aut o: Behaves as swi ng or out mode depending on presence of out parameter

[Default: aut o]

out = <out-file>
The location of the output file. Thisis usualy afilename to write to. If it is equal to the special

value"-" the output will be written to standard output.

phi = <fl oat-val ue>

Angle in degrees through which the 3D plot is rotated abound the Z axis prior to drawing.

[Default: 30. 0]

sequence = <suffix>, <suffix>,..

Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.
The value of this parameter is a comma-separated list of the "Ns" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably a phabetic by suffix).

shapeNS = filled_circle|lopen_circle|..

Defines the shapes for the markers that are plotted in data set NS. The following shapes are
available:

filled circle
open_circle

Cross

X

open_square
open_di anond
open_triangl e_up
open_triangl e_down
filled_square

fill ed_di amond
filled_triangle_up
filled_triangl e _down

sizeNS = <int-val ue>
Defines the marker size in pixels for markers plotted in data set NS. If the value is negative, an
attempt will be made to use a suitable size according to how many points there are to be
plotted.

[Default: - 1]

subset NS = <expr>
Gives the selection criterion for the subset labelled "NsS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

theta = <fl oat-val ue>

SUN/256 111

Angle in degrees through which the 3D plot is rotated towards the viewer (i.e. about the
horizontal axis of the viewing plane) prior to drawing.

[Default: 15. 0]

title = <val ue>

A one-linetitle to display at the top of the plot.

transparencyNS = <int-val ue>
Determines the transparency of plotted markers for data set NS. A value of <n> means that
opacity is only achieved (the background is only blotted out) when <n> pixels of this colour
have been plotted on top of each other.

The minimum valueis 1, which means opague markers.

t xtl abel N = <val ue>
Gives an expression which will label each plotted point. If given, the text (or number) resulting
from evaluating the expression will be written near each point which is plotted.

xdat aN = <expr >
Gives a column name or expression for the x axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

xerrorN = <expr>|[<l o-expr>],[<hi-expr>]
Gives expressions for the errors on X coordinates for table N. The following forms are
permitted:

* <expr>: Symmetric error value

* <l o-expr>, <hi-expr>:distinct lower and upper error values
* <lo-expr>,: lower error value only

e, <hi-expr>: upper error value only

* null:noerors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

xflip = true|fal se
If set true, the scale on the x axis will increase in the opposite sense from usua (e.g. right to
left rather than left to right).

[Default: f al se]

xhi = <fl oat-val ue>
The upper limit for the plotted x axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

x| abel = <val ue>
Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no value is supplied for this parameter.

xl o = <fl oat-val ue>
The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xl og = true|fal se
If false (the default), the scale on the x axisislinear; if trueit islogarithmic.

[Default: f al se]

Xpi X = <int-val ue>

The width of the output graphic in pixels.
[Default: 300]

ydat aN = <expr >
Gives a column name or expression for the y axis data for table N. The expression is a numeric

SUN/256 112

algebraic expression based on column names as described in Section 9

yerrorN = <expr>|[<l o-expr>], [<hi-expr>]
Gives expressions for the errors on Y coordinates for table N. The following forms are
permitted:

* <expr>: Symmetric error value

* <l o-expr>, <hi-expr>:distinct lower and upper error values
* <l o-expr>,:lower error value only

* , <hi-expr>: upper error value only

* null:noerors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

yflip = true|false
If set true, the scale on the y axis will increase in the opposite sense from usua (e.g. right to
|eft rather than left to right).

[Default: f al se]

yhi = <fl oat-val ue>
The upper limit for the plotted y axis. If not set, avalue will be chosen which is high enough to
accommodate all the data.

yl abel = <val ue>

Specifies a label to be used for annotating axis y. A default values based on the plotted data
will be used if no valueis supplied for this parameter.

ylo = <fl oat-val ue>
The lower limit for the plotted y axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

ylog = true|fal se
If false (the default), the scale on the y axisislinear; if trueit islogarithmic.

[Default: f al se]

ypi x = <int-val ue>

The height of the output graphic in pixels.
[Default: 300]

zdat aN = <expr>
Gives a column name or expression for the z axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

zerrorN = <expr>|[<l o-expr>], [<hi-expr>]
Gives expressions for the errors on Z coordinates for table N. The following forms are
permitted:

e <expr>: Symmetric error value

e <l o-expr>, <hi-expr>:distinct lower and upper error values
e <lo-expr>,: lower error value only

e, <hi-expr>: upper error value only

* null:noerors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

zflip = true|fal se
If set true, the scale on the z axis will increase in the opposite sense from usua (e.g. right to
left rather than left to right).

[Default: f al se]

SUN/256 113

zhi = <fl oat-val ue>
The upper limit for the plotted z axis. If not set, a value will be chosen which is high enough to

accommodate all the data.

zl abel = <val ue>

Specifies a label to be used for annotating axis z. A default values based on the plotted data
will be used if no valueis supplied for this parameter.

zl o = <fl oat-val ue>
The lower limit for the plotted z axis. If not set, a value will be chosen which islow enough to

accommodate all the data.

zlog = true|false
If false (the default), the scale on the z axisislinear; if trueit islogarithmic.

[Default: f al se]

B.5.2 Examples

Here are some examples of pl ot 3d in use:

stilts plot3d in=cat.xm xdata=RMAG ydat a=BMAG zdat a=VEL zl og=true

Plots a 3-d scatter plot of red magnitude vs. blue magnitude vs. velocity; the velocity is plotted
on a logarithmic scale. Since no onode or out value has been specified, the plot is posted
directly to the graphics display for inspection. By adding the parameter out =xypl ot . eps the
plot could be written to an Encapsulated Postscript file instead.

The generated plot is here.

stilts plot3d in=sinl.fits xdata=x ydata=y zdata=z
crmd="addcol vel "sqgrt(vel x*vel x+vel y*vel y+vel z*vel z)"' auxdata=vel auxl og=tr u

xpi x=500 ypi x=400 phi =50 t heta=10 out =cube. j peg
Plotsthe X, y, z positions of particles from a file containing the result of a simulation run. Here
an auxiliary axis is used to colour-code the points according their velocity. This is done by
introducing a new vel column to the table using the addcol filter command, so that the vel
column can be used as the value for the auxdat a parameter. Alternatively, the given expression
for the velocity could have been used directly as the value of the auxdat a parameter.

Additionally, the phi and t het a parameters are given to adjust the orientation of the cube.
The generated plot is here.

B.6 pl ot hi st : Histogram

pl ot hi st performs histogram plots, sending the output to a graphical display or writing it to afile
in some vector or bitmapped graphics format. You need to supply it with values for one or more
sets of X values, in terms of table columns, and it will bin the data and draw bars appropriately. Plot
bounds, bin widths etc may be supplied expliicitly, but will be calculated from the data and set from
defaults as appropriate otherwise. There are many options available to configure the detailed
appearance of the plot, but in its simplest form invocation is quite straightforward. See Section 8 for
more discussion on use of the plotting commands.

B.6.1 Usage

The usage of pl ot hi st IS

SUN/256 114

stilts <stilts-flags> plothist xpix=<int-val ue> ypi x=<i nt-val ue>
font=di al og| serif|... fontsize=<int-val ue>
fontstyle=plain|bold|litalic|bold-italic
| egend=true|fal se titl e=<val ue>
onmode=swi ng| out | cgi | di scard| aut o
out =<out -fil e>
of nt =png| gi f | j peg| pdf | eps| eps- gzi p
i NN=<t abl e> i f nt N=<i n-f or mat >
i streamN=true| fal se cmdN=<cnds>
xdat aN=<expr > x| o=<f| oat - val ue>
xhi =<f | oat - val ue> x|l og=true| fal se
xflip=true|fal se x|l abel =<val ue>
subset NS=<expr > naneNS=<val ue>
col our NS=<rr ggbb>| red| bl ue| . .
barstyl eNS=fill | open]..
i new dt hNS=<i nt - val ue>
dashNS=dot | dash|...|<a,b,...>
grid=true|fal se antialias=true|false
sequence=<suffi x>, <suffix>, ..
yl o=<f | oat - val ue> yhi =<f| oat - val ue>
yl og=true| fal se yl abel =<val ue>
wei ght N=<val ue> bi nwi dt h=<f1| oat - val ue>
normrtrue| fal se cumul ati ve=true|fal se
bi nbase=<f| oat - val ue>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

antialias = true|fal se
Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false smply sets each pixel in the
line to on or off. For vector-type graphics output formats, or for cases in which no diagonal
lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down dlightly.

[Default: true]

barstyleNS = fill|open|..
Defines how histogram bars will be drawn for dataset NS. The options are:

e fill

* open
* tops
* spikes

. fillover
. openover

[Default: fill]

bi nbase = <fl oat - val ue>
Adjusts the offset of the bins. By default zero (or one for logarithmic X axis) is a boundary
between bins; other boundaries are defined by this and the bin width. If this value is adjusted,
the lower bound of one of the bins will be set to this value, so all the bins move along by the
corresponding distance.

[Default: 0]

bi nwi dth = <fl oat - val ue>
Defines the width on the X axis of histogram bins. If the X axis is logarithmic, then thisis a
multiplicative value.

SUN/256 115

cmdN = <cnds>
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "cmiN=@i | enane" causes thefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

col ourNS = <rrggbb>| red]| bl ue|. .
Defines the colour of bars plotted for data set NS. The value may be a 6-digit hexadecimal
number giving red, green and blue intensities, e.g. "f f 00f f " for magenta. Alternatively it may
be the name of one of the pre-defined colours. These are currently red, blue, green, grey,
magenta, cyan, orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter
name.

cunul ative = true|false
Determines whether historams are cumulative. When false (the default), the height of each bar
is determined by counting the number of points which fall into the range on the X axis that it
covers. When true, the height is determined by counting all the points between negative
infinity and the upper bound of the range on the X axisthat it covers.

[Default: f al se]

dashNS = dot|dash|...|<a,b,...>
Defines the dashing pattern for lines drawn for dataset NS. To generate a dashed line the value
may be one of the named dash types:

dot

dash

| ongdash
dot dash

or may be a comma-separated string of on/off length values such as "4, 2, 8, 2". A nul | vaue
indicates a solid line. Only certain bar styles are affected by the dash pattern.

font = dialog|serif|...
Determines the font that will be used for textual annotation of the plot, including axes etc. At
least the following fonts will be available:

serif
sansseri f
nonospaced
di al og

di al ogi nput

aswell asarange of system-dependent fonts, possibly including

bitstream charter

bi t stream vera_sans

bi t stream vera_sans_nono
bitstreamvera_serif
century_school book_|
courier

courier_10_pitch

cursor

dej avu_I| gc_sans

SUN/256 116

dej avu_I| gc_sans_condensed
dej avu_| gc_sans_li ght

dej avu_I| gc_sans_nono

dej avu_l gc_serif

dej avu_|l gc_serif_condensed
di ngbhat s

her shey

|'i beration_nono

| i beration_sans
liberation_serif

| uci da_bri ght

| uci da_sans

| uci da_sans_typewiter

| uxi _nono

| uxi _sans

[Default: di al og]

fontsize = <int-val ue>
Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic
Gives a style in which the font is to be applied for plot annotations. Options are pl ai n, bol d,
italicandbold-italic.

[Default: pl ai n]

grid = true|fal se
If true, grid lines are drawn on the plot. If false, they are absent.

[Default: true]

ifn N = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the specia value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

i nN = <tabl e>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

i streamN = true|fal se
If set true, thei nN table will be read as a stream. It is necessary to give thei f nt N parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

| egend = true|fal se
Determines whether a legend showing which plotting style is used for each data set. Defaults
to trueif there is more than one set, false otherwise.

SUN/256 117

I i newi dt hNS = <i nt - val ue>
Defines the line width for lines drawn as part of the bars for dataset NS. Only certain bar styles
are affected by the line width.

[Default: 2]

naneNS = <val ue>
Provides a name to use for a subset with the symbolic label NS. This name will be used for
display in the legend, if oneis displayed.

norm = true|fal se
Determines whether bin counts are normalised. If true, histogram bars are scaled such that
summed height of all bars over the whole dataset is equal to one. Otherwise (the default), no
scaling is done.

[Default: f al se]

ofm = png|gif|j peg| p_df|eps|eps_—gzi_p _
Graphics format in which the plot is written to the output file. One of:

png: image/png format

gi f : image/gif format

j peg: image/jpeg format

pdf : application/pdf format

eps: application/postscript format

eps- gzi p: application/postscript (gzip) format

May default to a sensible value depending on the filename given by out .

onmode = swing| out | cgi|di scard|auto
Determines how the drawn plot will be output.

* swing: Plot will be displayed in awindow on the screen.

* out: Plot will bewrittento afile given by out using the graphics format given by of nt .

e cgi: Plot will be written in a way suitable for CGI use direct from a web server. The
output is in the graphics format given by of nt, preceded by a suitable "Content-type"
declaration.

e discard: Plotisdrawn, but discarded. There is no output.

* auto: Behavesasswi ng or out mode depending on presence of out parameter

[Default: aut o]

out = <out-file>
The location of the output file. Thisis usualy afilename to write to. If it is equal to the special
value "-" the output will be written to standard output.

sequence = <suffix>, <suffix>,...

Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.
The value of this parameter is a comma-separated list of the "Ns" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably alphabetic by suffix).

subset NS = <expr>
Gives the selection criterion for the subset labelled "NsS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

SUN/256 118

title = <val ue>

A one-linetitle to display at the top of the plot.

wei ght N = <val ue>
Defines a weighting for each point accumulated to determine the height of plotted bars. If this
parameter has a value other than 1 (the default) then instead of simply accumulating the
number of points per bin to determine bar height, the bar height will be the sum over the
weighting expression for the points in each bin. Note that with weighting, the figure drawn is
no longer strictly speaking a histogram.

When weighted, bars can be of negative height. An anomaly of the plot as currently
implemented is that the Y axis never descends below zero, so any such bars are currently
invisible. This may be amended in a future release (contact the author to lobby for such an
amendment).

[Default: 1]

xdat aN = <expr >
Gives a column name or expression for the x axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

xflip = true|fal se
If set true, the scale on the x axis will increase in the opposite sense from usua (e.g. right to
left rather than left to right).

[Default: f al se]

xhi = <fl oat-val ue>
The upper limit for the plotted x axis. If not set, avaue will be chosen which is high enough to
accommodate all the data.

x| abel = <val ue>
Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no value is supplied for this parameter.

xl o = <fl oat-val ue>
The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xl og = true|fal se
If false (the default), the scale on the x axisislinear; if trueit islogarithmic.

[Default: f al se]

Xpi X = <int-val ue>

The width of the output graphic in pixels.
[Default: 400]

yhi = <fl oat-val ue>
Upper bound for Y axis. Autogenerated from the data if not supplied.

yl abel = <val ue>
Specifies a label for annotating the vertical axis. A default value based on the type of
histogram will be used if no value is supplied for this parameter.

[Default: count]

ylo = <fl oat-val ue>
Lower bound for Y axis.

[Default: 0]

ylog = true|fal se
Whether to use alogarithmic scale for the Y axis.

SUN/256 119
[Default: f al se]

ypi X = <int-val ue>

The height of the output graphic in pixels.
[Default: 300]

B.6.2 Examples

Here are some examples of pl ot hi st in use:

stilts plothist in=cat.xm xdata=RVMAG BMAG
Plots a histogram of the R-B colour. The plot is displayed directly on the screen.

The generated plot is here.

stilts plothist in=cat.xm xdata=RVAG BMAG of nt =eps-gzi p out =hi st. eps. gz

Makes the same plot as the previous example, but writes it to a gzipped encapsulated postscript
file instead of displaying it on the screen.

The generated plot is here.

stilts plothist inJ=2mass_xsc.fits xdataJ=j_m k20fe barstyl eJ=tops
i nH=2mass_xsc. fits xdat aH=h_m k20f e barstyl eH=t ops
i nK=2mass_xsc. fits xdatakK=k_m k20f e barstyl eK=t ops
bi nwi dt h=0.1 x| 0=12 xhi =16 xflip=true x| abel =Magni t ude xpi x=500
out =2mass. gi f
Overplots histograms of three different columns from the same input table. These are treated as
three separate datasets which all happen to use the same input file. The different datasets are
labelled 3", "H' and "K" so these suffixes appear on all the dataset-dependent parameters
which are supplied. The binwidth and X range are specified explicitly rather than leaving them

to be chosen automatically by examining the data.
The generated plot is here.

B.7 regquery: Queriesthe VO registry

regquery submits a query to the Virtua Observatory registry and returns the result as a table
containing all the records which match the condition specified. The resulting table can be written
out in any of the supported formats or otherwise processed in the usual ways. Making use of this
command requires an understanding of the VOResource schema.

It is important to note that the results of this command give a very much flattened and incomplete
view of the results of a full registry query. That is because the contents of an IVOA Registry (see
the IVOA Resource Metadata and VOResource documents for more detail) are hierarchical and
cannot be faithfully represented in a simple tabular structure. Other superior registry search clients
exist; this command is just useful for viewing the results in a rather smplified way which can be
represented as atable.

B.7.1 Usage
The usage of regquery is

stilts <stilts-flags> regquery query=<val ue> regurl =<url -val ue>
soapout =<out - fi | e> ocnd=<cnds>

SUN/256 120

onmode=<out - nrode> <nbde- ar gs> out =<out -t abl e>

of nt =<out - f or mat >
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "ocmd=@i | enane" causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of nt = <out-formt>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onpde = <out-node> <node-ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

SUN/256 121

This parameter must only be given if onode has its default value of "out ".
[Default: -]

query = <val ue>
Text of an ADQL WHERE clause targeted at the VOResource 1.0 schema defining which
resource records you wish to retrieve from the registry. Some examples are:

* (@si:type like '% rganisati on%

* capability/@tandardiD = ‘'ivo://ivoa.net/std/ ConeSearch' and title Iike
' %BDSSY%

e curation/publisher like 'CDS% and title |ike '9%gal ax%

A full description of ADQL syntax and of the VOResource schemais well beyond the scope of
this documentation, but in general you want to use<fi el d- nane> |i ke ' <val ue>' where'%is
a wildcard character. Logical operators and and or and parentheses can be used to group and
combine expressions. To work out the various <fi el d-name>s you need to look at the
VOResource 1.0 schema; you can find some more discussion in the documentation of the
NVO IVOARegistry package.

regurl = <url-val ue>

The URL of a SOAP endpoint which provides a VOResourcel.0 IVOA registry service. Some
known suitable registry endpoints at time of writing are

* http://registry.astrogrid.org/astrogrid-registry/services/RegistryQueryvl 0
* http://registry.euro-vo.org/services/ Regi strySearch
* http://nvo.stsci.edu/vor10/ristandardservice.asnx

[Default:
http://registry.astrogrid.org/astrogrid-registry/services/Regi stryQueryvl_0]
soapout = <out-file>

If set to a non-null value, this gives the destination for the text of the request and response
SOAP messages. The specia value "-" indicates standard output.

B.7.2 Examples

Here are some examples of r egquery:

stilts regquery query="title like ' RAS% " ofm =ascii out=iras.txt

Retrieves al the records in the registry whose titl e field contain the string "IRAS". The '%
characters function as wildcards for the ADQL 1i ke operator. The output is written to a local
ASCII table which can be examined later.

stilts regquery query="capability/ @tandardlD = "ivo://ivoa. net/std/ ConeSearch’
and curation/ @ublisher like '%astrogrid%"
onode=count
Searches for all resources which offer a cone search service and are published by AstroGrid. In
this case the records are not stored, but the onode=count output mode counts the rows. This
therefore tells you how many AstroGrid cone search services are in the registry.

stilts regquery query="capability/ @tandardlD = "ivo://ivoa.net/std/ SSA "
ocnd="keepcol s 'identifier accessUl""
of nt =asci| out=-
Queries the registry for all Simple Spectral Access services. The keepcol s filter takes the
result and throws away all the columns except for i dentifier and accessurl, and these are

SUN/256 122
written to the terminal int ASCII format.

