
STILTS - Starlink Tables Infrastructure Library Tool Set

Version 2.5-3

Starlink User Note256
Mark Taylor
4 July 2014

Abstract

STILTS is a set of command-line tools for processing tabular data. It has been designed for, but is
not restricted to, use on astronomical data such as source catalogues. It contains both generic
(format-independent) table processing tools and tools for processing VOTable documents. Facilities
offered include crossmatching, format conversion, format validation, column calculation and
rearrangement, row selection, sorting, plotting, statistical calculations and metadata display.
Calculations on cell data can be performed using a powerful and extensible expression language.

The package is written in pure Java and based on STIL, the Starlink Tables Infrastructure Library.
This gives it high portability, support for many data formats (including FITS, VOTable, text-based
formats and SQL databases), extensibility and scalability. Where possible the tools are written to
accept streamed data so the size of tables which can be processed is not limited by available
memory. As well as the tutorial and reference information in this document, detailed on-line help is
available from the tools themselves.

STILTS is available under the GNU General Public Licence.

Contents
Abstract... 1
1 Introduction.. 6
2 The stilts command... 8
2.1 Stilts flags.. 8
2.2 Task Names... 9

2.3 Task Arguments.. 10
2.4 Getting Help.. 11
3 Invocation.. 13
3.1 Class Path.. 14
3.2 Java Flags.. 14
3.3 System Properties.. 15
3.4 JDBC Configuration.. 16
4 JyStilts - STILTS from Python... 18
4.1 Running JyStilts.. 19
4.2 Table I/O... 20
4.3 Table objects... 21
4.4 Table filter commands (cmd_*)... 23
4.5 Table output modes (mode_*).. 24
4.6 Tasks.. 24
4.7 Calculation Functions.. 25
5 Table I/O.. 26
5.1 Table Locations... 26
5.2 Table Formats.. 27
5.2.1 Input Formats... 27
5.2.2 Output Formats... 28
6 Table Pipelines.. 30
6.1 Processing Filters.. 30
6.1.1 addcol .. 31
6.1.2 addpixsample ...31
6.1.3 addresolve ...32
6.1.4 addskycoords ...32
6.1.5 assert .. 33
6.1.6 badval .. 33
6.1.7 cache .. 33
6.1.8 check .. 33
6.1.9 clearparams ...34
6.1.10 colmeta .. 34
6.1.11 delcols .. 34
6.1.12 every .. 34
6.1.13 explodeall ...34
6.1.14 explodecols ...35
6.1.15 fixcolnames ...35
6.1.16 head .. 35
6.1.17 keepcols ...35
6.1.18 meta .. 36
6.1.19 progress ...36
6.1.20 random .. 36
6.1.21 randomview ...37
6.1.22 repeat .. 37
6.1.23 replacecol ...37
6.1.24 replaceval ...37
6.1.25 rowrange ...37
6.1.26 select .. 38
6.1.27 seqview .. 38
6.1.28 setparam ...38
6.1.29 sort .. 38
6.1.30 sorthead ...38
6.1.31 stats .. 39
6.1.32 tablename ...40
6.1.33 tail .. 40

6.1.34 transpose ...40
6.1.35 uniq .. 40
6.2 Specifying a Single Column.. 41
6.3 Specifying a List of Columns.. 41
6.4 Output Modes.. 42
6.4.1 cgi .. 42
6.4.2 count .. 42
6.4.3 discard .. 43
6.4.4 meta .. 43
6.4.5 out .. 43
6.4.6 plastic .. 43
6.4.7 samp .. 44
6.4.8 stats .. 44
6.4.9 topcat .. 45
6.4.10 tosql .. 45
7 Crossmatching.. 47
7.1 Match Criteria... 47
7.1.1 sky: Sky Matching... 48
7.1.2 skyerr: Sky Matching with Per-Object Errors.. 49
7.1.3 skyellipse: Sky Matching of Elliptical Regions.. 50
7.1.4 sky3d: Spherical Polar Matching... 50
7.1.5 exact: Exact Matching... 51
7.1.6 1d, 2d, ...: Isotropic Cartesian Matching.. 51
7.1.7 2d_anisotropic, ...: Anisotropic Cartesian Matching... 52
7.1.8 2d_cuboid, ...: Cuboid Cartesian Matching... 52
7.1.9 1d_err, 2d_err, ...: Cartesian Matching with Per-Object Errors... 53
7.1.10 2d_ellipse: Cartesian Matching of Elliptical Regions... 54
7.1.11 Custom Matchers.. 54
7.1.12 Matcher Combinations... 54
7.2 Multi-Object Matches... 55
8 Plotting... 56
8.1 Parameter Suffixes.. 56
8.2 Output Modes.. 58
8.2.1 swing .. 58
8.2.2 out .. 58
8.2.3 cgi .. 58
8.2.4 discard .. 59
8.2.5 auto .. 59
8.3 Output Formats.. 59
8.4 Comparison with TOPCAT plotting... 60
9 Algebraic Expression Syntax... 61
9.1 Referencing Column Values... 61
9.2 Referencing Parameter Values.. 62
9.3 Null Values.. 63
9.4 Operators... 63
9.5 Functions... 64
9.5.1 Tilings... 64
9.5.2 Arithmetic... 65
9.5.3 Conversions.. 67
9.5.4 Distances.. 69
9.5.5 KCorrections.. 71
9.5.6 Times.. 75
9.5.7 TrigDegrees.. 77
9.5.8 Maths.. 78
9.5.9 Arrays... 81