B.8server: Runsan HTTP server to perform STILTS commands

server runs an HTTP server which makes some or all of the various STILTS tasks available to
local or remote clients making HTTP requests rather than using the more usual command line
interface.

When you run server it will start up a server which runs until it is interrupted, and write to the
screen the base URL at which it can be accessed, for instance "htt p://1 ocal host: 2112/ stilts/".
If you point your browser here you will see some examples (hyperlinks to server requests) of how
to use the server. Currently there are two main sets of capabilities:

Tasks (baseURL /t ask/ task-name)

There is a URL as above associated with each STILTS task provided by the server. The task
parameters ae passed in the wusua way for HTTP queries, using
appl i cati on/ x-ww«f orm url encoded (See eg. the HTML FORM specification). Some
examples are given in the Client Examples subsection below. Either HTTP GET or POST
methods may be used; since the task invocations will normally be idempotent, GET is more
respectable, but long URLS can cause trouble in some circumstances (MS IE apparently
imposes a limit of about 2000 characters) so POST may be preferable for lengthy invocations.

Forms (baseURL /form)
There are a couple of example HTML Forms which can be used to access the server tasks.
These by no means show all the capabilities of the tasks that they use, they are just intended to
be examples of how forms can be used in this way.

In general if you request a URL which contains no useful information, an attempt will be made to
return an HTML page directing you to a more useful starting point.

Y ou might want to run STILTS in server mode if you are providing a web service to external users
which is able to access files residing on the server, for instance generating table plots or row
selections on the fly. This can be done without the server mode, for instance by invoking thestilts
script or java from a CGI script to serve each request, but using server mode has two advantages:
first it provides correct HTTP headers such as Content-Types, and secondly it avoids the Java
startup overheads for each invocation. Note however that in its current form no great attention has
been paid to security, so it may be possible for clients to read and write files and expend significant
system resources by making certain requests to the server. Anyone exposing the STILTS HTTP
server directly to external clients should bear thisin mind.

For more flexibility you can run STILTS in servlet mode. See the javadocs and sources of the
uk.ac.starlink.ttool s.server. TaskServl et class. Theserver command isafairly thin wrapper
around this, which simply deploys the serviet in an embedded web application container (Jetty). By
using the servlet class in your own custom web application instead you can customise the way it is
accessed, for instance providing improved security.

Note: The server command and associated servlet code are at time of writing (v2.0) experimental,

and probably buggy and missing some features which ought to be present. If you have requirements
which are not currently provided, please contact the author for discussion.

B.8.1 Usage
The usage of server is

stilts <stilts-flags> server port=<int-val ue> basepat h=<val ue>
t asks=<t ask- name> ...

SUN/256 123

tabl efactory=file|dirs:...|locator:...

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

basepath = <val ue>
Base path on the server at which request URLSs are rooted. The default is /stilts, which
means that for instance requests to execute task pl ot 2d should be directed to the URL
http://host: portnunf stilts/task/plot2d?name=val ue&nane=val ue. ..

[Default: /stil ts]

port = <int-val ue>
Port number on which the server should run.

[Default: 2112]

tabl efactory = file|dirs:...|locator:...
This parameter determines how input table names (typically the in parameter of table
processing commands) are used to acquire references to actual table data. The default
behaviour is for input table names to be treated as filenames, in conjunction with some file
type parameter. While this is usually sensible for local use, in server situations it may be
Inappropriate, since you don't want external users to have read accessto your entire filesystem.

This parameter gives options for aternative ways of mapping table names to table data items.
The currently available options are:

* file:default behaviour - names are treated as filenames

e dirs:<dir><dir>:...: following the "dirs: " prefix a list of directories is specified
which will be searched for the file named. Note that the directory separator character
differs between operating systems; it isacolon (": ") for Unix-like OSs and a semi-colon
(", ") for MS Windows. If agiven nameisidentical to the path-less filename in one of the
<di r > directories, that file is used as the referenced table. File type information is ignored
in this case, so the files must be one of the types which STILTS can autodetect, currently
FITS or VOTable (FITS is more efficient). By using this option, clients can be restricted
to using afixed set of tablesin arestricted part of the server'sfile system.

* locator:<cl ass-name>. the <cl ass- name> must be the name of a Java class on the
classpath which implements the interface uk. ac. starlink. tt ool s.t ask. Tabl eLocat or
and which has a no-arg constructor. An instance of this class will be used to resolve

names to tables.

The usage and functionality of this parameter is experimental, and may change significantly in
future releases.

[Default: file]

tasks = <task-name> ...
Gives a space-separated list of tasks which will be provided by the running server. If the value
IS nul I then all tasks will be available. However, some tasks don't make a lot of sense to run
from the server, so the default value is a somewhat restricted list. If the server is being exposed
to external users, you might also want to reduce the list for security reasons.

[Default: cal ¢ coneskymatch regquery plot2d plot3d plothist sqlclient sglskymatch
sqgl update tapquery tapresunme tcat tcatn tcopy tcube tjoin tmatchl tmatch2
tmatchn tnulti tnultin tpipe tskymatch2 votcopy votlint]

SUN/256 124

B.8.2 Examples

Here are some examples of running the ser ver command:

stilts server

Starts a server on the default port until it is interrupted. Most tasks are available in server
mode. A message will be printed on standard output indicating the base URL at which it may
be accessed, for instance "htt p: / /1 ocal host : 2112/ stilts/".

stilts server port=2100 basepat h=t abl eserv

Starts a server running on port 2100 with a given URL. The URL at which, for instance, the
pl ot 2d task can be executed will be "htt p: // host : 2100/ t abl eser v/ t ask/ pl ot 2d"

stilts server tasks="plot2d plothist”

Starts a server with a restricted list of tasks available. Only the plotting tasks pl ot 2d and
pl ot hi st will be available for execution by clients.

B.8.3 Client Examples

Here are some examples of URLs which can be retrieved from a server which is running at the base
URL http://1ocal host: 2112/ stilts/. All these use the HTTP GET form of request; the POST
form could be used instead with the same effect.

http://Iocal host:2112/stilts/

Returns an HTML page giving version information and some links to example usages of the
server.

http://local host:2112/stilts/task/tpipe
Returns an HTML page giving usage instructions for the t pi pe task.

http://local host:2112/stilts/task/cal c?expressi on=21%2b2

Invokes the cal ¢ task to return a document containing the text "23". Note that the plus ("+"
sign in the expression has to be encoded using the sequence "b" since "+" has a specia
significance in query URLSs - see for instance sec 2.2 of RFC 1738.

http://local host: 2112/ stilts/task/pl ot 2d?i n=/ dat a/t abl el. vot &dat a=RVAG&ydat a=BVAG

Invokes the pl ot 2d task to return a magnitude-magnitude diagram of the named local file as an
image (probably ani mage/ png).

http://local host:2112/stilts/task/tcopy?i n=/datal/cat.fits&ofnt=votable
Invokesthet copy task to return atrandation of the named local FITS fileto VOTable format.

B.9sql client: Executes SQL statements

sqlclient is a simple command-line client for use with SQL databases. One or more SQL
statements can be supplied using the sql parameter. The result of each statement may be one or

SUN/256 125

more update counts (for update-type statements) or tables (for query-type statements). Tables will
be written to standard output in a format given by the of mt parameter. Update results and timing
information will be written to standard error.

In most cases, you will find life easier if you use either the database's own command-line or GUI
client, or, if you require STILTS-type format conversion or post-processing, a j dbc: -format URL
for thei n parameter of thet pi pe or t copy commands (see Section 3.4 for more explanation of the
latter). However, this command enables you to submit multiple queries over the same JDBC
connection, including ones which do not generate a tabular result. It may be useful if a
command-line client is not available to you for the database you are using.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate permissions on it as well as the relevant drivers.

Thiscommand is experimental, and it may be enhanced, renamed or withdrawn in future releases.

B.9.1 Usage
Theusage of sql client IS

stilts <stilts-flags> sqlclient db=<jdbc-url> user=<val ue> passwor d=<val ue>
sql =<sql > of nt =<out - f or mat >
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

db = <jdbc-url>
URL which defines a connection to a database. This has the form
j dbc: <subpr ot ocol >: <subnane> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
j dbc. drivers system property as well for the connection to be made.

of m = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileis required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: t ext]

password = <val ue>

Password for logging in to SQL database.

sgl = <sql >
Text of an SQL statement for execution. This parameter may be repeated, or statements may
be separated by semicolon (*; ") characters.

user = <val ue>
User name for logging in to SQL database. Defaults to the current username.

[Default: nbt |

SUN/256 126

B.9.2 Examples

Here are some examples of sql cl i ent :

stilts -classpath lib/drivers.jtds-1.1.jar \

-Dj dbc. drivers=net.sourceforge.jtds.jdbc.Driver \

-D ava. net. preferl Pv4St ack=true \

sqglclient \
db="j dbc: jtds: sql server://amenhot ep: 1433/t wonmass' \
user="guest1l' \
of nt =csv- nohead \
sql =" SET SHOAPLAN TEXT ON' \
sql =" SELECT ra, dec FROM t womass_psc WHERE ra BETWEEN 21.7 AND 21.8 \

AND dec BETWEEN 9.1 AND 9. 12

This sends two commands to a SQL Server database; the first one (SET SHOWPLAN...) setsa
flag which causes the DB to return an execution plan rather than the result for subsequent
gueries, and the second makes the query itself. Since the password is not provided on the
command line, a prompt for it will be issued before execution. The result is SQL Server's
execution plan for the SELECT statement expressed as a headerless comma-separated value
table sent to the terminal. CSV is chosen for the output format since it does not truncate wide
columns.

B.10 sqgl skymat ch: Crossmatchestable on sky position against SQL table

sql skymat ch resembles coneskymat ch (Appendix B.2), but instead of sending an HTTP query to a
remote cone search service for each match (i.e. each row of the input table), it executes an SQL
query directly. The query is a SELECT statement with a WHERE clause which makes restrictions
on Right Ascension and Declination columns; the names of these columns must be given as
parameters. The effect is that of a spatia join between a client-side table and a table stored in the
database.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate read permissions on it as well asthe relevant drivers.

Note: this task was known as sql cone in its experimental formin STILTSv1.3.

B.10.1 Usage
The usage of sql skymat ch is

stilts <stilts-flags> sql skymatch ifnt=<in-format> istreamrtrue|fal se
i cmd=<cnds> ocnd=<cnds>
onpde=<out - nnde> <node- ar gs>
out =<out -t abl e> of mt =<out - f or mat >
ra=<expr> dec=<expr> sr=<expr>
fi nd=best|all|each copycol s=<colid-Ilist>
scor ecol =<col - nanme>
erract=abort|ignore|retry|retry<n>
ostreanvtrue| fal se fixcol s=none| dups]| al
suf fi x0=<| abel > suffi x1=<| abel >
db=<j dbc- ur| > user =<val ue>
passwor d=<val ue> dbt abl e=<t abl e- nane>
dbr a=<sql - col > dbdec=<sql - col >
dbuni t =deg| r ad
tiling=htnxl evel >| heal pi xnest <nsi de>| heal pi xri ng<nsi de>
dbti | e=<sqgl - col > sel ect col s=<sql - col s>
wher e=<sql -condi ti on>
preparesql =true| fal se
[n=] <tabl e>

SUN/256 127

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

copycols = <colid-list>
List of columns from the input table which are to be copied to the output table. Each column
identified here will be prepended to the columns of the combined output table, and its value for
each row taken from the input table row which provided the parameters of the query which
produced it. See Section 6.3 for list syntax. The default setting is "*", which means that all
columns from the input table are included in the output.

[Default: *]

db = <jdbc-url>
URL which defines a connection to a database. This has the form
j dbc: <subpr ot ocol >: <subnane> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
j dbc. drivers system property aswell for the connection to be made.

dbdec = <sql -col >
The name of a column in the SQL database table dbt abl e which gives the declination. Units
are given by dbuni t .

dbra = <sql -col >
The name of a column in the SQL database table dbt abl e which gives the right ascension.
Units are given by dbuni t .

dbt abl e = <t abl e- name>
The name of the table in the SQL database which provides the remote data.

dbtile = <sql -col >
The name of a column in the SQL database table dbt abl e which contains a sky tiling pixel
index. The tiling scheme is given by the tiling parameter. Use of a tiling column is optional,
but if present (and if the column is indexed in the database table) it may serve to speed up
searches. Set to null if the database table contains no tiling column or if you do not wish to use
one.

dbunit = deg|rad
Units of the right ascension and declination columns identified in the database table. May be
either deg[rees] (the default) or rad[iang].

[Default: deg]

dec = <expr>
Expression which evaluates to the declination in degrees for the request at each row of the
input table. This will usually be the name or ID of a column in the input table, or a function
involving one.

erract = abort|ignore|retry|retry<n>
Determines what will happen if any of the individual cone search requests fails. By default the
task aborts. That may be the best thing to do, but for unreliable or poorly implemented services
you may find that some searches fail and others succeed so it can be best to continue operation
in the face of afew failures. The options are:

* abort: failure of any query terminates the task
* ignore: failure of aquery istreated the same as a query which returns no rows
* retry: faled queries are retried until they succeed; use with care - if the failure is for

SUN/256 128

some good, or at least reproducible reason this could prevent the task from ever
completing

* retry<n>: failed queries are retried at most a fixed number <n> of times If they still fail
the task terminates.

[Default: abort]

find = best|all|each
Determines which matches are retained.

* best: Only the matching query table row closest to the input table row will be output.
Input table rows with no matches will be omitted.

e all: All query table rows which match the input table row will be output. Input table rows
with no matches will be omitted.

* each: There will be one output table row for each input table row. If matches are found,
the closest one from the query table will be output, and in the case of no matches, the
guery table columns will be blank.

[Default: al I]

fixcols = none| dups] al |
Determines how input columns are renamed before use in the output table. The choices are:

* none: columns are not renamed

* dups: columns which would otherwise have duplicate names in the output will be
renamed to indicate which table they came from

* all:al columnswill be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suf fi x* parameters.
[Default: dups]

icnd = <cnds>
Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cnd=@i | enanme" causes the filefi | ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifnt = <in-formt>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the specia value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <table>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

i stream = true|fal se

SUN/256 129

If set true, thei n table will be read as a stream. It is necessary to give thei fnt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

ocnmd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "ocmd=@i | enane" causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

ostream = true|fal se
If set true, this will cause the operation to stream on output, so that the output table is built up
as the results are obtained from the cone search service. The disadvantage of this is that some

SUN/256 130

output modes and formats need multiple passes through the data to work, so depending on the
output destination, the operation may fail if thisis set. Use with care (or be prepared for the
operation to fail).

[Default: f al se]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

password = <val ue>

Password for logging in to SQL database.

preparesqgl = true|false
If true, the JDBC connection will use pr epar edst at enent S for the SQL SELECTSs otherwise it
will use smple st at enent S. Thisis atuning parameter and affects only performance. On some
database/driver combinations it's a lot faster set false (the default); on others it may be faster,
who knows?

[Default: f al se]

ra = <expr>
Expression which evaluates to the right ascension in degrees for the request at each row of the
input table. This will usually be the name or ID of a column in the input table, or a function
involving one.

scorecol = <col - nane>
Gives the name of a column in the output table to contain the distance between the requested
central position and the actual position of the returned row. The distance returned is an angular
distance in degrees. If a null value is chosen, no distance column will appear in the output
table.

[Default: Separat i on]

sel ectcol s = <sqgl -col s>
An SQL expression for the list of columns to be selected from the table in the database. A
value of "+" retrieves all columns.

[Default: *]

Sr = <expr>
Expression which evaluates to the search radius in degrees for the request at each row of the
input table. This will often be a constant numerical value, but may be the name or ID of a
column in the input table, or afunction involving one.

suffix0 = <l abel >
If thefixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: 0]

suf fi x1 = <l abel >
If the fixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to al renamed columns from the cone result table.

[Default: _1]

tiling = htnxlevel >| heal pi xnest <nsi de>| heal pi xri ng<nsi de>
Describes the sky tiling scheme that isin use. One of the following values may be used:

SUN/256 131

* htnxl evel > Hierarchical Triangular Mesh with alevel value of | evel .
* heal pi xnest <nsi de>: HEALPix using the Nest scheme with an nside value of nsi de.
* heal pi xring<nsi de>: HEALPix using the Ring scheme with an nside value of nsi de.

user = <val ue>
User name for logging in to SQL database. Defaults to the current username.

[Default: nbt |

where = <sql -condition>
An SQL expression further limiting the rows to be selected from the database. This will be
combined with the constraints on position implied by the cone search centres and radii. The
value of this parameter should just be a condition, it should not contain the WHERE keyword. A
null value indicates no additional criteria.

B.10.2 Examples

Here are some examples of sql skynat ch:

stilts -classpath lib/drivers/nysql-connector-java.jar \
-Dj dbc. dri vers=com nysql . j dbc. Dri ver
sql skymat ch i n=nmessi er. xm ra=RA dec=DEC sr=0.05 \
db="j dbc: nysql :/ /| ocal host/ASTROL' user=nbt \
dbt abl e=FI RST dbr a=_RA2000 dbdec=_DE2000 \
out =mat ches. xm
This performs a series of SELECT statements on the table FIRST in the local MySQL database
ASTROL1 to identify database objects in the region of each object represented in the VOTable
nessi er. xm . The result, ajoin between the Messier and FIRST tables, is output asaVOTable
called mat ches. xm . In this case a password has not been supplied on the command line, so if

oneisrequired it will be prompted for on the console.

B.11 sql updat e: Updatesvaluesin an SQL table

sql updat e updates valuesin an existing table in an SQL database. The rows to update are specified,
asanorma SELECT statement, using the sel ect parameter. Each column to update, and the value
towriteto it, are given using the assi gn parameter.

Why not just use the database's own UPDATE statement? In most cases, that would be a much
better idea. However, using sql updat e you can write values using STILTS's expression language
(Section 9), and hence take advantage of its various functions, without having to embed them into
the database. SQL column names can be used as variables in these expressions, in the same way
that table column names are used as variables in other commands such ast pi pe.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate write permissions on it as well as the relevant drivers.

This is a somewhat specialised command, and several (database/driver-specific) things can go
wrong with it. If you do not have a fairly good understanding of the database with which you are

using it then you may run into problems (but then you'd be unlikely to have the permissions to do
the updates in any case).

B.11.1 Usage

The usage of sql updat e is

SUN/256 132

stilts <stilts-flags> sql updat e db=<j dbc-url > user=<val ue> passwor d=<val ue>
sel ect =<sel ect - st mt > assi gn=<col >=<expr >
progress=true|fal se
If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

assi gn = <col >=<expr >
Assigns new vaues for a given column. The assignment is made in the form
<col name>=<expr > Where <col name> is the name of a column in the SQL table and <expr > is
the text of an expression using STILTS's expression language, as described in Section 9. SQL
table column names or $ID identifiers may be used as variables in the usual way.

This parameter may be supplied more than once to effect multiple assignments, or multiple
assignments may be made by separating them with semicolonsin the value of this parameter.

db = <jdbc-url>
URL which defines a connection to a database. This has the form
j dbc: <subpr ot ocol >: <subnane> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
j dbc. drivers System property aswell for the connection to be made.

password = <val ue>

Password for logging in to SQL database.

progress = true|false
If true, a spinner will be drawn on standard error which shows how many rows have been
updated so far.

[Default: t rue]

sel ect = <select-stnt>
Gives the full text (including "SeLECT") of the SELECT statement to identify which rows
undergo updates.

user = <val ue>
User name for logging in to SQL database. Defaults to the current username.

[Default: nbt]

B.11.2 Examples

Here are some examples of sql updat e:

stilts -classpath lib/drivers/nysql-connector-java.jar \
-Dj dbc. drivers=com nysql . jdbc. Driver \
sql updat e db="jdbc: mysql://1 ocal host/ RADI O user=root
sel ect =" SELECT * from FI RST" \
assi gn=" HTM D=ht ml ndex(20, POS_EQ RA, POS_EQ DEC)'

Fills in the HTMID column of a table called FIRST in the local MySQL database RADIO,
using HTM pixel indices based on the existing right ascension and declination columns in that
table. The HTMID column must exist prior to executing this command.