9.5.10 Fluxes... 83
9.5.11 Strings... 86
9.5.12 Formats... 89
9.5.13 CoordsRadians... 89
9.5.14 Coverage... 92
9.5.15 CoordsDegrees... 93
9.6 Examples... 94
9.7 Advanced Topics... 96
9.7.1 Expression evaluation.. 96
9.7.2 Instance Methods.. 96
9.7.3 Adding User-Defined Functions.. 97
Appendix A: Commands By Category.. 98
Appendix B: Command Reference.. 100
B.1 calc: Evaluates expressions... 100
B.2 cdsskymatch: Crossmatches table on sky position against VizieR/SIMBAD table......... 101
B.3 coneskymatch: Crossmatches table on sky position against remote cone service............ 105
B.4 funcs: Browses functions used by algebraic expression language................................... 113
B.5 pixfoot: Generates Multi-Order Coverage maps... 113
B.6 pixsample: Samples from a HEALPix pixel data file.. 115
B.7 plot2d: 2D Scatter Plot... 119
B.8 plot3d: 3D Scatter Plot... 127
B.9 plothist: Histogram... 136
B.10 regquery: Queries the VO registry.. 142
B.11 server: Runs an HTTP server to perform STILTS commands..................................... 144
B.12 sqlclient: Executes SQL statements.. 147
B.13 sqlskymatch: Crossmatches table on sky position against SQL table............................ 149
B.14 sqlupdate: Updates values in an SQL table... 154
B.15 taplint: Tests TAP services.. 156
B.16 tapquery: Queries a Table Access Protocol server.. 158
B.17 tapresume: Resumes a previous query to a Table Access Protocol server..................... 162
B.18 tcat: Concatenates multiple similar tables.. 164
B.19 tcatn: Concatenates multiple tables... 168
B.20 tcopy: Converts between table formats.. 172
B.21 tcube: Calculates N-dimensional histograms... 173
B.22 tloop: Generates a single-column table from a loop variable.. 176
B.23 tjoin: Joins multiple tables side-to-side... 178
B.24 tmatch1: Performs a crossmatch internal to a single table... 180
B.25 tmatch2: Crossmatches 2 tables using flexible criteria.. 184
B.26 tmatchn: Crossmatches multiple tables using flexible criteria....................................... 190
B.27 tmulti: Writes multiple tables to a single container file... 195
B.28 tmultin: Writes multiple processed tables to single container file................................. 197
B.29 tpipe: Performs pipeline processing on a table... 199
B.30 tskymatch2: Crossmatches 2 tables on sky position... 204
B.31 votcopy: Transforms between VOTable encodings... 208
B.32 votlint: Validates VOTable documents.. 211
Appendix C: Release Notes... 215
C.1 Acknowledgements... 215
C.2 Version History... 216

SUN/256 5

1 Introduction

STILTS provides a number of command-line applications which can be used for manipulating
tabular data. Conceptually it sits between, and uses many of the same classes as, the packages STIL,
which is a set of Java APIs providing table-related functionality, and TOPCAT, which is a graphical
application providing the user with an interactive platform for exploring one or more tables. This
document is mostly self-contained - it covers some of the same ground as the STIL and TOPCAT
user documents (SUN/252 and SUN/253 respectively).

Currently, this package consists of commands in the following categories:

Generic table manipulation
tcopy, tpipe, tmulti, tmultin, tcat, tcatn, tloop, tjoin and tcube (see Section 6).

Crossmatching
tmatch1, tmatch2, tmatchn and tskymatch2 (see Section 7).