SUN/256 133

B.12t apquery: Queriesa Table Access Protocol server

tapquery can query remote databases using the Table Access Protocol (TAP) services by
submitting Astronomical Data Query Language queries to them and retrieving the results. TAP and
ADQL are Virtual Observatory protocols.

Queries can be submitted in either synchronous or asynchronous mode, as determined by the sync
parameter. In asynchronous mode, if the query has not been deleted by the time the command exits
(see the del et e parameter), the result can be picked up at a later stage using the tapresune
command. Table uploads are supported, so it is possible (if the service supports this functionality),
to upload a local table to the remote database, perform a query involving it, such as a join with a
remote table of some sort, and receive the result. This powerful facility gives you crossmatches
between local and remote tables.

This command does not provide any facility for querying the service for either table or capability
metadata, so you will need to know about the service capabilities and database structure from some
other source (possibly TOPCAT).

Note: this command has been introduced at STILTS version 2.3, at which time most available TAP
services are quite new and may not fully conform to the standards, and usage patterns are still
settling down. For this reason you may find that some TAP services do not behave quite as
expected; it is also possible that in future versions the command behaviour or parameters will
change in line with changing service profiles or in the light of user experience.

B.12.1 Usage
The usage of t apquery is

stilts <stilts-flags> tapquery nupl oad=<count > uf nt N=<i n-f or mat >
upl oadN=<t abl eN> ucndN=<cnds> ocnd=<cnds>
onpde=<out - nnde> <node- ar gs> out =<out -t abl e>
of nt =<out - f or mat > upnaneN=<| abel >
tapurl =<url -val ue> adqgl =<val ue>
sync=true| fal se maxrec=<val ue>
| anguage=<val ue> pol | =<i nt - val ue>
progress=true|fal se
del et e=fi ni shed| never| al ways

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

adgl = <val ue>
Astronomical Data Query Language string specifying the TAP query to execute. ADQL/S
resembles SQL, so this string will likely start with "SELECT".

del ete = finished| never|al ways
Determines under what circumstances the UWS job is to be deleted from the server when its
datais no longer required. If it is not deleted, then the job is left on the TAP server and it can
be accessed viathe normal UWS REST endpoints until it is destroyed by the server.

Possible values:

* finished: deleteonly if the job finished, successfully or not
* never: do not delete
* always: deletein any case

SUN/256 134

[Default: fi ni shed]

| anguage = <val ue>
Language to use for the ADQL-like query. Thiswill usualy be"ADQL" (the default), but may
be set to some other value supported by the service, for instance a variant indicating a different
ADQL version. Note that at present, setting it to "PQL" is not sufficient to submit a PQL

query.
[Default: ADQL]

maxrec = <val ue>
Sets the requested maximum row count for the result of the query. The service is not obliged to
respect this, but in the case that it has a default maximum record count, setting this value may
raise the limit. If no valueis set, the service's default policy will be used.

nupl oad = <count >

The number of upload tables for this task. For each of the upload tables N there will be
associated parameters uf nt N, upl oadN and ucmdN.

[Default: 0]

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus "ocni=@i | ename" causes the file fi | enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of mt = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possihilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out
net a
stats
count
cg

di scard

SUN/256 135

t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

poll = <int-val ue>
Interval to wait between polling attempts, in milliseconds. Asynchronous TAP queries can
only find out when they are complete by repeatedly polling the server to find out the job's
status. This parameter allows you to set how often that happens. Attempts to set it too low
(<50) will be rejected on the assumption that you're thinking in seconds.

[Default: 5000]

progress = true|fal se
If this parameter is set true, progress of the job is reported to standard output as it happens.

[Default: true]

sync = true|fal se

Determines whether the TAP query is submitted in synchronous or asynchronous mode.
Synchronous (t r ue) means that the result is retrieved over the same HTTP connection that the
query is submitted from. This is uncomplicated, but means if the query takes a long time it
may time out and the results will be lost. Asynchronous (f al se) means that the job is queued
and results may be retrieved later. Normally this command does the necessary waiting around
and recovery of the result, though with appropriate settings you can get t apr esune to pick it up
for you later instead. In most casesf al se (the default) is preferred.

[Default: f al se]

tapurl = <url-val ue>
The base URL of a Table Access Protocol service. This is the bare URL without a trailing
"/[alsync".

ucmdN = <cnds>
Commands to operate on upload table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus"ucmdN=@ i | ename” causesthefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

uf MmN = <in-fornmat>
Specifies the format of upload table #N (one of the known formats listed in Section 5.2.1).
This flag can be used if you know what format your input table isin. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will

SUN/256 136

exit with an error explaining which formats were attempted.
[Default: (aut o)]

upl oadN = <t abl eN>
The location of upload table #N. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the uf nt N parameter.

upnaneN = <I abel >
Identifier to use in server-side expressions for uploaded table #N. In ADQL expressions, the
table should be referred to as " TAP_UPLOAD. <l abel >".

[Default: upN]

B.12.2 Examples

Here are some examples of t apquery:

stilts tapquery tapurl="http://dc.zah. uni-heidel berg.de/__system /tap/run/tap'
adgl =" SELECT TOP 1000 * FROM ppnxl . mai n'
out =ppnxl . fits
Executes the given ADQL query on the service referenced by the URL and writes the result to

aFITSfile

stilts tapquery
tapurl ="http://dc.zah. uni-hei del berg.de/__system_/tap/run/tap’
adqgl =" SELECT *
FROM t wormass. data AS t
JO N TAP_UPLOAD. upl AS s
ON 1=CONTAI NS(PO NT(' I CRS', t.RAJ2000, t.DEJ2000),
CIRCLE('I CRS', s.ra2000, s.dec2000, 5./3600.))"
nupl oad=1 upl oad1=6dfgs_E7.fits ucndl='sel ect BMAG RVAGO'
maxr ec=20000
ocnd='t abl enane 2nmass_x_6df' onpde=t opcat
The local table 6df gs_E7 is filtered to contain only rather blue objects, and the resulting
selection is uploaded to the TAP server. A positional crossmatch with 5 arcsec tolerance is
then performed on the server between this uploaded table and the t wonass. dat a table held by
the service. The adjusted maxrec parameter ensures that the result will not be artificially
truncated to shorter than 20000 rows (assuming the service limits permit this). When the result

isreceived, it isloaded directly into TOPCAT with the name "2mass_x_6df".

B.13tapresume: Resumesa previous query to a Table Access Protocol server

t apr esume can resume monitoring and data retrieval from an asynchronous Table Access Protocol
query which has already been submitted. TAP is a Virtual Observatory protocol. Such a
pre-existing query may have been submitted by the t apquery command or by some completely
different mechanism. It essentially does the same job as t apquery but without the job submission
stage. It waits until the query has completed, and then retrieves the table result and processes it in
accordance with the supplied parameters. The query may or may not be deleted from the server as
part of the operation.

B.13.1 Usage

The usage of t apresune is

SUN/256 137

stilts <stilts-flags> tapresune joburl=<url-val ue> pol | =<int-val ue>
progress=true|fal se
del et e=fi ni shed| never | al ways ocnd=<cnds>
onpde=<out - nnde> <node- ar gs>
out =<out - t abl e> of mt =<out - f or mat >
If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

del ete = finished| never| al ways
Determines under what circumstances the UWS job is to be deleted from the server when its
datais no longer required. If it is not deleted, then the job is left on the TAP server and it can
be accessed viathe normal UWS REST endpoints until it is destroyed by the server.

Possible values:

* finished: deleteonly if the job finished, successfully or not
* never: donot delete
* always: deletein any case

[Default: fi ni shed]

joburl = <url-val ue>
The URL of ajob created by submission of a TAP query which was created earlier and has not
yet been deleted (by the client) or destroyed (by the server). This will usually be of the form
<t ap-url >/ async/ <j ob-i d>. You can aso find out, and possibly retrieve results from the job
by pointing aweb browser at this URL.

ocnd = <crds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus "ocni=@i | ename" causes the filefi | ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of nt = <out-formt>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onode = <out-node> <node-ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or

SUN/256 138

populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

poll = <int-val ue>
Interval to wait between polling attempts, in milliseconds. Asynchronous TAP queries can
only find out when they are complete by repeatedly polling the server to find out the job's
status. This parameter allows you to set how often that happens. Attempts to set it too low
(<50) will be rejected on the assumption that you're thinking in seconds.

[Default: 5000]

progress = true|fal se
If this parameter is set true, progress of the job is reported to standard output as it happens.

[Default: true]

B.13.2 Examples

Here are some examples of t apr esune:

stilts tapresume joburl="http://dc.zah.uni-heidel berg.de/__system /tap/run/tap/async/d4ENG
out =resul t.csv of nt =csv
Resumes waiting for the output of a query on a job with ID d4ENGR which was previously
started on the GAVO TAP server. When it has completed the output table will be written as a
comma-separated valuefile.

B.14 t cat : Concatenates multiple similar tables

t cat isatool for concatenating any number of similar tables one after the other. The tables must be
of similar form to each other (same number and types of columns). Preprocessing of the tables may
be done using the i cnd parameter, which will operate in the same way on all the input tables. Table
parameters of the output table will be taken from the first of the input tables.

SUN/256 139

Subject to some constraints on the details of the input and output formats and processing, t cat is
capable of joining an unlimited number of tables together to produce an output table of unlimited
length, without large memory requirements.

If you have heterogeneous tables, in different formats or requiring different preprocessing steps
from each other before they can be concatenated, uset cat n instead.

B.14.1 Usage
Theusageof t cat is

stilts <stilts-flags> tcat in=<table> [<table> ...] ifnt=<in-format>
mul ti=true|false istreanrtrue|fal se i cnd=<cnds>
ocnmd=<cnds> onode=<out - node> <node- ar gs>
out =<out - t abl e> of nt =<out - f or mat >
seqcol =<col nane> | occol =<col nanme>
ul occol =<col nane> | azy=true|fal se
countrows=true| fal se

If you don't have the sti | ts script installed, write"java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti I ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

countrows = true|false
Whether to count the rows in the table before starting the output. This is essentially a tuning
parameter - if writing to an output format which requires the number of rows up front (such as
normal FITS) it may result in skipping the number of passes through the input files required
for processing. Unless you have a good understanding of the internals of the software, your
best bet for working out whether to set thistrue or falseisto try it both ways

[Default: f al se]

icmd = <cnds>
Commands which will operate on each of the input tables, before any other processing takes
place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@". Thus"i crmd=@i | enane" causes the file fi |l ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifmt = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the specia value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

The same format parameter appliesto all the tables specified by i n.
[Default: (aut o)]

in = <table> [<table> ...]

SUN/256 140

Locations of the input tables. Either specify the parameter multiple times, or supply the input
tables as a space-separated list within a single use. Each table location may be a filename or
URL, and may point to data compressed in one of the supported compression formats (Unix
compress, gzip or bzip2).

A list of input table locations may be given in an external file by using the indirction character
'‘@'. Thus"in=@i | enane" causesthefilefil enane to be read for alist of input table locations.
The locations in the file should each be on a separate line.

istream = true|fal se
If set true, the i n table will be read as a stream. It is necessary to give thei f nt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

The same streaming flag applies to all the tables specified by i n.
[Default: f al se]

lazy = true|fal se
Whether to perform table resolution lazily. If true, each table is only accessed when the time
comes to add its rows to the output; if false, then al the tables are accessed up front. Thisis
mostly a tuning parameter, and on the whole it doesn't matter much how it is set, but for
joining an enormous number of tables setting it true may avoid running out of resources.

[Default: f al se]

| occol = <col nanme>
Name of a column to be added to the output table which will contain the location (as specified
in the input parameter(s)) of the input table from which each row originated.

multi = true|fal se
Determines whether al tables, or just the first one, from input table files will be used. If set
f al se, then just the first table from each file named by i n will be used. If t r ue, then all tables
present in those input files will be used. This only has an effect for file formats which are
capable of containing more than one table, which effectively means FITS and VOTable and
their variants.

[Default: f al se]

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is

performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus "ocni=@i | ename” causes the file il enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of mt = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

SUN/256 141

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

seqcol = <col nane>
Name of a column to be added to the output table which will contain the sequence number of
the input table from which each row originated. This column will contain 1 for the rows from
the first concatenated table, 2 for the second, and so on.

ul occol = <col nanme>

Name of a column to be added to the output table which will contain the unique part of the
location (as specified in the input parameter(s)) of the input table from which each row
originated. If not null, parameters will also be added to the output table giving the pre- and
post-fix string common to al the locations. For example, if the input tables are
"/data/cat_al.fits' and "/data/cat_b2.fits" then the output table will contain a new column
<colname> which takes the value "al" for rows from the first table and "b2" for rows from the
second, and new parameters "<colname>_prefix" and "<colname>_postfix" with the values
"/data/cat_" and ".fits" respectively.

B.14.2 Examples

Here are some examples of t cat :

stilts tcat ifnm=ascii in=tl.txt in=t2.txt in=t3.txt out=table.txt

Concatenates the three named ASCII format tables to produce an output table. All three must
have compatible numbers and types of columns.

SUN/256 142

stilts tcat ifm=ascii in="tl.txt t2.txt t3.txt" out=table.txt
Has exactly the same effect as the previous example.

stilts tcat ifnt=ascii in=@nlist.lis out=table.txt

This will have the same effect as the previous two examples if a file name "inlist.lis" in the
current directory contains three lines, "t1.txt", "t2.txt" and "t3.txt".

stilts tcat in=r368776.fits#1 in=r368776#2 in=r368776.fits#3 in=r368776.fits#4
out=r368776_all .fits
Concatenates the contents of four tables (the first four extenson HDUs) from a
multi-extension FITS file to produce a single FITS table. Many Unix shells (csh, bash) will
allow you to list the input files using the following shorthand: "i n=r 368776. fi ts#{1, 2, 3, 4} ".

stilts tcat in=r368776.fits nmulti=true out=r368776_all.fits

Concatenates al the tables in the named file together. Setting nul ti =t rue means that instead
of picking the first table from each named i n table, all tables will be selected. So, if the input
FITSfilein this example has just four table HDUs, then this example does exactly the same as
the previous one, but with less typing. The same thing works with multi-TABLE VOTable
documents, but most other file formats (CSV etc) do not have the facility for storing multiple
tablesin asinglefile.

stilts tcat in=r368776.fits nulti=true out=r368776_all.fits
i cnd=pr ogress seqcol =I D
Does the same as the previous example with a couple of additions. Firstly, progress through
each of the input files will be reported to the console. Secondly, an additional column "ID" will
be appended to the output which contains 1 for all the rows from the first input table, 2 for the
rows from the second one and so on.

stilts tcat in="rA csv rB.csv rC csv' ifnmt=csv \

i cmd=' keepcol s "RA DEC FLUX"' icnd='sorthead 10 FLUX \

ocnd="sort FLUX
Takes the 10 rows with highest FLUX values from each of three input tables (in
comma-separated value format) and joins them together to produce a 30-row output table. This
is then sorted in FLUX order, and the resulting table is output to the console in text format.
Only the columns RA, DEC and FLUX are output; any other columns are discarded. The input
tables don't need to have identical formsto each other, but each must have at least an RA, DEC
and FLUX column.

stilts tcat in=vizier.xm multi=true

i cnd='" keepcol s " ucd$RECORD ucd$POS_EQ RA MAI N ucd$POS_EQ DEC MAI N

ul occol =TI D out=al | . csv
This processes a VOTable file which may have multiple TABLEs in it, but for which each of
the tables is known to have columns with the UCDs RECORD, POS EQ RA_ MAIN and
POS EQ DEC MAIN (thisis typical of VOTables retrieved from CDS's VizieR service). It
retains only those columns from each table and writes the result as a single concatenated table
toaCsV file.

B.15t cat n: Concatenates multiple tables

tcatn iS a tool for concatenating a number of tables one after the other. Each table can be

SUN/256 143

manipulated separately prior to the concatenatation. If you have two tables T1 and T2 which
contain similar columns, and you want to treat them as a single table, you can uset cat n to produce
a new table whose metadata (row headings etc) comes from T1 and whose data consists of all the
rows of T1 followed by all the rows of T2.

For this concatenation to make sense, each column of T1 must be compatible with the
corresponding column of T2 - they must have compatible types and, presumably, meanings. If this
is not the case for the tables that you wish to concatenate, for instance the columns are in different
orders, or the units differ between a column in T1 and its opposite number in T2, you can use the
i cmd1 and/or i cmd2 parameters to manipulate the input tables so that the column sequences are
compatible. See Appendix B.15.2 for some examples.

If the tables are similar to each other (same format, same columns, same preprocessing stages
required if any), you may find it easier to uset cat instead.

B.15.1 Usage
Theusageof tcatn is

stilts <stilts-flags> tcatn nin=<count> ifntN=<in-format> i nN=<t abl eN>
i cmdN=<cmds> ocnd=<cnds>
onpde=<out - nnde> <node- ar gs> out =<out -t abl e>
of nt =<out - f or mat > seqcol =<col name>
| occol =<col name> ul occol =<col nane>
count rows=true| fal se
If you don't have the stilts script installed, write "java -jar stilts.jar"” instead of "stilts" -

see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

countrows = true|false
Whether to count the rows in the table before starting the output. This is essentialy a tuning
parameter - if writing to an output format which requires the number of rows up front (such as
normal FITS) it may result in skipping the number of passes through the input files required
for processing. Unless you have a good understanding of the internals of the software, your
best bet for working out whether to set thistrue or falseisto try it both ways

[Default: f al se]

i cmdN = <crmds>
Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus"i cmdN=@ i | enane” causesthefilefil enanme to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifn N = <in-format>
Specifies the format of input table #N (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the specia value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will

SUN/256 144

exit with an error explaining which formats were attempted.
[Default: (aut o)]

i nN = <tabl eN>
The location of input table #N. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

| occol = <col nane>
Name of a column to be added to the output table which will contain the location (as specified
in the input parameter(s)) of the input table from which each row originated.

nin = <count>
The number of input tables for this task. For each of the input tables N there will be associated
parametersi fnt N, i nNand i cndN.

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus "ocni=@i | ename" causes the file fi | enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of mt = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileis required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic

SUN/256 145
* tosql
Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

seqcol = <col nane>
Name of a column to be added to the output table which will contain the sequence number of
the input table from which each row originated. This column will contain 1 for the rows from
the first concatenated table, 2 for the second, and so on.

occol = <col name>

Name of a column to be added to the output table which will contain the unique part of the
location (as specified in the input parameter(s)) of the input table from which each row
originated. If not null, parameters will also be added to the output table giving the pre- and
post-fix string common to all the locations. For example, if the input tables are
"/data/cat_al.fits' and "/data/cat_b2.fits" then the output table will contain a new column
<colname> which takes the value "al" for rows from the first table and "b2" for rows from the
second, and new parameters "<colname>_prefix" and "<colname>_postfix" with the values
"/data/cat_" and ".fits" respectively.

u

B.15.2 Examples

Here are some examples of t cat n:

stilts tcatn nin=2 inl=obsl.fits in2=obs2.fits out=conbined.fits

Concatenates two similar observation catalogues to form a combined one. In this case, both
input and output tables are FITSfiles.

stilts tcatn nin=3 onpde=stats inl=obsl.txt ifntl=asci
i n2=obs2. xm ifnt2=votabl e
in3=obs3.fit ifnt3=fits

Three catalogues with similar forms but in different data formats are joined. Instead of writing
the result to an output file, the resulting joined catalogue is examined to calculate its statistics,
which are written to standard output.

stilts tcatn nin=2 inl=survey.vot.gz ifnt2=csv in2=nore_data.csv

i cmd1=" addskycoords fk5 gal acti c RA2000 DEC2000 GLON GLAT" \

i cndl="keepcols "OBJ_I D GLON GLAT"" \

i crd2=" keepcol s "ident gal _long gal _|at"" \

| occol =FI LENAME

onode=t opcat
In this case we are trying to concatenate results from two tables which are quite dissimilar to
each other. In the first place, one is a VOTable (no ifnt1 parameter is required since
VQOTables can be detected automatically), and the other is a comma-separated-values file (for
which the i f nt 2=csv parameter must be given). In the second place, the column structure of
the two tables may be quite different. By pre-processing the two tables using the i cnd1 &
i cmd2 parameters, we produce in each case an input table which consists of three columns of
compatible types and meanings: an integer identifier and floating point galactic longitude and
latitude coordinates. The second table contains such columns to start with, but the first table

SUN/256 146

requires an initial step to convert FK5 J2000.0 coordinates to galactic ones. t cat n joins the
two doctored tables together, to produce a table which contains only these three columns, with
all the rows from both input tables, and sends the result directly to anew or running instance of
TOPCAT. An additional column named FILENAME is appended to the table before sending
it; this contains "survey.vot.gz" for all the columns from the first table and "more_data.csv" for
all the columns from the second one.