Plotting
plot2d, plot3d and plothist (see Section 8).

Sky Pixel Operations
pixfoot and pixsample.

VOTable
votcopy and votlint.

Virtual Observatory access
cdsskymatch, coneskymatch, tapquery tapresume taplint and regquery.

SQL databases
sqlclient, sqlupdate and sqlskymatch.

Miscellaneous
calc (Appendix B.1), funcs (Appendix B.4) and server (Appendix B.11).

See Appendix A for an expanded version of this list.

There are many ways you might want to use these tools; here are a few possibilities:

In conjunction with TOPCAT
you can identify a set of processing steps using TOPCAT's interactive graphical facilities, and
construct a script using the commands provided here which can perform the same steps on
many similar tables without further user intervention.

Format conversion
If you have a separate table processing engine and you want to be able to output the results in a
somewhat different form, for instance converting it from FITS to VOTable or from
TABLEDATA-encoded to BINARY-encoded VOTable, or to perform some more
scientifically substantial operation such as changing units or coordinate systems, substituting
bad values etc, you can pass the results through one of the tools here. Since on the whole
operation is streaming, such conversion can easily and efficiently be done on the fly.

Server-side operations
The tools provided here are suitable for use on servers, either to generate files as part of a web
service (perhaps along the lines of the Format conversion item above) or as configurable
components in a server-based workflow system. The server command may help, but is not
required, for use in these situations.

Quick look
You might want to examine the metadata, or a few rows, or a statistical summary of a table
without having to load the whole thing into TOPCAT or some other table viewer application.

SUN/256 6

SUN/256 7

2 The stilts command

All the functions available in this package can be used from a single command, which is usually
referred to in this document simply as "stilts". Depending on how you have installed the package,
you may just type "stilts", or something like

java -jar some/path/stilts.jar

or

java -classpath topcat-lite.jar uk.ac.starlink.ttools.Stilts

or something else - this is covered in detail in Section 3.

In general, the form of a command is

stilts <stilts-flags> <task-name> <task-args>

The forms of the parts of this command are described in the following subsections, and details of
each of the available tasks along with their arguments are listed in the command reference
(Appendix B) at the end of this document. Some of the commands are highly configurable and have
a variety of parameters to define their operation. In many cases however, it's not complicated to use
them. For instance, to convert the data in a FITS table to VOTable format you might write:

stilts tcopy cat.fits cat.vot

2.1 Stilts flags

Some flags are common to all the tasks in the STILTS package, and these are specified after the
stilts invocation itself and before the task name. They generally have the same effect regardless
of which task is running. These generic flags are as follows:

-help

Prints a usage message for the stilts command itself and exits. The message contains a
listing of all the known tasks.

-version

Prints the STILTS version number and exits.

-verbose

Causes more verbose information to be written during operation. Specifically, what this does is
to boost the logging level by one notch. It may be specified multiple times to increase
verbosity further.

-memory

Encourages the command to use java heap memory for caching large amounts of data rather
than using temporary disk files. The default is to use memory for small tables, and disk for
large ones. This flag is in most cases equivalent to specifying the system property
-Dstartable.storage=memory.

-disk

Encourages the command to use temporary files on disk for caching table data. The default is
to use memory for small tables, and disk for large ones. Using this flag may help if you are
running out of memory. This flag is in most cases equivalent to specifying the system property
-Dstartable.storage=disk.

-debug

Sets up output suitable for debugging. The most visible consequence of this is that if an error
occurs then a full stacktrace is output, rather than just a user-friendly report.

SUN/256 8

-prompt

Most of the STILTS commands have a number of parameters which will assume sensible
defaults if you do not give them explicit values on the command line. If you use the -prompt

flag, then you will be prompted for every parameter you have not explicitly specified to give
you an opportunity to enter a value other than the default.

-batch

Some parameters will prompt you for their values, even if they offer legal defaults. If you use
the -batch flag, then you won't be prompted at all.

-bench

Outputs the elapsed time taken by the task to standard error on successful completion.

-memgui

Displays a graphical window while the command is running which summarises used and
available heap memory. May be useful for profiling or understanding resource constraints.

-checkversion <vers>

Requires that the version is exactly as given by the string <vers>. If it is not, STILTS will exit
with an error. This can be useful when executing in certain controlled environments to ensure
that the correct version of the application is being picked up.

-stdout <file>

Sends all normal output from the run to the given file. By default this goes to the standard
output stream. Supplying an empty string or "-" for <file> will restore this default behaviour.