B.16 t copy: Converts between table formats

t copy is atable copying tool. It simply copies a table from one place to another, but since you can
specify the input and output formats as desired, it works as a converter from any of the supported
input formats (Section 5.2.1) to any of the supported output formats (Section 5.2.2).

t copy IS just a stripped-down version of t pi pe - it doesn't do anything that t pi pe can't, but the
usage is dlightly simplified. It is provided as a drop-in replacement for the old tabl ecopy
(uk. ac. starlink.tabl e. Tabl eCopy) tool which was supplied with earlier versions of STIL and
TOPCAT - it has the same arguments and behaviour as t abl ecopy, but is implemented somewhat
differently and will in some cases be more efficient.

B.16.1 Usage
The usage of t copy is

stilts <stilts-flags> tcopy ifmt=<in-format> of nt=<out-formt>
[in=] <t abl e> [out =] <out -t abl e>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

ifm = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <table>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the specid
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (aut o)]

out = <out-tabl e>

SUN/256 147

The location of the output table. This is usualy a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

[Default: -]

B.16.2 Examples

Here are some examples of t copy in use:

stilts tcopy stars.fits stars. xni

Copies a FITS table to a VOTable. Since no input format is specified, the format is
automatically detected (FITS is one of the formats for which this is possible). Since no output
format is specified, the stars. xm filename is examined to make a guess at the kind of output
towrite: the. xm ending istaken to mean a TABLEDATA-encoded VOTable.

stilts tcopy stars.fits stars.xm ifm=fits ofnt=votable

Does the same as the previous example, but the input and output formats have been specified
explicitly.

stilts tcopy of m=text http://renote.host/datal/vizer.xn.gz#4 -

Prints the contents of a remote, compressed VOTable to the terminal in a human-readable
form. The #4 at the end of the URL indicates that the data from the fifth TABLE element in the
remote document are to be used. The gzip compression of the table is taken care of
automatically.

stilts tcopy ifnt=csv ofnt=latex spec.csv

Converts a comma-separated values file to a LaTeX table environment, writing the result to
standard output.

stilts -classpath /usr/local/jars/pg73jdbc3.jar \
-D dbc. drivers=org. postgresql.Driver \
tcopy in="jdbc: postgresql://local host/insi M#SELECT ra, dec, |mag FROM dgc" \
ofm=fits wfslist.cat

Makes an SQL query on a PostgreSQL database and writes the results to a FITS file. The
whole command is shown here, to show that the classpath is augmented to include the
PostgreSQL driver class, and the driver class is named using the j dbc. drivers system
property. As you can see, using SQL from Java is a bit fiddly, and there are other ways to
perform this setup than on the command line - see Section 3.4 and t pi pe's onode=t osql output
mode.

B.17 t cube: Calculates N-dimensional histograms

t cube constructs an N-dimensional histogram, or density map, from N columns of an input table,
and writes it out as an N-dimensional data cube. The parameters you supply define which N
numeric columns of the input table you want to use and the dimensions (bounds and pixel sizes) of
the output grid. Each table row then defines a point in N-dimensional space. The program goes
through each row, and if the point that row defines falls within the bounds of the output grid you
have defined, increments the value associated with the corresponding pixel. The resulting
N-dimensiona array, whose pixel values represent a count of the rows associated with that region
of the N-dimensional space, is then written out as a FITS file. In one dimension, this gives you a

SUN/256 148

normal histogram of a given variable. In two dimensions it might typically be used to plot the
density on the sky of objects from a catal ogue.

As with some of the other generic table commands, you can perform extensive pre-processing on
the input table by use of thei cnd parameter before the actual cube counts are cal cul ated.

B.17.1 Usage

The usage of t cube is

stilts <stilts-flags> tcube cols=<col-id> ... ifnm=<in-formt>
i streanrtrue|fal se i cmd=<cnds>
bounds=[<l 0>]:[<hi>] ... binsizes=<size> ..
nbi ns=<nunm> ... out=<out-file>

ot ype=byte| short|int|long|fl oat| double

scal e=<col -i d>

[in=] <t abl e>
If you don't have thestilts script installed, write"java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

bi nsi zes = <size> ..
Gives the extent of of the data bins (cube pixels) in each dimension in data coordinates. The
form of the value is a space-separated list of values, giving alist of extents for the first, second,
... dimension. Either this parameter or the nbi ns parameter must be supplied.

bounds = [<lo>]:[<hi>] ...

Gives the bounds for each dimension of the cube in data coordinates. The form of the value is
a space-separated list of words, each giving an optiona lower bound, then a colon, then an
optional upper bound, for instance "1:100 0:20" to represent a range for two-dimensional
output between 1 and 100 of the first coordinate (table column) and between 0 and 20 for the
second. Either or both numbers may be omitted to indicate that the bounds should be
determined automatically by assessing the range of the data in the table. A null value for the
parameter indicates that all bounds should be determined automatically for all the dimensions.

If any of the bounds need to be determined automatically in this way, two passes through the
datawill be required, the first to determine bounds and the second to populate the cube.

cols = <col-id> ..
Columns to use for this task. One or more <col -i d> elements, separated by spaces, should be
given. Each one represents a column in the table, using either its name or index.

The number of columns listed in the value of this parameter defines the dimensionality of the
output data cube.

icnd = <cnds>
Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus"i cnd=@i | ename" causes the filefi| ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

SUN/256 149

ifnt = <in-formt>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <table>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

istream = true|fal se
If set true, thei n table will be read as a stream. It is necessary to give thei f nt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

nbi ns = <nune ...
Gives the number of bins (cube pixels) in each dimension. The form of the value is a
space-separated list of integers, giving the number of pixels for the output cube in the first,
second, ... dimension. Either this parameter or the bi nsi zes parameter must be supplied.

otype = byte|short|int]|long|float|double
The type of numeric value which will fill the output array. If no selection is made, the output
type will be determined automatically as the shortest type required to hold all the valuesin the
array. Currently, integers are always signed (no BSCALE/BZERO), so for instance the largest
value that can be recorded in 8 bitsis 127.

out = <out-file>
The location of the output file. Thisis usualy afilename to write to. If it is equal to the special
value"-" the output will be written to standard output.

The output cube is currently written as asingle-HDU FITSfile.
[Default: -]

scal e = <col -id>
Optionally gives a value by which the count in each bin is scaled. If this value is nul | (the
default) then for each row that falls within the bounds of a pixel, the pixel value will be
incremented by 1. If a column ID is given, then instead of 1 being added, the value of that
column for the row in question is added. The effect of thisis that the output image contains the
mean of the given column for the rows corresponding to each pixel rather than just a count of
them.

B.17.2 Examples

stilts tcube in=2QZ_6QZ pubcat.fits out=ccmfits \
cols="Bj_R UBj Bj' binsizes="0.05 0.05 0.5 bounds="-2:1 -3:2 :'

Calculates a 3-dimensiona colour-colour-magnitude grid from three existing columns in a
table. The bin (pixel) sizes are specified. The data bounds are specified explicitly for the (first

SUN/256 150

two) colour dimensions, but for the (third) magnitude dimension it is determined from the
minimum and maximum values the data in that column of the table. The output is a
three-dimensional FITS cube.

stilts tcube in=iras_psc.vot out=iras_psc_map.fits \

i cnd=" addskycoords fk5 galactic ra dec glat glon \

col s='glat glon'" nbins="400 200
Calculates a map of object densities in galactic coordinates from a catalogue of IRAS point
sources. The output is a two-dimensional FITS image representing the sky in galactic
coordinates. Bounds are determined automatically from the data, and the number of pixelsin
each dimension (400 in latitude and 200 in longitude) are specified, which means that the pixel
sizes don't have to be. Since the input table contains sky positions in equatorial coordinates
rather than galactic ones, the addskycoor ds filter is used to preprocess the data before the cube
generation step (see Section 6.1).

B.181tj oi n: Joins multiple tables side-to-side

tjoi n performs a trivial side-by-side join of multiple tables. The N'th row of the output table
consists of the N'th row of the first input table, followed by the N'th row of the second input table,
....and so on. It is suitable if you want to amalgamate two or more tables whose row orderings
correspond exactly to each other.

For the (more usual) case in which the rows of the tables to be joined are not aready in the right
order, use one of the crossmatching commands (Section 7).

B.18.1 Usage
Theusageof tjoinis

stilts <stilts-flags> tjoin nin=<count> ifntN=<in-format> i nN=<t abl eN>
i cmdN=<cnds> ocnd=<cnds>
onpde=<out - nnde> <node- ar gs> out =<out -t abl e>
of nt =<out - f or mat > fi xcol s=none| dups| al |
suf fi xN=<I abel >
If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti I ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

fixcols = none| dups| al |
Determines how input columns are renamed before use in the output table. The choices are:

* none: columns are not renamed

e dups: columns which would otherwise have duplicate names in the output will be
renamed to indicate which table they came from

e all:al columnswill be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suf fi x* parameters.
[Default: dups]

i cmdN = <cnds>
Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If

more than one is given, they must be separated by semicolon characters (*;"). This parameter

SUN/256 151

can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus"i cmdN=@ i | enane” causes thefilefi | enarme to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifntN = <in-format>
Specifies the format of input table #N (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

i nN = <tabl eN>
The location of input table #N. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

nin = <count>
The number of input tables for this task. For each of the input tables N there will be associated
parametersi fnt N, i nNand i cndN.

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus "ocnd=@i | ename" causes the file fi | enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of mt = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileis required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

SUN/256 152

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

suffi xN = <l abel >
If the fixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from table N.

[Default: _N]

B.18.2 Examples

Here are some examples of using tj oi n

stilts tjoin nin=2 inl=positions.fit in2=fluxes.fits out=conbined.fits

Takes two input FITS files and sticks them together side by side, writing the result as a third
FITSfile. The output will have the same number of rows as each of the input catalogues, and a
number of columns equal to the sum of those in the two input catalogues.

in=3 fixcols=all \
fnml=ascii inl=tl.txt suffixl= T1 \
fnt2=ascii in2=t2.txt suffix2=_T2 \

ifnt3=ascii in3=t3.txt suffix3=_T3\

ocnd=" sel ect FLAG T1==0" \

onode=st at s
Thisjoins three ascii tables together. Each column of the output table is renamed by appending
astring to it ("_T1" for the first table, " _T2" for the second...). Only those rows of the output
for which the FLAG column in the first input table, and hence the FLAG_T1 column in the
output table, have the value zero are selected. Statistics are calculated for ‘al the columns of

these selected rows, and written to the output.

stilts tjoin n
i
i

B.19t mat ch1: Performsacrossmatch internal to a single table

t mat ch1 performs efficient and flexible crossmatching between the rows of a single table. It can
match rows on the basis of their relative position in the sky, or aternatively using many other
criteria such as separation in in some isotropic or anisotropic Cartesian space, identity of a key
value, or some combination of these; the full range of match criteriais dicussed in Section 7.1.

SUN/256 153

The basic task performed by the intra-table matcher is to identify groups of rows within the table
which match each other. See Section 7.2 for an explanation of exactly what consitutes a match
group. The result of identifying these groups is expressed as an output table in one of a variety of
ways, specified by the action parameter. These options include marking group membership in
added columns and eliminating some or all rows which form part of a match group.

B.19.1 Usage
Theusage of t mat chl is

stilts <stilts-flags> tmatchl mat cher =<mat cher - nane> par ans=<mat ch- par ans>

t uni ng=<t uni ng- par ans> val ues=<expr-11st>
action=identify| keepO| keepl| wi de2| wi deN
progress=none| | og| profile ifmt=<in-fornmat>
i streanrtrue|fal se i cnd=<cnds> ocnd=<cnds>
onmode=<out - nrode> <nbde- ar gs> out =<out -t abl e>
of m =<out - f or mat >
[n=] <t abl e>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

action = identify| keepO| keepl| wi de2| wi deN
Determines the form of the table which will be output as aresult of the internal match.

* identify: The output table is the same as the input table except that it contains two
additional columns, G oupl D and G oupSi ze, following the input columns. Each group of
rows which matched is assigned a unique integer, recorded in the GrouplD column, and
the size of each group is recorded in the GroupSize column. Rows which don't match any
others (singles) have null valuesin both these columns.

* keep0: Theresult is a new table containing only "single" rows, that is ones which don't
match any other rowsin the table. Any other rows are thrown out.

* keepl: Theresult is anew table in which only one row (the first in the input table order)
from each group of matching ones is retained. A subsequent intra-table match with the
same criteria would therefore show no matches.

* wideN: The result is a new "wide" table consisting of matched rows in the input table
stacked next to each other. Only groups of exactly N rows in the input table are used to
form the output table; each row of the output table consists of the columns of the first
group member, followed by the columns of the second group member and so on. The
output table therefore has N times as many columns as the input table. The column names
in the new table have _1, _2, ... appended to them to avoid duplication.

[Default: i denti fy]

icnd = <cnds>
Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cnd=@i | ename" causes the file fi | enanme to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or

SUN/256 154

semicolons.

ifnt = <in-formt>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <table>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

istream = true|fal se
If set true, thei n table will be read as a stream. It is necessary to give thei f nt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

mat cher = <mat cher - nane>
Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the par ans, val ues* and t uni ng parameter(s).

[Default: sky]

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is

performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus "ocni=@i | ename” causes the file il enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of mt = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that

SUN/256 155

the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

parans = <mat ch- parans>
Determines the parameters of this match. Thisistypically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the mat cher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted’ or "quoted".

progress = none|log|profile
Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can also be useful as a performance diagnostic.

The options are:

* none: NO progressis shown
* | og: progressinformation is shown
* profile: progressinformation and limited time/memory profiling information are shown

[Default: | og]

tuni ng = <tuning- parans>
Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the mat cher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted”. If this optional parameter is not supplied, sensible defaults will be
chosen.

val ues = <expr-1list>
Defines the values from the input table which are used to determine whether a match has
occurred. These will typicaly be coordinate values such as RA and Dec and perhaps some
per-row error values as well, though exactly what values are required is determined by the kind
of match as determined by mat cher . Depending on the kind of match, the number and type of

SUN/256 156

the values required will be different. Multiple values should be separated by whitespace; if
whitespace occurs within a single value it must be 'quoted’ or "quoted”. Elements of the
expression list are commonly just column names, but may be agebraic expressions calculated
from zero or more columns as explained in Section 9.

B.19.2 Examples

Here are some examples of using t mat ch1

stilts tmatchl matcher=sky val ues="RA2000 DE2000" params=20 \
acti on=keepO i n=crowded. vot out =spar se. vot
Copies an input catalogue "crowded.vot" to an output catalogue "sparse.vot”, but omitting any
objects (rows) which are within 20 arcsec of other objects. The output catalogue will contain
no near neighbours.

stilts tmatchl mat cher=skyerr val ues="RA2000 DE2000 RADI US*4" parans=100 \
acti on=keep0O i n=cr owded. vot out =spar se. vot

This is similar to the previous example, but uses the skyerr matcher which determines the
proximity threshold on a row-by-row basis from values in the table - in this case 4 times the
value of the RADIUS column (this value must be in arc seconds). It is still necessary to specify
par ans=60, but here it just gives an upper limit for 4*RADIUS for all rows - this value is
required by the algorithm, and should not be too large for performance reasons, but as long as
it's set high enough it will not affect the resullt.

stilts tmatchl matcher=3d val ues="XPlI X YPI X ZPI X' parans=10 action=identify \

in=state.fit ocnd='sel ect G oupSize>3" out=groups3+.fit
Uses the "3d" matcher to identify groups of objects in terms of their proximity in a
3-dimensiona Cartesian space, with positions given by the XPIX, YPIX and ZPIX columnsin
the input table. The acti on=i denti fy parameter means that the input table is written out with
the same rows, but with additional columns indicating which rows are associated with each
other. One of these columns, "GroupSize" gives the number of objects in each group. The
postprocessing filter ocmd=" sel ect G oupSi ze>3' selects only those rows which are part of
groups of three objects or larger; singletons and pairs are discarded before writing the output
file.

stilts tmatchl matcher=sky val ues="ra dec" params=3 action=w de2 \

ocnd=" keepcols "id_1 ra_ 1 dec_1id 2 ra_2 dec_2"'

i n=gal axy.fits out=binaries.txt ofnt=ascii
Identifies pairs of objects within 3 arcsec of each other from an input catalogue. Singles, and
groups of three or more, will be discarded. The output table generated is a double-width
version of the input table with pairs of objects next to each other on the same row. Here, the
ocnd post-processing filter discards all of the columns except the identifiers and sky positions
for each object. The output isto atext file.

B.20t mat ch2: Crossmatches 2 tablesusing flexible criteria

t mat ch2 is an efficient and highly configurable tool for crossmatching pairs of tables. It can match
rows between tables on the basis of their relative position in the sky, or aternatively using many
other criteria such as separation in some isotropic or anisotropic Cartesian space, identity of a key
value, or some combination of these; the full range of match criteria is discussed in Section 7.1.
Y ou can choose whether you want to identify all the matches or only the closest, and what form the

SUN/256 157

output table takes, for instance matched rows only, or al rows from one or both tables, or only the
unmatched rows.

If you simply want to match two tables based on sky position with a fixed maximum separation,
you may find thet skymat ch2 command easier to use.

Note: the duptagl and duptag2 parameters have been replaced at version 1.4 by suffix1 and
suf fi x2 for consistency with other table join tasks.

B.20.1 Usage
The usage of t mat ch2 is

stilts <stilts-flags> tmatch2 ifntl=<in-format> ifnt2=<in-formt>

i cmdl=<cnds> i cnd2=<cnds> ocnd=<cnds>
onpde=<out - nnde> <node- ar gs> out =<out -t abl e>
of nt =<out - f or mat > nmat cher =<mat cher - nane>
val uesl=<expr-|ist> val ues2=<expr-1list>
par ans=<mat ch- par ans> t uni ng=<t uni ng- par ans>
J oi n=1and2| 1or 2| al | 1| al | 2] 1not 2| 2not 1| 1xor 2
find=best]|all fixcol s=none|dups]| al
suf fi x1=<| abel > suffi x2=<| abel >
scor ecol =<col - nane> progress=none| | og| profile
[inl=] <tabl el> [in2=] <t abl e2>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

find = best]|all
Determines which matches are retained. If best is selected, then only the best match between
the two tables will be retained; in this case the data from arow of either input table will appear
in at most one row of the output table. If al | is selected, then all pairs of rows from the two
input tables which match the input criteriawill be represented in the output table.

[Default: best]

fixcols = none| dups| al |
Determines how input columns are renamed before use in the output table. The choices are:

* none: columns are not renamed

* dups: columns which would otherwise have duplicate names in the output will be
renamed to indicate which table they came from

e all:al columnswill be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suf fi x* parameters.
[Default: dups]

icmdl = <cnds>
Commands to operate on the first input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus"i crd1=@i | ename" causesthefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or

SUN/256 158

semicolons.

icnd2 = <cnds>
Commands to operate on the second input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus"i cnd2=@i | enane” causes thefilefi| enanme to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifntl = <in-format>
Specifies the format of the first input table (one of the known formats listed in Section 5.2.1).
This flag can be used if you know what format your input table isin. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

ifn2 = <in-formt>
Specifies the format of the second input table (one of the known formats listed in Section
5.2.1). Thisflag can be used if you know what format your input table isin. If it has the special
value (aut o) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

inl = <tabl el>
The location of the first input table. Thisis usually afilename or URL, and may point to afile
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt 1 parameter.

in2 = <tabl e2>
The location of the second input table. Thisis usually a filename or URL, and may point to a
file compressed in one of the supported compression formats (Unix compress, gzip or bzip2).
If it is omitted, or equal to the special value "-", the input table will be read from standard
input. In this case the input format must be given explicitly using thei f nt 2 parameter.

join = land2| lor2|all 1] all 2| 1not 2| 2not 1| 1xor 2
Determines which rows are included in the output table. The matching algorithm determines
which of the rows from the first table correspond to which rows from the second. This
parameter determines what to do with that information. Perhaps the most obvious thing is to
write out a table containing only rows which correspond to a row in both of the two input
tables. However, you may also want to see the unmatched rows from one or both input tables,
or rows present in one table but unmatched in the other, or other possibilities. The options are:

1and2: An output row for each row represented in both input tables

1or 2: An output row for each row represented in either or both of the input tables

al 1 1: An output row for each matched or unmatched row in table 1

al 1 2: An output row for each matched or unmatched row in table 2

1not 2: An output row only for rows which appear in the first table but are not matched in
the second table

e 2not 1: An output row only for rows which appear in the second table but are not matched

SUN/256 159

in thefirst table
* 1xor2: An output row only for rows represented in one of the input tables but not the
other one

[Default: 1and2]

mat cher = <mat cher - nane>
Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the par ans, val ues* and t uni ng parameter(s).

[Default: sky]

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus "ocmd=@i | enane” causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

nmet a
stats
count
cqi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.

SUN/256 160
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

parans = <mat ch- parans>
Determines the parameters of this match. Thisistypically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the mat cher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted’ or "quoted".

progress = none|log|profile
Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can aso be useful as a performance diagnostic.

The options are:

* none: NO progressis shown
* | og: progressinformation is shown
* profile: progressinformation and limited time/memory profiling information are shown

[Default: | og]

scorecol = <col - nane>
Gives the name of a column in the output table to contain the "match score” for each pairwise
match. The meaning of this column is dependent on the chosen mat cher, but it typically
represents a distance of some kind between the two matching points. If a null value is chosen,
no score column will be inserted in the output table. The default value of this parameter
depends on mat cher .

[Default: scor e]

suffixl = <l abel >
If thefixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to al renamed columns from table 1.

[Default: _1]

suffix2 = <l abel >
If the fixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to al renamed columns from table 2.

[Default: _2]

tuni ng = <tuni ng- par ans>
Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the mat cher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted”. If this optional parameter is not supplied, sensible defaults will be
chosen.

val uesl = <expr-list>
Defines the values from table 1 which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as

SUN/256 161

determined by mat cher . Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within asingle value it must be 'quoted’ or "quoted”. Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 9.

val ues2 = <expr-list>

Defines the values from table 2 which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by mat cher . Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within asingle value it must be 'quoted’ or "quoted”. Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 9.

B.20.2 Examples

Here are some examples of using t mat ch2

stilts tmatch2 inl=obs_v.xnm in2=obs_i.xm out=obs_iv.xm \
mat cher =sky val uesl="ra dec" val ues2="ra dec" parans="2"
Takes two input catalogues (VOTables), one with observations in the V band and the other in
the | band, and performs a match to find objects within 2 arcseconds of each other. The result
isanew table containing only rows where a match was found.

stilts tmatch2 survey.fits ifnt2=csv mycat.csv \

i cmd1=" addskycoords fk4 fk5 RA1950 DEC1950 RA2000 DEC2000' \

mat cher =skyerr \

paranms=10 val ues1="RA2000 DEC2000 POCS_ERR' val ues2="RA DEC 0" \

J 0i n=2not 1 onobde=count
Here a comma-separated-values file is being compared with a FITS catalogue representing
some survey results. Positions in the survey catalogue use the FK4 B1950.0 system, and so a
preprocessing step is inserted to create new position columns in the first input table using the
FK5 J2000.0 system, which is what the other input table uses. The survey catalogue contains a
POS_ERR column which gives the positional uncertainty of its entries, so the skyerr matcher
Is used, which takes account of this; the third entry in the val ues1 parameter isthe POS ERR
column (in arcsec). Since the second input table has no positional uncertainty information, O is
used as the third entry in val ues2. The parans till has to contain a value which gives the
maximum error for matching (i.e. >= the largest value in the POS_ERR column). Thejoin type
IS 2not 1, which means the output table will only contain those entries which are in the second
input table but not in the first one. The output table is not stored, but the number of rows it
contains (the number of objects represented in the CSV file but not the survey) is written to the
screen.

stilts tmatch2 ifntl=ascii ifnt2=ascii inl=cat-a.txt in2=cat-b.txt \

mat cher =2d val uesl=' X Y' val ues2='X Y' parans=5 joi n=1and2 \

suffixl=_a suffix2=_b \

ocmd="addcol XDI FF X a- X b; addcol YD FF Y_a-Y_b' \

ocnd' keepcol s "XDI FF YDl FF"' onpbde=stats
Two ASCII-format catalogues are matched, where rows are considered to match if their X,Y
positions are within 5 units of each other in some Cartesian space. The result of the matching
operation is a table of all the matched rows, containing columns named X _a, Y_a, X_b and
Y _b (along with any others in the input tables) - the suf fi x* parameters describe how the
input X and Y columns are to be renamed to avoid duplicate column names in the output table.

SUN/256 162

To this result are added two new columns, representing the X and Y positional difference
between the rows from one input table and those from the other. The keepcol s filter then
throws all the other columns away, retaining only these difference columns. The final
two-column table is not stored anywhere, but (omode=st at s) statistics including mean and
standard deviation are calculated on its columns and displayed to the screen. Having done all
this, you can examine the average X and Y differences between the two input tables for
matched rows, and if they differ significantly from zero, you can conclude that there is a
systematic error between the positions in the two input files.

stilts tmatch2 inl=ngc.fits in2=6dfgs.xm join=1land2 find=all \
mat cher =sky+1d parans="3 0.5 \
val uesl='ra dec bmag' val ues2='RA2000 DEC2000 B_NAG' \
out=pairs.fits
This performs a match with a matcher that combines sky and 1d match criteria. This means
that the only rows which match are those which are both within 3 arcsec of each other on the
sky and and within 0.5 blue magnitudes. Note that for both the par ams and the val ues1 and
val ues2 parameters, the items for the sky matcher (RA and DEC) are listed first, followed by
those for the 1d matcher (in this case, blue magnitude).

B.21 t mat chn: Crossmatches multiple tables using flexible criteria

t mat chn performs efficient and flexible crossmatching between multiple tables. It can match rows
on the basis of their relative position in the sky, or aternatively using many other criteria such as
separation in in some isotropic or anisotropic Cartesian space, identity of a key value, or some
combination of these; the full range of match criteriais dicussed in Section 7.1.

Since the match criteria define what counts as a match between two objects, it is not immediately
obvious what is meant by a multi-table match. In fact the command can work in one of two distinct
modes, controlled by the mul t i node parameter. In pai rs mode, one table (by default the first input
table) is designated the reference table, and pair matches between each of the other tables and that
one are identified. In group mode groups of objects from all the input tables are identified, as
discussed in Section 7.2. Currently, in both cases an output matched row cannot contain more than
one object from each input table. Options for output of multiple rows per input table per match may
be forthcoming in future releases if there is demand.

t mat chn is intended for use with more than two input tables - seet mat ch1 and t mat ch2 for 1- and
2-table crossmatching respectively.

B.21.1 Usage
The usage of t mat chn is

stilts <stilts-flags> tmatchn ni n=<count> ifnt N=<i n-format> i nN=<t abl eN>
i cmdN=<cnmds> ocnd=<cnds>
onmode=<out - nrode> <nbde- ar gs> out =<out -t abl e>
of m =<out -f or mat > nul ti node=pai r s| gr oup
i ref =<t abl e-i ndex> nmat cher =<mat cher - nane>
par ans=<mat ch- par ans> t uni ng=<t uni ng- par ans>
val uesN=<expr-1ist>
j oi nN=def aul t| mat ch| nomat ch| al ways
fixcol s=none| dups| al | suffixN=<I abel >
progress=none| |l og| profile

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as

SUN/256 163

follows:

fixcols = none| dups]all
Determines how input columns are renamed before use in the output table. The choices are:

* none: columns are not renamed

* dups: columns which would otherwise have duplicate names in the output will be
renamed to indicate which table they came from

* all:al columnswill be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suf fi x* parameters.
[Default: dups]

i cmdN = <cnds>
Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cmdN=@ i | ename” causesthefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifn N = <in-format>
Specifies the format of input table #N (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

i nN = <tabl eN>
The location of input table #N. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

iref = <tabl e-i ndex>
If mul ti mode=pai r s this parameter gives the index of the table in the input table list which is
to serve as the reference table (the one which must be matched by other tables). Ignored in
other modes.

Row ordering in the output table is usually tidiest if the default setting of 1 is used (i.e. if the
first input table is used as the reference table).

[Default: 1]

joi nN = defaul t| mat ch| nomat ch| al ways
Determines which rows from input table N are included in the output table. The matching
algorithm determines which of the rows in each of the input tables correspond to which rows
in the other input tables, and this parameter determines what to do with that information.

The default behaviour is that a row will appear in the output table if it represents a match of
rows from two or more of the input tables. This can be altered on a per-input-table basis
however by choosing one of the non-default options below:

SUN/256 164

* match: Rowsareincluded only if they contain an entry from input table N.

* nomat ch: Rows are included only if they do not contain an entry from input table N.

* always: Rows are included if they contain an entry from input table N (overrides any
match and nomatch settings of other tables).

* defaul t: Input table N has no specia effect on whether rows are included.

[Default: def aul t]

mat cher = <mat cher - nane>
Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the par ans, val ues* and t uni ng parameter(s).

[Default: sky]

mul ti node = pairs|group
Defines what is meant by a multi-table match. There are two possibilities:

* pairs: Each output row corresponds to a single row of the reference table (see parameter
i ref) and contains entries from other tables which are pair matches to that. If areference
table row matches multiple rows from one of the other tables, only the best one is
included.

* group: Each output row corresponds to a group of entries from the input tables which are
mutually linked by pair matches between them. This means that although you can get
from any entry to any other entry via one or more pair matches, there is no guarantee that
any entry is a pair match with any other entry. No table has privileged status in this case.
If there are multiple entries from a given table in the match group, an arbitrary one is
chosen for inclusion (there is no unique way to select the best). See Section 7.2 for more
discussion.

In the case of well-separated objects these modes will give the same results. For crowded
fields however it will make a difference which is chosen.

[Default: pai rs]

nin = <count>
The number of input tables for this task. For each of the input tables N there will be associated
parametersi fnt N, i nNand i cndN.

ocnd = <cnds>
Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus "ocni=@i | ename" causes the file fi | enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

of mt = <out-format>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

SUN/256 165

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onode = <out - node> <node- ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

net a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

parans = <mat ch- parans>
Determines the parameters of this match. Thisistypically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the mat cher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted’ or "quoted".

progress = none|log|profile
Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can aso be useful as a performance diagnostic.

The options are:

* none: NO progressis shown
* | og: progressinformation is shown
e profile: progressinformation and limited time/memory profiling information are shown

[Default: | og]

suffi xN = <l abel >
If thefixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to al renamed columns from table N.

[Default: _N]

tuni ng = <tuni ng- par ans>

SUN/256 166

Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the mat cher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted”. If this optional parameter is not supplied, sensible defaults will be
chosen.

val uesN = <expr-1list>

Defines the values from table N which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by mat cher . Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within asingle value it must be 'quoted’ or "quoted”. Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 9.

B.21.2 Examples

Here are some examples of using t mat chn

stilts tmatchn nmul ti node=pairs ni n=4 mat cher=sky parans=5 \
inl=transients.txt ifntl=ascii val uesl="al pha delta \
i n2=2mass_virgo.fits val ues2='ra2000 dec2000' \
i n3=sdss_virgo.fits values3="ra dec' \
ind=first_virgo.fits values4='pos_eq_ra pos_eq_dec' \
out =mat ches. xm of nt =vot abl e- bi nary
Compares a text-format table "transients.txt" against each of three other catalogues covering
the same region of sky, and outputs a table which contains a row for each row of

"transients.txt” which matches (iswithin 5 arcsec) of an object in any of the other tables.

stilts tmatchn nmul ti node=pairs ni n=4 mat cher=sky parans=5 \
inl=transients.txt ifml=ascii suffixl="_t' valuesl='al pha delta \

in2=2mass_virgo.fits suffix2="_2mass' val ues2='ra2000 dec2000' \

in3=sdss_virgo.fits suffix3="_sdss' values3='ra dec' \

ind=first_virgo.fits suffix4=" _first' val ues4='pos_eq_ra pos_eq_dec' \

fixcols=all joinl=all \

ocnd=' keepcols "*_t designati on_2nmass SDSSNane_sdss id _field first"' \

out =mat ches. xm of mt =vot abl e- bi nary
Similar to the previous example but with some doctoring of what the output table will ook
like. The fixcol s=all and suffixN assignments mean that all the columns from the input
tables will be renamed for output by adding the given suffixes. The keepcol s filter applied to
the output table throws out all the columns except the ones from the reference table (*_t) and
one column from each of the other table giving object identifiers. This output table will
probably be easier to read (though contain less information) than that from the previous
example). Additionaly, the j oi n1=al I assignment means that the output table will have one
row for each row of the reference table (transients.txt), even if no matches are found for it.

stilts tmatchn mul ti mode=group ni n=3 mat cher =skyerr params=8 \

i n1=Hband. fits val ues=' RA DEC SEEI NG*2' \

i n2=Jband. fits val ues=' RA DEC SEEI NG*2' \

i n3=Kband. fits val ues=" RA DEC SEEI NG*2' \

onmode=t opcat
Performs a group-mode match. There is no reference table, so that an output row will result for
each object which is represented in any two of the input catalogues. The match takes account
of per-object errors equivalent to twice the recorded seeing with a maximum of 8 arcsec
separation. Note that this may not operate as expected if the catalogues contain multiple
distinct objects too close (in comparison to the declared separation) to each other. The

SUN/256 167
resulting matched table is sent directly to TOPCAT (if available).

B.22tmul ti : Writesmultiple tablesto a single container file

tmul ti takes multiple input tables and writes them as separate tables to a single output container
file. The container file must be of some format which can contain more than one table, for instance
a FITS file (which can contain multiple extensions) or a VOTable document (which can contain
multiple TABLE elements). Filtering may be performed on the tables prior to writing them. It is not
necessary that al the tables are similar (e.g. that they al have the same type and number of
columns), but the same processing commands will be applied to al of them. For more individual
control, usethet mul ti n task.

B.22.1 Usage
Theusageof t mul ti is

stilts <stilts-flags> trmulti in=<table> [<table> ...] ifm=<in-formt>
mul ti=true|fal se istreanrtrue|fal se
i cmd=<cnds> out =<out-fil e> of nt =<out - f or mat >
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

icmd = <cnds>
Commands which will operate on each of the input tables, before any other processing takes
place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cnd=@i | ename" causes the filefi | ename to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifm = <in-format>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

The same format parameter appliesto all the tables specified by i n.
[Default: (aut o)]

in = <table> [<table> ...]
Locations of the input tables. Either specify the parameter multiple times, or supply the input
tables as a space-separated list within a single use. Each table location may be a filename or
URL, and may point to data compressed in one of the supported compression formats (Unix
compress, gzip or bzip2).

SUN/256 168

A list of input table locations may be given in an external file by using the indirction character
'‘@'. Thus"in=@i | enane" causesthefilefil enane to be read for alist of input table locations.
The locations in the file should each be on a separate line.

i stream = true|fal se
If set true, thei n table will be read as a stream. It is necessary to give thei f nt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

The same streaming flag applies to all the tables specified by i n.
[Default: f al se]

multi = true|false
Determines whether all tables, or just the first one, from input table files will be used. If set
f al se, then just the first table from each file named by i n will be used. If t r ue, then all tables
present in those input files will be used. This only has an effect for file formats which are
capable of containing more than one table, which effectively means FITS and VOTable and
their variants.

[Default: f al se]

of m = <out-fornmat>
Specifies the format in which the output tables will be written (one of the ones in Section 5.2.2
- matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

Not al output formats are capable of writing multiple tables; if you choose one that is not, an
error will result.

[Default: (aut o)]

out = <out-file>
The location of the output file. Thisis usualy afilename to write to. If it is equal to the special
value "-" the output will be written to standard output.

[Default: -]

B.22.2 Examples

Here are some examples of using t nul tii :

stilts trnulti ifnt=ascii in=tl.txt in=t2.txt in=t3.txt
ofmt=fits out=tables.fits

Takes the three named ASCII format tables and writes them into a multi-extension FITS file,
as three separate BINTABLE HDUSs. These tables do not need to be of the same shape or
otherwise similar.

stilts tnmulti ifn=ascii in="tl.txt t2.txt t3.txt"
ofnt=fits out=tables.fits

Does exactly the same as the previous example.

stilts tnulti ifnm=ascii in=@nlist.lis

SUN/256 169

ofmt=fits out=tables.fits

This will have the same effect as the previous two examples if a file name "inlist.lis" in the
current directory contains three lines, "t1.txt", "t2.txt" and "t3.txt".

stilts tnmulti in=extract.fits nmulti=true out=extract.vot

This takes the table extensions from a multi-extension FITS file and writes them out as a
multi-TABLE VOTable document. The nul ti =t rue Setting is required, since this means that
all the tables from the input file are used as input; if it was set false, only the first table HDU
from the input file would be used.

stilts tmulti in=extract.fits multi=true out=extract.vot
i cd=" badval -999 *NMAG
Does the same as the previous example, but additionally replaces with a blank value
occurrences of the value "-999" in columns whose name ends with "MAG" in any of the input
tables before copying them.

B.23tmul ti n: Writesmultiple processed tablesto single container file

t mul ti n takes multiple input tables and writes them to a single output container file. The container
file must be of some format which can contain more than one table, for instance a FITS file (which
can contain multiple extensions) or a VOTable document (which can contain multiple TABLE
elements). Individual filtering may be performed on the tables prior to writing them, and their
formats may be specified individually. If you want to apply the same pre-processing to all the input
tables, you may find thet mul ti command more convenient.

B.23.1 Usage
Theusageof tmul tinis

stilts <stilts-flags> tmultin nin=<count> ifntN=<in-format> i nN=<tabl eN>
i crdN=<cnds> out =<out -fi |l e> of nt =<out - f or mat >
If you don't have thestilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

i cndN = <cnds>
Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus"i cmdN=@ i | ename” causesthefilefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifnt N = <in-format>
Specifies the format of input table #N (one of the known formats listed in Section 5.2.1). This

SUN/256 170

flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

i nN = <tabl eN>
The location of input table #N. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt N parameter.

nin = <count>
The number of input tables for this task. For each of the input tables N there will be associated
parametersi f nt N, i nNand i cndN.

of m = <out-fornmat>
Specifies the format in which the output tables will be written (one of the onesin Section 5.2.2
- matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

Not al output formats are capable of writing multiple tables; if you choose one that is not, an
error will result.

[Default: (aut o)]

out = <out-file>
The location of the output file. Thisis usualy afilename to write to. If it is equal to the special
value "-" the output will be written to standard output.

[Default: -]

B.23.2 Examples

Here are some examples of using t nul ti n:

stilts trmultin nin=3 inl=tl.xm ifntl=votable
in2=t2.fit ifm2=fits
in3=t3.txt ifnt3=ascii

out=tables.fits

Takes three input tables in different formats, and writes them out as a single multi-extension
FITSfile.

stilts tmultin nin=3 inl=data.fits icndl="every 10; head 100’

in2=data.fits icnd2="every 100; head 100

in3=data.fits icnmd3="every 1000; head 100

out =sanpl es. xm of m =vot abl e
Writes three hundred-row tables as separate TABLE elements in a single output VOTable
document. Each of the output tables is a sample from the same input table, but sampled
differently; the first is every tenth row, the second every hundredth, and the third every
thousandth.