-stderr <file>

Sends all error output from the run to the given file. By default this goes to the standard error
stream. Supplying an empty string or "-" for <file> will restore this default behaviour.

If you are submitting an error report, please include the result of running stilts -version and the
output of the troublesome command with the -debug flag specified.

2.2 Task Names

The <task-name> part of the command line is the name of one of the tasks listed in Appendix B -
currently the available tasks are:

• calc

• cdsskymatch

• coneskymatch

• funcs

• pixfoot

• pixsample

• plot2d

• plot3d

• plothist

• regquery

• server

• sqlclient

• sqlskymatch

• sqlupdate

• taplint

• tapquery

• tapresume

• tcat

• tcatn

• tcopy

SUN/256 9

• tcube

• tjoin

• tloop

• tmatch1

• tmatch2

• tmatchn

• tmulti

• tmultin

• tpipe

• tskymatch2

• votcopy

• votlint

2.3 Task Arguments

The <task-args> part of the command line is a list of parameter assignments, each giving the value
of one of the named parameters belonging to the task which is specified in the <task-name> part.

The general form of each parameter assignment is

<param-name>=<param-value>

If you want to set the parameter to the null value, which is legal for some but not all parameters, use
the special string "null". In some cases you can optionally leave out the <param-name> part of the
assignment (i.e. the parameter is positionally determined); this is indicated in the task's usage
description if the parameter is described like [<param-name>=]<param-value> rather than
<param-name>=<param-value>. If the <param-value> contains spaces or other special characters,
then in most cases, such as from the Unix shell, you will have to quote it somehow. How this is
done depends on your platform, but usually surrounding the whole value in single quotes will do the
trick.

Tasks may have many parameters, and you don't have to set all of them explicitly on the comand
line. For a parameter which you don't set, two things can happen. In many cases, it will default to
some sensible value. Sometimes however, you may be prompted for the value to use. In the latter
case, a line like this will be written to the terminal:

matcher - Name of matching algorithm [sky]:

This is prompting you for the value of the parameter named matcher. "Name of matching
algorithm" is a short description of what that parameter does. "sky" is the default value (if there is
no default, no value will appear in square brackets). At this point you can do one of four things:

• Hit return - this will select the default value if there is one. If there is no default, this is
equivalent to entering "null".

• Enter a value for the parameter explicitly. The special value "null" means the null value,
which is legal for some, but not all parameters. If the value you enter is not legal, you will see
an error message and you will be invited to try again.

• Enter "help" or a question mark "?". This will output a message giving a detailed description
of the parameter and prompt you again.

• Bail out by hitting ctrl-C or whatever is usual on your platform.

Under normal circumstances, most parameters which have a legal default value will default to it if
they are not set on the command line, and you will only be prompted for those where there is no
default or the program thinks there's a good chance you might not want to use it. You can influence
this however using flags to the stilts command itself (see Section 2.1). If you supply the -prompt

flag, then you will be prompted for every parameter you have not explicitly set. If you supply
-batch on the other hand, you won't be prompted for any parameters (and if you fail to set any

SUN/256 10

without legal default values, the task will fail).

If you want to see the actual values of the parameters for a task as it runs, including prompted
values and defaulted ones which you haven't specified explicitly, you can use the -verbose flag
after the stilts command:

% stilts -verbose tcopy cat.fits cat.vot ifmt=fits
INFO: tcopy in=cat.fits out=cat.vot ifmt=fits ofmt=(auto)

Extensive help is available from stilts itself about task and its parameters, as described in the next
section.

2.4 Getting Help

As well as the command descriptions in this document (especially the reference section Appendix
B) you can get help for STILTS usage from the command itself. Typing

stilts -help

results in this output:

Usage:
stilts [-help] [-version] [-verbose] [-memory] [-disk] [-debug]

[-prompt] [-batch] [-bench] [-memgui] [-checkversion <vers>]
[-stdout <file>] [-stderr <file>]
<task-name> <task-args>

stilts <task-name> help[=<param-name>|*]

Known tasks:
calc
cdsskymatch
coneskymatch
funcs
pixfoot
pixsample
plot2d
plot3d
plothist
regquery
server
sqlclient
sqlskymatch
sqlupdate
taplint
tapquery
tapresume
tcat
tcatn
tcopy
tcube
tjoin
tloop
tmatch1
tmatch2
tmatchn
tmulti
tmultin
tpipe
tskymatch2
votcopy
votlint