B.24 t pi pe: Performs pipeline processing on a table

SUN/256 171

t pi pe performs all kinds of general purpose manipulations which take one table as input. It is
extremely flexible, and can do the following things amongst others:

calculate statistics

display metadata

select rowsin various ways, including algebraically
define new columns as algebraic functions of old ones
delete or rearrange columns

sort rows

convert between table formats

and combine these operations. Y ou can think of it as a supercharged table copying tool.

The basic operation of t pi pe is that it reads an input table, performs zero or more processing steps
on it, and then does something with the output. There are therefore three classes of things you need
to tell it when it runs:

Input tablelocation
Specified by thein, i fnt andi st r eamparameters.

Processing steps
Either provide a string giving steps as the value of one or more cnd parameters, or the name of
a file containing the steps using the scri pt parameter. The steps that you can perform are
described in Section 6.1.

Output table destination
What happens to the output table is determined by the value of the onode parameter. By
default, ormode=out , in which case the table is written to a new table file in aformat determined
by of nt . However, you can do other things with the result such as calculate the per-column
statistics (onode=st ats), view only the table and column metadata (onode=net a), display it
directly in TOPCAT (onode=t opcat) €tc.

See Section 6 for amore detailed explanation of these ideas.

The parameters mentioned above are listed in detail in the next section.

B.24.1 Usage
The usage of t pi pe is

stilts <stilts-flags> tpipe ifm=<in-format> istreamrtrue|fal se cnd=<cnds>
onmode=<out - node> <nbde- ar gs> out =<out -t abl e>
of nt =<out - f or mat >
[in=] <t abl e>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

cmd = <cnds>
Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is

performed on the table.

SUN/256 172

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus"i cmd=@i | enane” causes the filefil enane to be read for alist of filter commands
to execute. The commands in the file may be separated by newline characters and/or
semicolons.

ifnt = <in-formt>
Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <table>
The location of the input table. This is usualy a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt parameter.

istream = true|fal se
If set true, thei n table will be read as a stream. It is necessary to give thei f nt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
filesin certain formats (such as VOTable).

[Default: f al se]

of M = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ™.
[Default: (aut o)]

onode = <out-node> <node-ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possihilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

nmet a
stats
count
cqi

di scard
t opcat
sanp

pl astic
t osql

SUN/256 173

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

B.24.2 Examples

Here are some examples of t pi pe in use with explanations of what's going on. For simplicity these
examples assume that you have the stilts script installed and are using a Unix-like shell; see
Section 3 for an explanation of how to invoke the command if you just have the Java classes.

stilts tpipe cat.fits

Writes a FITS table to standard output in human-readable form. Since no mode specifier is
given, onode=out isassumed, and output is to standard output int ext format.

stilts tpipe cnd="head 5 cat.fits.gz

Does the same as the last example, but with one processing step: only the first five rows of the
table are output. In this case, the input file is compressed using gzip - this is automatically
detected.

stilts tpipe ifm=csv xxx.csv \

cnd=" keepcol s "index ra dec"' \

omode=out ofmt=fits xxx.fits
Reads from a comma-separated values file, writes to a FITS file, and discards al columns in
the input table apart from INDEX, RA and DEC. Note the quoting in the cnd argument: the
outer quotes are so that the argument of the cnd parameter itself (keepcol s "index ra dec")
Is not split up by spaces (to protect it from the shell), and the inner quotes are to keep the
colid-1ist argument of the keepcol s command together.

stilts tpipe ifm=votable \
cmd="addcol 1V_SUM " (I MAGFVMAG) "' \
crmd=' addcol |V DI FF "(1 MAG VMAG) "' \
cnd='del cols "I MAG VMAG'"' \
onpde=out of nt=votable \
< tabl.vot \
> tab2. vot

Replaces two columns by their sum and difference in aVOTable. Since neither thei n nor out
parameters have been specified, the input and output are actually byte streams on standard
input and standard output of the t pi pe command in this case. The processing steps first add a
column representing the sum, then add a column representing the difference, then delete the
origina columns.

stilts tpipe cnd=" addskycoords -inunit sex fk5 gal \
RA2000 DEC2000 GAL_LONG GAL_LAT' \
6dfgs.fits 6dfgs+gal .fits

Adds columns giving galactic coordinates to a table. Both input and output tables are FITS
files. The galactic coordinates, stored in new columns named GAL_LONG and GAL_LAT,

SUN/256 174

are calculated from FK5 J2000.0 coordinates given in the existing columns named RA2000
and DEC2000. The input (FK5) coordinates are represented as sexagesimal strings (hh:mm:ss,
dd:mm:ss), and the output ones are numeric degrees.

stilts -disk tpipe 2dfgrs_ngp.fits \

cnd=" keepcol s " SEQNUM AREA ECCENT"' \

cmd='sort -down AREA' \

cmd=" head 20
Displays selected columns for the 20 rows with largest values in the AREA column of aFITS
table. First the columns of interest are selected, then the rows are sorted into descending order
by the value of the AREA column, then the first 20 rows of the resulting table are selected, and
the result is written to standard output. Since a sort is being performed here, it's not possible to
do al the processing a row at a time, since all the AREA values must be available for
comparison during the sort. Two things are done here to accommodate this fact: first the
column selection is done before the sort, so that it's only a 3-column table which needs to be
available for random access, reducing the temporary storage required. Secondly the - di sk flag
Is supplied, which means that temporary disk files rather than memory will be used for caching
table data.

stilts tpipe 2dfgrs_ngp.fits \
cmd=' keepcol s " SEQNUM AREA ECCENT"' \
cmd=" sorthead -down 20 AREA
Has exactly the same effect as the previous example. However, the algorithm used by the
sort head filter isin most cases faster and cheaper on memory (only 20 rows ever have to be
stored in this case), so this is generally a better approach than combining the sort and head
filters.

stilts tpipe onbde=neta cnd=@onmands.|is http://archive.org/datal/survey.vot.Z

Outputs column and table metadata about a table. In this case the table is a compressed
VOTable at the end of a URL. Processing is performed according to the commands contained
in afile named "commands.lis' in the current directory.

stilts tpipe in=survey.fits
cmd=" sel ect "skyDi stance(hnsToRadi ans(RA), dnmsToRadi ans(DEC), \
hmsToRadi ans(2, 28, 11), dnsToRadi ans(- 6, 49, 45)
< 5 * ARC_M NUTE"' \

onpde=count
Counts the number of rows within a given 5 arcmin cone of sky in a FITS table. The
skyDi stance function is an expression which calculates the distance between the position
specified in arow (as given by its RA and DEC columns) and a given point on the sky (here,
02:28:11,-06:49:45). Since skyDi st ance's arguments and return value are in radians, some
conversions are required: the RA and DEC columns are sexagesima strings which are
converted using the hnmsToRadi ans and dnsToRadi ans functions respectively. Different
versions of these functions (ones which take numeric arguments) are used to convert the
coordinates of the fixed point to radians. The result is compared to a multiple of the
ARC_M NUTE constant, which is the size of an arcminute in radians. Any rows of the input table
for which this comparison is true are included in the output. An alternative function,
skyDi st anceDegr ees Which works in degrees, is also available. The functions and constants
used here are described in detail in Section 9.5.11.

stilts tpipe ifm=ascii survey.txt \
cnd='sel ect "OBJTYPE == 3 && Z > 0.15"" \
cmd="' keepcol s "1 MAG JVMAG KMAG'' \
onode=stats

Calculate statistics on the |, J and K magnitudes of selected objects from a catalogue. Only

SUN/256 175

those rows with the given OBJTY PE and in the given Z range are included. The minimum,
maximum, mean, standard deviation etc of the IMAG, IMAG and KMAG columns will be
written to standard output.

stilts -classpath lib/drivers/nysql-connector-java.jar \
-Dj dbc. drivers=com nysql . jdbc. Driver \
tpipe in=x.fits cnd="expl odeal | " onode=t osqgl \
prot ocol =nysqgl host =l ocal host db=ASTROL dbt abl e=TABLEX \
write=dropcreate user=nbt
Writes a FITS table to an SQL table, converting array-valued columns to scalar ones. To make
the SQL connection work properly, the classpath is augmented to include the path of the
MySQL JDBC driver and the j dbc. dri vers System property is set to the JDBC driver class
name. The output will be written as a new table named TABLEX in the MySQL database
named ASTRO1 on a MySQL server on the local host. The password, if required, will be
prompted for, as would any of the other required parameters if they had not been given on the
command line. Any existing table in ASTRO1 with the name TABLEX is overwritten. The
only processing done here is by the expl odeal | command, which takes any columns which
have fixed-size array values and replaces them in the output with multiple scalar columns.

java -classpath stilts.jar:lib/drivers/nysgl-connector-java.jar
-Dj dbc. drivers=com nysql . jdbc. Driver \
uk.ac.starlink.ttools.Stilts \
tpipe in=x.fits \
cnd=expl odeal | \
onode=out \
out ="j dbc: nysql : / /1 ocal host/ ASTROL?user =nbt #TABLEX"
This does exactly the same as the previous example, but achievesit in a dlightly different way.
In the first place, java is invoked directly with the necessary flags rather than getting the
stilts script to do it. Note that you cannot use javas -j ar flag in this case, because doing it
like that would not permit access to the additional classes that contain the JDBC driver. In the
second place we use onode=out rather than onode=t osql . For this we need to supply an out
value which encodes the information about the SQL connection and table in a specia
URL-like format. Asyou can see, thisis a bit arcane, which is why the onode=t osql mode can

be a help.

stilts tpipe USNOB. FI TS cnd=' every 1000000' onpbde=stats

Calculates statistics on a selection of the rows in a catalogue, and writes the result to the
terminal. In this example, every millionth row is sampled.

B.25t skymat ch2: Crossmatches 2 tables on sky position

t skymat ch2 performs a crossmatch of two tables based on the proximity of sky positions. You
specify the columns or expressions giving right ascension and declination in degrees for each input
table, and a maximum permissible separation in arcseconds, and the resulting joined table is output.

If you omit expressions for the RA and Dec, an attempt is made to identify the columns to use using
column Unified Content Descriptors (UCDs) or names. First columns bearing appropriate UCD1 or
UCD1+ vaues (POS_EQ RA, POS_EQ RA MAIN, pos.eq.ra OF pos.eq.ra;nmeta. main and their
equivalents for declination) are sought. If these cannot be found, columns named something like
"RA" or "RA2000" are sought. If either isfound, the column units are consulted and radian->degree
conversions are performed if necessary (degrees are assumed if no unit value is given). If nothing
likely can be found, then the command will fail with an error message. This search logic is intended
as a convenience only; it is somewhat ad hoc and subject to change. To make sure that the correct
angle values are being used, specify thera and dec position parameters explicitly.

SUN/256 176

t skymat ch2 is simply a cut-down version, provided for convenience, of the more general matching
task t mat ch2. If you want more match options or otherwise more configurability, you can probably
find it by using t mat ch2.

B.25.1 Usage
The usage of t skymat ch2 IS

stilts <stilts-flags> tskymatch2 ifmt1l=<in-format> ifnt 2=<in-fornmat>

onmode=<out - node> <npbde- ar gs>
out =<out - t abl e> of nt =<out - f or mat >
ral=<expr/ degs> decl=<expr/degs>
ra2=<expr/ degs> dec2=<expr/ degs>
error=<val ue/ arcsec> tuni ng=<heal pi x- k>
j oi n=1and2| 1or 2| al | 1| al | 2| 1not 2| 2not 1| 1xor 2
fi nd=best | al
[inl1=] <t abl el> [in2=] <t abl e2>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

decl = <expr/degs>
Vaue in degrees for the declination of positions in table 1 to be matched. This may simply be
a column name, or it may be an algebraic expression calculated from columns as explained in
Section 9. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

dec2 = <expr/degs>
Vaue in degrees for the declination of positions in table 2 to be matched. This may simply be
a column name, or it may be an algebraic expression calculated from columns as explained in
Section 9. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

error = <val ue/ arcsec>
The maximum separation permitted between two objects for them to count as a match. Units
are arc seconds.

find = best]|all
Determines which matches are retained. If best is selected, then only the best match between
the two tables will be retained; in this case the data from arow of either input table will appear
in at most one row of the output table. If al | is selected, then all pairs of rows from the two
input tables which match the input criteriawill be represented in the output table.

[Default: best |

ifml = <in-format>
Specifies the format of the first input table (one of the known formats listed in Section 5.2.1).
This flag can be used if you know what format your input table isin. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

ifm2 = <in-formt>
Specifies the format of the second input table (one of the known formats listed in Section
5.2.1). Thisflag can be used if you know what format your input tableisin. If it has the special
value (aut o) (the default), then an attempt will be made to detect the format of the table

SUN/256 177

automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (aut o)]

inl = <tabl el>
The location of the first input table. Thisis usually afilename or URL, and may point to afile
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using thei f nt 1 parameter.

in2 = <tabl e2>
The location of the second input table. Thisis usually a filename or URL, and may point to a
file compressed in one of the supported compression formats (Unix compress, gzip or bzip2).
If it is omitted, or equal to the specia value "-", the input table will be read from standard
input. In this case the input format must be given explicitly using thei f nt 2 parameter.

join = land2| lor2|all 1] all 2| 1not 2| 2not 1| 1xor 2
Determines which rows are included in the output table. The matching algorithm determines
which of the rows from the first table correspond to which rows from the second. This
parameter determines what to do with that information. Perhaps the most obvious thing is to
write out a table containing only rows which correspond to a row in both of the two input
tables. However, you may also want to see the unmatched rows from one or both input tables,
or rows present in one table but unmatched in the other, or other possibilities. The options are:

1and2: An output row for each row represented in both input tables

1or 2: An output row for each row represented in either or both of the input tables

al I 1: An output row for each matched or unmatched row in table 1

al 1 2: An output row for each matched or unmatched row in table 2

1not 2: An output row only for rows which appear in the first table but are not matched in

the second table

* 2not 1: An output row only for rows which appear in the second table but are not matched
in thefirst table

* 1xor2: An output row only for rows represented in one of the input tables but not the

other one

[Default: 1and2]

of m = <out-fornmat>
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ™.
[Default: (aut o)]

onode = <out-node> <node-ar gs>
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possihilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

* out
* met a

SUN/256 178

stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

out = <out-tabl e>
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

ral = <expr/degs>
Value in degrees for the right ascension of positionsin table 1 to be matched. This may smply
be a column name, or it may be an algebraic expression calculated from columns as explained
in Section 9. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

ra2 = <expr/degs>
Value in degrees for the right ascension of positionsin table 2 to be matched. This may smply
be a column name, or it may be an algebraic expression calculated from columns as explained
in Section 9. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

tuni ng = <heal pi x- k>

Tuning parameter that controls the pixel size used when binning the rows. The legal range is
from O (corresponding to pixel size of about 60 degrees) to 20 (about 0.2 arcsec). The value of
this parameter will not affect the result but may affect the performance in terms of CPU and
memory resources required. A default value will be chosen based on the size of the error
parameter, but it may be possible to improve performance by adjusting the default value. The
value used can be seen by examining the progress output. If your match is taking a long time
or isfailing from lack of memory it may be worth trying different values for this parameter.

B.25.2 Examples

Here are some examples of using t mat ch2

stilts tskymatch2 inl=obs_v.xm in2=obs_i.xm out=0bs_iv.xm \
ral=0BS_RA decl1=0BS_DEC ra2=0BS_RA dec2=0BS_DEC error=2
Takes two input catalogues (VOTables), one with observations in the V band and the other in
the | band, and performs a match to find objects within 2 arcseconds of each other. The result
isanew VOTable containing only rows where a match was found.

stilts tskymatch2 inl=obs_v.xm in2=obs_i.xm out=obs_iv.xm \
error=2
This is the same as the previous example but without explicit specification of the sky position
columns in either table. It will work only if those columns are identified with appropriate
UCDs, for instance pos. eq. ra; net a. mai n and pos. eq. dec: net a. mai n. If no suitable UCDs

SUN/256 179

arein place thisinvocation will fail with an error.

stilts tskymatch2 inl=virgol.txt ifml=ascii in2=ngc.fits \
ral='radi ansToDegrees(raRad)' decl='radi ansToDegrees(deRad)' \
ra2=MGC_ALPHA_J2000 dec2=MGC_DELTA J2000 \
error=10 joi n=2not1 onbde=count
Object positions in the text file virgol.txt are compared to those in the FITS file mgc.fits. The
angles have been recorded in the text file in radians, so they are converted to degrees here
before use. Use of thej oi n=2not 1 parameter causes the command to identify all the objectsin
the first list which do not have counterparts within 10 arcsec in the second list. The number of
such objects found is ssimply output to the terminal.

B.26 vot copy: Transforms between VOTable encodings

The VOTable standard provides for three basic encodings of the actual data within each table:
TABLEDATA, BINARY and FITS. TABLEDATA is a pure-XML encoding, which is relatively
easy for humans to read and write. However, it is verbose and not very efficient for transmission
and processing, for which reason the more compact BINARY format has been defined. FITS format
shares the advantages of BINARY, but is more likely to be used where a VOTable is providing
metadata 'decoration’ for an existing FITS table. In addition, the BINARY and FITS encodings may
carry their data either inline (as the base64-encoded text content of a STREAM element) or externally
(referenced by a STREAMelement's hr ef attribute).

These different formats have their different advantages and disadvantages. Since, to some extent,
programmers are humans too, much existing VOTable software dealsin TABLEDATA format even
though it may not be the most efficient way to proceed. Conversely, you might wish to examine the
contents of a BINARY -encoded table without use of any software more specialised than a text
editor. So there are times when it is desirable to convert from one of these encodings to another.

vot copy IS a tool which trandates between these encodings while making a minimum of other
changes to the VOTable document. The processing may result in some changes to lexical details
such as whitespace in start tags, but the element structure is not modified. Unlike t pi pe it does not
impose STIL's model of what constitutes a table on the data between reading it in and writing it out,
so subtleties dependent on the exact structure of the VOTable document will not be mangled. The
only important changes should be the contents of DATA elements in the document.

B.26.1 Usage
The usage of vot copy is

stilts <stilts-flags> votcopy charset=<xnl - encodi ng> cache=true|fal se
href=true| fal se base=<l ocati on>
[in=] <l ocati on> [out=]<location>
[f or mat =] TABLEDATA| Bl NARY| FI TS
If you don't have thestilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The available<sti | ts-fl ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

base = <l ocati on>
Determines the name of external output files written when the hr ef flag istrue. Normally these
are given names based on the name of the output file. But if this flag is given, the names will
be based on the <l ocat i on> string. Thisflag is compulsory if href istrue and out =- (output is

SUN/256 180

to standard out), since in this case there is no default base name to use.

cache = true|false
Determines whether the input tables are read into a cache prior to being written out. The
default is selected automatically depending on the input table; so you should normally leave
thisflag alone.

charset = <xml -encodi ng>
Selects the Unicode encoding used for the output XML. The available options and default are
dependent on your JVM, but the default probably corresponds to UTF-8. Use hel p=char set
for afull listing.

format = TABLEDATA| Bl NARY| FI TS
Determines the encoding format of the table data in the output document. If nul | is selected,
then the tables will be data-less (will contain no DATA element), leaving only the document
structure. Data-less tables are legal VOTable elements.

[Default: t abl edat a]

href = true|fal se
In the case of BINARY or FITS encoding, this determines whether the STREAM elements
output will contain their data inline or externaly. If set false, the output document will be
self-contained, with STREAM data inline as base64-encoded characters. If true, then for each
TABLE in the document the binary data will be written to a separate file and referenced by an
href attribute on the corresponding STREAM element. The name of these files is usually
determined by the name of the main output file; but see aso the base flag.

in = <location>
Location of the input VOTable. May be a URL, filename, or "-" to indicate standard input. The
input table may be compressed using one of the known compression formats (Unix compress,
gzip or bzip2).

[Default: -]

out = <l ocation>
L ocation of the output VOTable. May be afilename or "-" to indicate standard output.

[Default: -]

B.26.2 Examples

Normal use of vot copy is pretty straightforward. We give here a couple of examples of its input and
output.

Hereis an example VOTable document, cat . vot :

<VOTABLE>
<RESOURCE>

<TABLE nane="Aut hors">

<DATA>

<TABLEDATA>

<TR><TD>Char | es Messi er </ Th></ TR>
<TR><TD>Nar k Tayl or </ TD></ TR>

</ TABLEDATA>

</ DATA>

</ TABLE>

<RESOURCE>

<COOSYS equi nox="J2000. 0" epoch="J2000. 0" systene"eq_FK4"/>
<TABLE nane="Messier Objects">

<FI ELD nane="Identifier" datatype="char" arraysize="10"/>
<FI ELD nane="RA" dat at ype="doubl e" units="degrees"/>

SUN/256 181

<FI ELD nane="Dec" dat at ype="doubl e" units="degrees"/>
<DATA>

<TABLEDATA>

<TR> <TD>Mbl</ TD> <TD>202. 43</ TD> <TD>47.22</ TD> </ TR>
<TR> <TD>MB7</ TD> <TD>168. 63</ TD> <TD>55. 03</ TD> </ TR>
</ TABLEDATA>

</ DATA>

</ TABLE>

</ RESOURCE>

</ RESOURCE>
</ VOTABLE>

Note that it contains more structure than just a flat table: there are two TABLE elements, the
RESOURCE element of the second one being nested in the RESOURCE of the first. Processing this
document using a generic table tool such ast pi pe or t copy would lose this structure.

To convert the data encoding to BINARY format, we simply execute

stilts votcopy format=binary cat.vot
and the output is

<?xm version="1.0"7?>
<VOTABLE>
<RESQURCE>

<TABLE name=" Aut hor s" >

<FI ELD nane=" Aut hor Nane" dat at ype="char" arraysi ze="*"/>
<DATA>

<Bl NARY>

<STREAM encodi ng=' base64' >
AAAADONOYXISZXMgTW/zc 21 | cgAAAAL NYXJr | FRheWkvcg==

</ STREAM>

</ Bl NARY>

</ DATA>

</ TABLE>

<RESOURCE>

<COOSYS equi nox="J2000. 0" epoch="J2000. 0" system"eq_FK4"/>
<TABLE nane="Messi er Objects">

<FI ELD nane="Identifier" datatype="char" arraysize="10"/>
<FlI ELD nane="RA" dat at ype="doubl e" units="degrees"/>

<FI ELD nane="Dec" dat at ype="doubl e" units="degrees"/>
<DATA>

<Bl NARY>

<STREAM encodi ng=' base64' >

TTUXAAAAAAAAAEBP TcKPXC 2QEecKPXC 1x NOTc AAAAAAAAAQCUUKPXC 1xAS4PX
qlv\,p ==

</ STREAM>

</ Bl NARY>

</ DATA>

</ TABLE>

</ RESOURCE>

</ RESOQURCE>
</ VOTABLE>

Note that both tables in the document have been trandated to BINARY format. The basic structure
of the document is unchanged: the only differences are within the DATA elements. If we ran

stilts votcopy fornat=tabl edata

on either this output or the original input then the output would be identical (apart perhaps from
whitespace) to the input table, since the data are originally in TABLEDATA format.

To generate a VOTable document with the data in external files, the href parameter is used. We
will output in FITS format this time. Executing:

stilts votcopy format=fits href=true cat.vot fcat.vot

SUN/256 182

writes the following to thefilef cat . vot :

<DATA>

<FI TS>

<STREAM href="fcat-1.fits"/>
</ FITS>

</ DATA>

<DATA>
<FI TS>
<STREAM href="fcat-2.fits"/>

</FI TS>
</ DATA>

(the unchanged parts of the document have been skipped here for brevity). The actual data are
written in two additional files in the same directory as the output file, fcat-1.fits and
fcat-2.fits. These filenames are based on the main output filename, but can be altered using the
base flag if required. Note this has also given you FITS binary table versions of al the tablesin the
input VOTable document, which can be operated on by norma FITS-aware software quite
separately from the VOTable if required.

B.27 votlint: ValidatesVOTable documents

The VOTable standard, while not hugely complicated, has a number of subtleties and it's not
difficult to produce VOTable documents which violate it in various ways. In fact it's probably true
to say that most VOTable documents out there are not strictly legal. In some cases the errors are
small and a parser is likely to process the document without noticing the trouble. In other cases, the
errors are so serious that it's hard for any software to make sense of it. In many cases in between,
different software will react in different ways, in the worst case appearing to parse aVOTable but in
fact understanding the wrong data.

votlint is a program which can check a VOTable document and spot places where it does not
conform to the VOTable standard, or places which look like they may not mean what the author
intended. It is meant for use in two main scenarios:

1. For authors of VOTables and VOTable-producing software, to check that the documents they
produce are legal and problem-free.

2. For users of VOTables (including authors of VOTable-processing software) who are having
problems with one and want to know whether it is the data or the software at fault.

Validating a VOTable document against the VOTable schema or DTD of course goes a long way
towards checking a VOTable document for errors (though it's clear that many VOTable authors
don't even go this far), but it by no means does the whole job, simply because the schema/DTD
specification languages don't have the facilities to understand the data structure of a VOTable
document. For instance the VOTable schema will allow any plain text content in a TD element, but
whether this makes sense in a VOTable depends on the dat at ype attribute of the corresponding
FI ELD element. There are many other examples. votlint tackles this by parsing the VOTable
document in a way which understands its structure and assessing the content as critically as it can.
For any incorrect or questionable content it finds, it will output a short message describing the
problem and giving its location in the document. What you do with this information is then up to
you.

Using vot | i nt isvery straightforward. The vot abl e argument gives the location (filename or URL)
of a VOTable document. Otherwise, the document will be read from standard input. Error and
warning messages will be written on standard error. Each message is prefixed with the location at
which the error was found (if possible the line and column are shown, though this is dependent on

SUN/256 183

your JVM's default XML parser). The processing is SAX-based, so arbitrarily long tables can be
processed without heavy memory use.

vot | i nt can't guarantee to pick up every possible error in a VOTable document, but it ought to pick
up many of the most serious errors that are commonly made in authoring VOTabl es.

Note: votlint's handling of XML namespaces seems to be somewhat dependent on the XML
parser in use. As far as | can see, Crimson (the default in many JRES) works for any namespace
arrangements, but Xerces seems to have problems when validating documents which use
namespace prefixes. Not sure about other parsers. This probably won't cause you trouble, but if it
does you may need to set val i dat e=f al se to work around it. Contact this author if this seems to be
aseriousissue for you.

B.27.1 Usage
Theusageof votlint is

stilts <stilts-flags> votlint validate=true|false version=1.0|1.1|1.2
out =<| ocat i on>
[vot abl e=] <l ocati on>
If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -
see Section 3. The available<sti | ts-f1 ags> arelisted in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

out = <l ocation>
Destination file for output messages. May be afilename or "-" to indicate standard output.

[Default: -]

validate = true|fal se

Whether to validate the input document aganist the VOTable DTD. If true (the default), then as
well as vot I i nt's own checks, it is validated against an appropriate version of the VOTable
DTD which picks up such things as the presence of unknown elements and attributes, elements
in the wrong place, and so on. Sometimes however, particularly when XML namespaces are
involved, the validator can get confused and may produce a lot of spurious errors. Setting this
flag false prevents this validation step so that only vot I i nt 's own checks are performed. In this
case many violations of the VOTable standard concerning document structure will go
unnoticed.

[Default: t rue]

version = 1.0]1.1]1.2
Selects the version of the VOTable standard which the input table is supposed to exemplify.
Currently the version can be 1.0, 1.1 or 1.2. The version may also be specified within the
document using the "version" attribute of the document's VOTABLE element; if it is and it
conflicts with the value specified by thisflag, awarning isissued.

votabl e = <l ocation>

Location of the VOTable to be checked. This may be afilename, URL or "-" (the default), to
indicate standard input. The input may be compressed using one of the known compression
formats (Unix compress, gzip or bzip2).

[Default: -]

B.27.2 Items Checked

SUN/256 184

Votlint checks that the XML input is well-formed, and, unless the val i d=f al se parameter is
supplied, that it validates against the 1.0, 1.1 or 1.2 (as appropriate) DTD. Although VOTable 1.1
and 1.2 are properly defined against an XML Schema rather than a DTD, in conjunction with the
other checks done, the DTD validation turns out to be pretty comprehensive. Some of the DTD
validity checks are also done by vot I'i nt internally, so that some validity-type errors may giverise
to more than one warning. In general, the program errs on the side of verbosity.

In addition to these checks, the following checks are carried out, and lead to ERROR reports if
violations are found:

TD contents incompatible dat at ype/ar r aysi ze attributes declared in FI ELD

BINARY data streams which don't match metadata declared in FI ELD

PARAMVal ues incompatible with declared dat at ype/ar r aysi ze

Meaningless ar r aysi ze declarations

Array-valued TD elements with the wrong number of elements

Array-valued PARAMValues with the wrong number of elements

nr ows attribute on TABLE element different from the number of rows actualy in the table
VOTABLE ver si on attribute is unknown

ref attributes without matching | D elements elsewhere in the document

Same | D attribute value on multiple elements.

Additionally, the following conditions, which are not actually forbidden by the VOTable standard,
will generate WARNING reports. Some of these may result from harmless constructions, but it is
wise at least to take alook at the input which caused them:

* Wrong number of TD elementsin row of TABLEDATA table

* Mismatch between VOTable and FITS column metadata for FITS data encoding

* TABLE with no FI ELD elements

* Use of deprecated attributes

* FIELD or PARAM elements with datatype oOf either char or uni codeChar and undeclared
arraysi ze - thisisacommon error which can result in ignoring all but the first character in TD
elements from a column

* ref attributes which reference other elements by 1D where the reference makes no, or
guestionable sense (e.g. FI ELDr ef referencesFi ELDin adifferent table)

* Multiple sibling e ements (such as FI ELDs) with the same nane attributes

B.27.3 Examples

Here is a brief example of running vot 1 i nt against a (very short) imperfect VOTable document. If
the document looks like this:

<VOTABLE version="1.1">
<RESOURCE>
<TABLE nrows="2">
<FI ELD nane="Identifier" datatype="char"/>
<FI ELD nanme="RA" dat at ype="doubl e"/ >
<FI ELD nane="Dec" dat at ype="doubl e"/>
<DESCRI PTI ON>A very snal | tabl e</ DESCRI PTI ON\>
<DATA>
<TABLEDATA>
<TR>
<TD>Fonal haut </ TD>
<TD>344. 48</ TD>
<TD>- 29. 618</ TD>
<TD>HD 216956</ TD>
</ TR>
</ TABLEDATA>
</ DATA>
</ TABLE>
</ RESOURCE>

SUN/256 185

</ VOTABLE>
then the output of avot Ii nt runlookslikethis:

INFO (1.4): No arraysize for character, FIELD inplies single character

ERROR (I.7): Elenment "TABLE' does not all ow "DESCRI PTI ON' here.

WARNI NG (I .11): Characters after first in char scalar ignored (missing arraysize?)
WARNI NG (I .15): Wong nunber of TDs in row (expecting 3 found 4)

ERROR (I.18): Row count (1) not equal to nrows attribute (2)

Note the warning at line 11 has resulted from the same error as the one at line 4 - because the FI ELD
element has no arr aysi ze atribute, arraysi ze="1" (single character) is assumed, while the author
amost certainly intended ar r aysi ze="*" (unknown length string).

By examining these warnings you can see what needs to be done to fix this table up. Here is what it
should look like:

<VOTABLE version="1.1">
<RESOURCE>
<TABLE nrows="1"> <l-- change row count -->
<DESCRI PTI ON>A very snal | tabl e</ DESCRI PTI ON> <I-- nove DESCRI PTION -->
<FI ELD nane="Identifier" datatype="char"
arraysi ze="*"/> <l-- add arraysize -->
<FI ELD nane="RA" dat at ype="doubl e"/ >
<FI ELD nane="Dec" dat atype="doubl e"/>
<DATA>
<TABLEDATA>
<TR>
<TD>Fonal haut </ TD>
<TD>344. 48</ TD>
<TD>- 29. 618</ TD>
</ TR> <l-- renove extra TD -->
</ TABLEDATA>
</ DATA>
</ TABLE>
</ RESOURCE>
</ VOTABLE>

When fed thisversion, vot I i nt gives no warnings.

SUN/256 186

C Release Notes

Thisis STILTS, Starlink Tables Infrastructure Library Tool Set. It is a collection of non-graphical
utilites for general purpose table and VVOTable manipul ation developed by Starlink.

Author
Mark Taylor (Starlink, Bristol University)

Email
m.b.taylor@bristol.ac.uk

WWW
http://www.starlink.ac.uk/stilts/

User comments, suggestions, requests and bug reports to the above address are welcomed.

C.1 Acknowledgements

The initial development of STILTS was done under the UK's Starlink project (1980-2005, R.1.P.).
Since then it has been supported by grant PP/D002486/1 from the UK's Particle Physics and
Astronomy Research Council, the VOTech project (from EU FP6), the AstroGrid project (from
PPARC/STFC), the AIDA project (from EU FP7), and grant ST/H008470/1 from the UK's Science
and Technology Facilities Council. All of this support is gratefully acknowledged.

Apart from the excellent Java 2 Standard Edition itself, the following external libraries provide
important parts of STILTS's functionality:

JEL (GNU) for algebraic expression evaluation

PixTools (Fermilab EAG) for HEAL Pix-based celestial sphere row matching

iText (1T3XT BVBA) for PDF output

EPSGraphics2D (Jibble) for encapsulated postscript output

IVOARegistry (NVO) for IVOA registry access

GifEncoder (Acme) for GIF output

HTM (Sloan Digital Sky Survey) for HTM-based celestial sphere row matching (now
deprecated within STILTS)

Thanks in particular to Nickolai Kouropatkine and Chris Stoughton of Fermilab for writing the
PixTools specialy for usein STIL.

Many people have contributed ideas and advice to the development of STILTS and its related
products. | can't list all of them here, but my thanks are especially due to the following:

e Malcolm Currie (Starlink, RAL)
* Clive Davenhall (Royal Observatory Edinburgh)
* Peter Draper (Starlink, Durham)

* David Giaretta (Starlink, RAL)

* Clive Page (AstroGrid, Leicester)

C.2Version History

Releases to date have been as follows;

Version 0.1b (29 April 2005)
First public release

Version 0.2b (30 June 2005)

* Added Times func class for MJD-1S0O8601 time conversions.
» Fixed bug when doing NULL _ test expressions on first column in table.

SUN/256 187

Version 1.0b (30 September 2005)
This is the first non-experimental release of STILTS, and it incorporates maor changes and
backward incompatibilities since version 0.2b.

Parameter system

The parameter system has undergone a complete rewrite; there is now only a single
command "stilts", invoked using the stilts script or thestilts.jar jar file, and the
various tasks are named as subsequent arguments on the command line. Command
arguments are supplied after that. The new invocation syntax is described in detail
elsewhere in this document. As well as invocation features such asimproved on-line help,
optional prompting, parameter defaulting, and more uniform access to common features,
this will make it more straightforward to wrap these tasks for use in non-command-line
environments, such as behind a SOAP or CORBA interface, or in a CEA-like execution
environment.

Crossmatching
A new command t mat ch2 has been introduced. This provides flexible and efficient
crossmatching between two input tables. Future releases will provide commands for
intra-table and multi-table matching.

Concatentation
A new command t cat has been introduced, which allows two tables to be glued together
top-to-bottom. This is currently working but very rudimentary - improvements will be
forthcoming in future rel eases.

Calculator
A new utility command cal ¢ has been introduced, which performs one-line expression
evaluations from the command line.

Pipelinefilters
The following new filter commands for use in tpi pe and other commands have been
introduced:

* addskycoords: calculates new celestial coordinate pair from existing ones (FK4,
FK?5, ecliptic, galactic, supergalactic)

repl acecol : replaces column data, using existing metadata

badval : replaces given 'magic' value with null

repl aceval : replaces given 'magic’ value with any specified value

t abl ename: edits table name

expl odecol s and expl odecol s commands replace expl ode

The new st ream parameter of t pi pe now allows you to write filter commands in an
external file, to facilitate more manageable command lines.

Wildarding for column specification is now alowed for some filter commands.
Algebraic functions

* New functions for converting time values between different coordinate systems
(Modified Julian Date, | SO-8601, Julian Epoch and Besselian Epoch).
* New RANDOM special function.

Documentation
SUN/256 has undergone many changes. Much of the tool documentation is now
automatically generated from the code itself, which goes along way to ensuring that the
documentation is correct with respect to the current state of the code.

Version 1.0-1b (7 October 2005)
Fixed jar file manifest bug which prevented working on Java 1.5

SUN/256 188

Version 1.1 (10 May 2006)
A number of new features and capabilities have been introduced:

t cube Command
The new tcube (Appendix B.17) command calculates N-dimensional histograms (density
maps) from N columns of an input table and writes the result to a FITSfile.

Processing Filters
The following new filters have been added:

» stats filter provides the same information as the old st at s output mode, but alows
much more flexible use of the results. It can also calculate many new quantities,
including quantiles, skew and kurtosis.

* neta filter provides the same information as the old met a output mode, but alows
much more flexible use of the results.

» assert filter providesin-pipeline logical assertions.

* uni q filter collapses multiple adjacent identical or similar rows.

* sorthead filter provides a (usually) more efficient method of doing what you could
previously do by combining sort and head filters.

* col net a filter adds/modifies metadata for selected columns.

* check filter checkstable in stream - for debugging purposes only.

Additionally usage of the sort filter has been changed so that it can now do everything
that sort expr used to be able to do; sort expr isnhow withdrawn.

Output Modes
The following new output modes have been introduced:

* plasti c mode broadcasts the table to one or al registered PLASTIC listeners.

* cgi mode writesthe table to standard output in aform suitable for output from a CGI
script.

* di scar d mode throws away the table.

and usage of the following has been modified:

* topcat mode now attempts to use PLASTIC (amongst other methods) to contact
TOPCAT.

 stats and meta modes are mildly deprecated in favour of the corresponding new
filters (see above).

Other new features

* New IPAC table format input handler added.

* New csv-noheader format variant output handler added.

* roundDeci mal and f or mat Deci mal functions introduced for more control over visual
appearance of numeric values.

» Experimenta facilities for automatically generating a CEA application description
file.

Bug fixes and minor improvements

* Now copeswith 'K'-format FITS binary table columns (64-bit integers).

* Improved, though still imperfect, retention of table-wide metadatain VOTables.

» Distinctions between null and false values in boolean columns are handled more
carefully for FITSand VOTable files.

o Efficiency improvement when writing FITS-plus format (now only requires a
maximum of two passes rather than three of the input rows).

* Added the mar k. wor kar ound System property which can optionally work around a
bug in some input streams (" Resetting to invalid mark™ errors).

» Fixed abug in Cartesian matching which failed to match if the required error in any

SUN/256 189

dimension was zero.

» Fixed erroneous reports about unknown ucd and ut ype attributes of TABLE element
INvotlint.

* When joining tables, column name comparison to determine whether deduplication
isrequired is now case-insensitive.

» Error message improved when no automatic format detection is attempted for
streamed tables.

o Settingi streanrt rue isnow lesslikely to cause a"Can't re-read stream" error.

Version 1.2 (7 July 2006)

Column-oriented Storage
New features for permitting column-oriented storage (colfits format, new
startabl e. storage policy "sideways") have been introduced. These can provide
considerable efficiency improvements for certain tasks when working with very large
(and especially wide) tables.

New VO commands
Added two new commands for querying Virtual Observatory services:

* nmulticone - Makes multiple cone search queries to the same service
* regquery - Queriesthe VO registry

These tasks are experimental and may be modified or renamed in future rel eases.
Other items

* transpose filter added.
* Added flux conversion functions (Jansky<->magnitude).
» 1S0-8601 strings now permit times of 24:00:00 as they should.

Version 1.2-1 (3 August 2006)

Tab-Separated Table (TST) format now supported for reading and writing.

New set par amand cl ear par ans filters.

Added ICRS coordinate system for addskycoor ds.

TUCDNNn header cards now used in FITS files to transmit UCDs (non-standard
mechanism).

» Efficiency improvements for column-oriented access.

Version 1.3 (5 October 2006)

Table Concatenation
The old t cat command has been replaced by more capable t cat and t cat n commands.
Between them these provide concatenation of an unlimited number of homogeneous or
heterogeneous input tables. Additional columns may be added to indicate which of the
input tables given output rows originated from.

Parameter value indirection
Certain parameters (in in tcat, cmd and friends) may now be specified in the form
"@filename". This indicates that the value for the parameter is to be obtained by reading
it from the named file. Thisis useful if avery long value is required for the parameter in
guestion. The scri pt parameter of t pi pe has therefore been withdrawn, since it did just
the same thing.

MySpace access
Direct access to the MySpace virtua file system is now provided by use of ivo: - or
nyspace: -type URLS.

Conversion functions

SUN/256

190

» Time conversion functions between MJD and Decimal Year have been added
(Section 9.5.1).
* toHex andfronmHex numeric conversion functions have been added (Section 9.5.3).

Documentation improvements

e The HTML version of SUN/256 now uses CSS to provide better highlighting of
conmmands €fC.

* The Output Modes and Processing Filter sections are now split into subsections to
make the table of contents clearer.

* The Command Reference section now has only one level of subsection listed in the
table of contents to make it clearer.

Other new features and improvements

Added - J flagtosti | t s script for passing flags directly to Java.

Added new out parameter tovot lint.

Added -i f ndi mand - i f shape flags to explodeal filter.

The exact match mode int mat ch2 now copes with array-valued columns.

Added force parameter to nulticone task as a workaround for some broken

services.

* Added Sample (as opposed to Population) Standard Deviation/Variance calculation
optionsto the st at s filter.

» Improved CEA description file output - now contains details of all tasks rather than

just afew, aswell as various improvements in documentation etc.

Bug fixes

» Fixed erroneous complaints from votIint about utype attribute on RESOURCE
elements.
» Fixed acouple of minor crossmatching bugs (which wouldn't have affected results).

Version 1.3-1 (Starlink Hokulei release)

New command t j oi n introduced.

Output to MySpace can now be streamed, if running under J2SE1.5 or later.

Slight changes to parametersfor vot | i nt and vot copy.

Fixed bug in handling of single quotes in FITS file metadata.

Added - bench flag to sti | t s command.

Various scalability improvements for use with very large (Tb?) files.

Improved efficiency for t ext and ascii output formats (now one-pass not two-pass).
Improved CEA app-description file, including especially option lists for things like input
and output formats.

Added README.ceafile to distribution.

Fixed problem which could mis-report VOTable out of memory errors as Broken Pipe.
Added Vega<->AB magnitude conversion constants to Fluxes functions.

Added dupt ag parameters to tmatch2 task for customised renaming of columns with
duplicated names.

Added hyperbalic trig functions to Maths class (si nh, cosh, t anh and inverses).

Added cosmology distance calculations in class Distances.

Added f uncs task, a browser for expression language function documentation.

Added - checkversiontolist of stilts flags.

Version 1.3-2 (6 July 2007)

Added optional t abl e parameter to cal c command (for access to table parameters).
Can use table parameter names in expressions using par ant notation (Section 9.2).

SUN/256 191

* Can reference columns/parameters by UCD by using ucd$ notation in expressions
(Section 9.1) and as column identifiers (Section 6.2).

* Improved deduplication of column names when joining tables.

* Fix eror in output of FITS table TNULL n header cards - write them as numeric not string
values.

* Improve error message for broken CSV files.

* Moaodified JDBC handling so that MySQL and PostgreSQL do not run out of heap memory

when streaming large datasets for input. Think I've done the same for SQL Server, but

thisis not tested.

Improve error reporting in the presence of adeficient VM (such as GNU gcj).

Add locale-specific f or mat Deci mal Local functionsin class Formats.

Add f | uxToLumi nosi ty and | uni nosi t yToFl ux functionsin class Fluxes.

Fix bug which was causing NullPointerExceptionsin thet r anspose filter.

Version 1.3-3 (4 Sep 2007)

* Experimental, and currently undocumented, sql cone task introduced, along with some
classes in package uk. ac. starlink.ttool s. cone designed for library use by AstroGrid
DSA code.

» CEA description of t mat ch2 parans parameter now has ni noccur s=0, since that can be
true for exact matches,

Version 1.3-4 (10 Sep 2007)
* Fixed VotCopy bug.

Version 1.3-5 (30 Oct 2007)

Added - st dout and - stderr flagstostilts command.

Some bugs fixed in generation of CEA app- descri ption. xm file.
Documentation provided for sql cone command.

Fixed error in f | uxToLumi nosi ty function.

Version 1.4 (6 December 2007)

Tablejoins
This version provides more cross matching functionality. Added to the existing t mat ch2
command are new tasks:

* tskymatch2: stripped down version of t mat ch2 for ease of use when matching with
sky coordinates.

* tmatchl: internal matcher, finds groups of objects within atable.

* tmat chn: finds group or multiple-pair matches between multiple (>2) tables.

Two tasks have been renamed for improved clarity and consistency:

* nul ticone iSnow named coneskymat ch
* sql cone iISnow named sql skynmat ch

There has also been some enhancement and rationalisation of parameters for al table join
tools (t mat ch* aswell astj oi n, coneskymat ch and sql skynmat ch):

» All table join commands now use similar fi xcol s and suf fi x* parameters to control
renaming of duplicated columns in output tables (note this replaces the old dupt ag*
parametersint mat ch2).

» Crossmatching tasks have a new pr ogr ess parameter which alows you to configure
whether progressis reported to the console.

e The copycol s parameter of coneskymatch and sql skymat ch now defaults to
(include al columns from input table in the output).

nen

SUN/256

192

Section 7 of the manual has been somewhat rearranged and improved.

Other enhancements

FITS reader now imports table HDU header cards as table parameters.
CeaWriter can now output CEA service definition XML config file as well as
app-description file (experimental - may be withdrawn).

Bug fixes

Embedded spaces in output ASCII format table column names are now substituted
with underscores.

Fix a bug which caused an infinite number of dots to be printed when attempting a
crossmatch with an empty input table.

Corrected votlint handling of TABLEDATA-type multi-dimensional
char /uni codeChar arrays. These are now split up into strings by counting characters
rather than using whitespace delimiters. | think it's doing the right thing now.

Version 1.4-1 (28 January 2008)
New RDBM S-related features

New command sql client, which is a general JDBC-based SQL command-line
client.

New command sqgl updat e, which alows updates to existing rows in SQL tables.
Some changestot osgl output mode:

» choice of options for how to write to the database output table, controlled by
new associated parameter wri t e (Can becr eat e, dr opcr eat e Or append)

* associated parameter newt abl e renamed dbt abl e

* associated parameter dat abase renamed db for consistency with other
commands

L ocal and service-based matching command enhancements

New parameter scorecol added to tmatch2, coneskymatch and sql skymatch
commands, which controls adding a new column to match output tables containing a
goodness-of-match value.

New parameter paral | el added to coneskymat ch task which allows multiple cone
searches to be carried out in parallel.

New parameter erract added to coneskymat ch which controls response to isolated
failuresin individual cone search queries.

General improvements

Improved error reporting (reasons for errors are now reported even without the
- debug flag).

Add new help option hel p=' *' which prints help for all parameters of atask at once.
Added (mostly undocumented) +ver bose flag for reducing verbosity level.

Minor improvements to CEA app-description.

Downgraded from WARNING to INFO log messages about the (extremely
common) VOTable syntax error of omitting a FIELD/PARAM element's dat at ype
attribute.

Version 1.4-2 (26 March 2008)
Minor enhancements;

SUN/256 193

* Addprogress parameter to t mat chn.
* Add enpt yok parameter to coneskynat ch.

Bugfixes:

» Fixed pair matching performance bug (slower if tables were not given in the right
order) introduced at v1.4.

Fixed null handling error in cal c task.

Fixed error in st at s filter cardinality value calculation.

Fixed minor bugsin suffix addition for matching commandsf i xcol s.

Removed unformatted XML output in st at s filter usage message.

Try to avoid exponential format in cone search URLS (some endpoints seem to
require fixed point format).

* Minor CEA fixes.

Version 2.0b (23 October 2008)
This version contains two new major items, plotting and server mode. Both work, but are
missing desirable features and have not had extensive testing in the field, so should be
considered experimental at this stage.

Plotting
Two table plotting commands are now provided:

e plot2d: 2D Scatter Plot
e plot3d: 3D Scatter Plot
* plothist: Histogram

See also the new Plotting (Section 8) section in the manual.

Server/Servlet Mode
A new command ser ver is provided which allows STILTS commands to be executed via
HTTP. One purpose of this is to facilitate server-side use of the plotting commands
co-located with data to generate on-the-fly graphical summaries of server-held datasets.

Smaller enhancements and bugfixes

» Efficiency improvements (~25%7? in both CPU time and memory usage) for
HEAL Pix-based sky crossmatching (thanks to Nikolay Kouropatkine at Fermilab for
anew version of the PixTools library).

* New class Arrays added to algebraic functions.

* New Appendix Commands by Category (Appendix A) added to manual.

* Add ninReal and maxReal functions (max/min ignoring blank values) in class
Arithmetic.

» Sexagesimal field identification for ASCII input files is less stringent (now permits
minutes or seconds equal to 60).

* Minor CEA fixes.

* HEALPIx bug fix (PixTools bug fix update).

 Fixbuginuseoftcat'sl occol parameter.

Version 2.0-1 (23 December 2008)

* Can reference columns/parameters by Utype by using utype$ notation in expressions
(Section 9.1) and as column identifiers (Section 6.2).

* Non-alphanumeric column names may now be used for algebraic expressions in the
special case that the expression isjust the value of a single column.

* regquery command has changed in implementation, data access, and output format. It
now queries VOResourcel.O registries rather than the very out of date registry protocol
which was used in earlier versions.

SUN/256 194

Version 2.0-2 (9 January 2009)

Added new samp output mode which passes the generated table to clients using the
SAMP protocol.

Updated the topcat output mode to use SAMP as one way of communicating with a
running TOPCAT.

-ver si on flag now reports starjava subversion revision as well as other items.

Version 2.0-3 (27 March 2009)

FitsBINTABLE TZERO/TSCAL value reading improvements:

» Columns with integer TZERO values now read as integers rather than floating point
values where possible. This includes unsigned longs ('K"), which were previously
represented as doubles with lost precision. Unsigned longs which are too large
however (>263) areread asnulls.

* Byte-valued columns can now be written out by fits-basic output handler as

signed byte values (TFORM=B,TZERO=-128) rather than signed shorts

(TFORM=1).

More comprehensive testing.

Fixed bug in calculating value scaled double ('D") values.

Fixed bug in typing value for scaled float ('E’) arrays.

Fixed bug which caused registry queries (r egquer y) to fail for Java 1.6.

Fix minor bugs in detail of vot I i nt 's validation tests (VOTABLE element content model,
INFO and PARAM and FIELD required attributes).

Report application name and version in User-Agent header of outgoing HT TP requests.
The fixed length Substring Array Convention for string arrays (TFORVhn=r Aw) iS NOwW
understood for FITS binary tables.

Minor SAMP bugs fixed (JSAMP upgraded to 0.3-1).

Version 2.0-4 (17 July 2009)

Work around J2SE mark/reset bug when loading table direct from URL.

Produce null rather than nonsense results from sky coordinate conversions with
unphysical latitudes (addskycoor ds filter).

Produce null rather than questionable results from sexagesmal conversions with
mins/secs out of range.

Fix two bugsin vot copy: XML processing instructions garbled on output, and pathnames
in base parameters inappropriately flattened in hrefs attribute values.

Version 2.0-5 (2 Oct 2009)

VOTable 1.2 supported.

vot i nt can now validate VOTable documents following the (provisional, 2009-09-29
PR) VOTable 1.2 standard.

Namespacing of VOTable documents made more intelligent, and configurable using the
vot abl e. namespaci ng System property.

vot I i nt now checks that the correct XML namespaces arein use.

Be more careful in XML, including VOTable, output; fix VOTable output encoding to be
UTF-8, and ensure no illegal XML characters are written.

HTML table output isnow HTML 4.01 by default (includes THEAD and TBODY tags).
parse* string->numeric conversion functions now cope with leading or trailing
whitespace.

Work around illegally truncated type declarationsin IPAC tables.

Fix a bug which caused the first table in a multi-table file (FITS or VOTable) to be used
in streaming mode, even if a subsequent one was requested.

Bug fixed in crossmatching output: entries which should have been null were sometimes

SUN/256 195

written as non-null (typically large negative numbers) in FITS and in non-TABLEDATA
VOTable output. This affected cells in otherwise non-nullable columns where the entire
row was absent. The previous behaviour is not likely to have been mistaken for genuine
results.

Version 2.1 (6 November 2009)

coneskymat ch can now match using SIA and SSA services as alternatives to Cone Search
ones (seeits new ser vi cet ype parameter).

Fixed an obscure bug which could under rare circumstances cause truncation of strings
with leading/trailing whitespace read from text-format files.

A new startabl e.storage policy "adaptive"” is now the default. This should mean
running out of memory less often. The old behaviour can be restored by giving the new
-memor y command line flag.

Note that the STIL API used by this release has changed in some backwardly incompatible
ways, and may change further. If you're using STILTS as a library rather than an application
you might want to wait for alater release when the API has settled down.

Version 2.1-1 (21 December 2009)

Plotting commands can now output to PDF as well as existing graphics formats.

New filter fi xcol nanes.

Fixed internationalisation bug which could cause coneskymat ch to fail in locales that use
"," for adecimal point.

Significant performance improvements related to the case of VOTable documents
containing many tables.

Version 2.1-2 (24 March 2010)

JyStilts introduced. This is a jython (i.e. Python, though not CPython) interface to the
STILTS commands. It is believed to be fully working, but somewhat experimenta -
feedback is encouraged.

Considerable performance and scalability improvements to the crossmatching commands
(tmatchl, tmatch2, tmatchn and tskymatch2). For several common regimes, using
default settings, memory use has been decreased by a factor of about 5, and CPU time
reduced by afactor of about 3.

Add optional tuning parameters to crossmatch commands (parameter t uni ng for t mat ch1,
t mat ch2 and t mat chn, and parameter heal pi xk for t skymat ch2). Experimentation with
these can lead to significant performance improvements for given matches.

Fixed a crossmatch bug; it was giving a possibility of suboptimal "fi nd=best " match
assignments when pair matching in crowded fields. Crossmatch results thus may differ
between earlier versions and this one. Both are reasonable, but the newer behaviour is
more correct. In non-crowded fields, there should be no change.

Further performance improvement for V OTable documents with very many TABLEs.
Memory management adjusted further - default (Adaptive) storage policy now uses direct
alocation (=mal 1 oc()) for intermediate-sized buffers to avoid running out of java heap
Space.

New option "fi nd=each" for coneskymat ch and sql skymat ch commands. This alows
you to get an output table with exactly one row for each row of the input table.

New flag - mrengui to monitor memory usage during runs.

Add new filter r owr ange.

Add new functions to Arrays. array functions for constructing arrays, and new
aggregating functions nedi an and quantii | e.

Syntax of the crossmatching commands' pr ogr ess parameter has changed; it now has an
additional option which will write limited profiling information as well as logging as the
match progresses.

Addyl abel parameter to pl ot hi st command.

SUN/256 196

The random and sequential filters have been renamed randomview and seqview
respectively. This provides a better idea of what they do. Since they are only useful for
debugging, it isunlikely that thiswill break anyone's existing code.

New filter r andomintroduced which converts tables to random-access if necessary.
Document previously undocumented | egend parameter to plotting commands.

Matching commands mat cher parameters can now accept classnames of Mat chEngi ne
Implementation classes as an option.

Classes are now distributed as a zip of jars (stilts_jars.zi p) as an aternative to the
monolithic jar file (stilts.jar). This may be more appropriate for those using STILTS
classesin aframework that contains other third party class libraries.

Adjusted the way that data types are read from JDBC databases. Date, Time and
Timestamp typed columns will now be converted to Strings which means they can be
written to most output formats (previously they were omitted from output tables).

STILTS no longer attempts to communicate with TOPCAT using SOAP. TOPCAT's
SOAP interface has been deprecated since v2.1 (2006), so thisisn't likely to cause trouble,
and it permits removal of SOAP (Axis) classes from the application jar file, saving
several megabytes and reducing potential version clash problems.

Fix bug in code for handling very large mapped FITS files. This was causing fatal read
errors in some cases.

Version 2.2 (6 August 2010)
New capabilities for multi-table 1/0 have been introduced:

New multi-table output tasks tmul ti and tmul tin. These currently just copy multiple
input tables to a single multi-table container file (eg. Multi-Extension FITS or
multi-TABLE VOTable). Future releases may generalise the output of multi-table
processing.

New nul ti parameter introduced for tcat and tnulti tasks to pick up all tables in a
multi-table container file.

New JyStilts functionst reads and t wri t es for multi-table 1/0.

There are some additional enhancements:

Added experimental name-resolution filter addr esol ve; this currently uses Sesame.
Added filter r epeat , which repeats table rows a given number of times.

And a number of bug fixes:

Recognise unofficial column type "I ong” in IPAC format tables.

Better behaviour (warn + failover) when attempting to read large files on 32-bit OS or
VM.

Efficiency warning now issued for large compressed FITSfiles.

Upgraded PixTools HEALPix library to 2010/02/09 version. This fixes a bug that could
theoretically cause deficient crossmatch results, though | haven't managed to produce
such errors.

Fixed bug in TST table output.

Fixed bug in FITS-plus metadata output (table parameters were getting lost).

Corrected literature references in Fluxes conversion class documentation (thanks to
Mattia V accari).

Fixed bug in CSV file parsing that could ignore header row in absence of non-numeric
columns.

Shape and ElSize metadata items now correctly reported by net a filter.

Fixed JyStilts bug when supplying an empty string for a parameter value.

Finally, from this release STILTS requires version 1.5 (ak.a. 5.0) of the Java J2SE Runtime
Environment; it will no longer run on version 1.4, which is now very old. | don't expect this to
cause compatibility issues for anyone, but I'm interested to hear if that's not the case.

Version 2.2-1 (23 December 2010)

SUN/256 197

» Storage management improvements; removed restriction on large (>2Gb) non-FITS
datasets in some circumstances.

» Efficiency improvement in sequential mapped accessto large FITSfiles.

* Fix so FITS tables >2Gb can provide random access in 32-bit mode (though slower than
64-bit).

* FHITSfilesnow store table namesin EXTNAME (and possibly EXTVAR) header cards.

* Window placement for the few GUI tasks should now behave a bit more like platform
norms, rather than sitting in the top left hand corner.

* HTML table output now writes cell contents which look like URLsin HTML <A> tags.

» Basicauthorization (htt p: // user : pass@ost / pat h) on table URLs handled.

» Fixedfile pointer int overflow bug in FITS MultiMappedFiles.

Version 2.3 (9 May 2011)

TAP
The new commands tapquery and tapresune have been introduced. These provide
support for the Table Access Protocol (TAP), and alow freeform queriesin an SQL-like
language to be made to remote databases.

Minor enhancements

Random Groups HDUSs are now tolerated, though not interpreted, within FITSfiles.
Added soapout parameter to r egquery command.

Added count , vari ance and st dev functionsto Arrays.

Upgrade to SSAMP v1.2.

Improve text rendering in f uncs window display.

Attempt case-sensitive matching before case-insensitive for column names.

Fix repl aceval filter to work with Infinities.

Bug fixes and wor karounds

» JDBC tableinput handler now effectively downcasts Biglnteger/BigDecimal typesto
Long/Double. The PostgreSQL JDBC driver seems to use the Big* types routinely
for numeric values (which | don't think it used to do).

* Add workaround for J2SE bug #4795134, which could cause errors when reading
compressed FITSfiles.

* Fix FITS character handling bug which could cause corrupted FITS files on output in
presence of non-ASCII characters.

* Fix (some) JDBC connection leaks.

* Add missing parameters dashNS and | i newi dt hNS to pl ot 2d task.