For help on the individual tasks, including their parameter lists, you can supply the word help after
the task name, so for instance

stilts tcopy help

SUN/256 11

results in

Usage: tcopy ifmt=<in-format> ofmt=<out-format>
[in=]<table> [out=]<out-table>

Finally, you can get help on any of the parameters of a task by writing help=<param-name>, like
this:

stilts tcopy help=in

gives

Help for parameter IN in task TCOPY

Name:
in

Usage:
[in=]<table>

Summary:
Location of input table

Description:
The location of the input table. This is usually a filename or URL,
and may point to a file compressed in one of the supported compression
formats (Unix compress, gzip or bzip2). If it is omitted, or equal to
the special value "-", the input table will be read from standard
input. In this case the input format must be given explicitly using
the ifmt parameter.

If you use "*" instead of a parameter name in this usage, help for all the parameters will be printed.
Note that in most shells you will probably need to quote the asterisk, so you should write

stilts tcopy help='*'

In some cases, as described in Section 2.3, you will be prompted for the value of a parameter with a
line something like this:

matcher - Name of matching algorithm [sky]:

In this case, if you enter "help" or a question mark, then the parameter help entry will be printed to
the screen, and the prompt will be repeated.

For more detailed descriptions of the tasks, which includes explanatory comments and examples as
well as the information above, see the full task descriptions in the Command Reference (Appendix
B).

SUN/256 12

3 Invocation

There are a number of ways of invoking the stilts command, depending on how you have
installed the package. This section describes how to invoke it from the command line. An
alternative, using it from Jython (the Java implementation of the Python language), is described in
Section 4.

If you're using a Unix-like operating system, the easiest way is to use the stilts script. If you have
a full starjava installation it is in the starjava/bin directory. Otherwise you can download it
separately from wherever you got your STILTS installation in the first place, or find it at the top of
the stilts.jar or topcat-*.jar that contains your STILTS installation, so do something like

unzip stilts.jar stilts
chmod +x stilts

to extract it (if you don't have unzip, try jar xvf stilts.jar stilts). stilts is a simple shell
script which just invokes java with the right classpath and the supplied arguments.

To run using the stilts script, first make sure that both the java executable and the stilts script
itself are on your path, and that the stilts.jar or topcat-*.jar jar file is in the same directory as
stilts. Then the form of invocation is:

stilts <java-flags> <stilts-flags> <task-name> <task-args>

A simple example would be:

stilts votcopy format=binary t1.xml t2.xml

in this case, as often, there are no <java-flags> or <stilts-flags>. If you use the -classpath

argument or have a CLASSPATH environment variable set, then classpath elements thus specified
will be added to the classpath required to run the command. The examples in the command
descriptions below use this form for convenience.

If you don't have a Unix-like shell available however, you will need to invoke Java directly with the
appropriate classes on your classpath. If you have the file stilts.jar, in most cases you can just
write:

java <java-flags> -jar stilts.jar <stilts-flags> <task-name> <task-args>

which in practice would look something like

java -jar /some/where/stilts.jar votcopy format=binary t1.xml t2.xml

In the most general case, Java's -jar flag might be no good, for one of the following reasons:

1. You have the classes in some form other than the stilts.jar file (such as topcat-full.jar)
2. You need to specify some extra classes on the classpath, which is required e.g. for use with

JDBC (Section 3.4) or if you are extending the commands (Section 9.7.3) using your own
classes at runtime

In this case, you will need an invocation of this form:

java <java-flags> -classpath <class-path>
uk.ac.starlink.ttools.Stilts <stilts-flags> <task-name> <task-args>

The example above in this case would look something like:

java -classpath /some/where/topcat-full.jar uk.ac.starlink.ttools.Stilts
votcopy format=binary t1.xml t2.xml

SUN/256 13

Finally, as a convenience, it is possible to run STILTS from a TOPCAT installation by using its
-stilts flag, like this:

topcat <java-flags> -stilts <stilts-flags> <task-name> <task-args>

This is possible because TOPCAT is built on top of STILTS, so contains a superset of its code.

The <stilts-flags>, <task-name> and <task-args> parts of these invocations are explained in
Section 2, and the <class-path> and <java-flags> parts are explained in the following
subsections.

3.1 Class Path

The classpath is the list of places that Java looks to find the bits of compiled code that it uses to run
an application. Depending on how you have done your installation the core STILTS classes could
be in various places, but they are probably in a file with one of the names stilts.jar,
topcat-lite.jar or topcat-full.jar. The full pathname of one of these files can therefore be
used as your classpath. In some cases these files are self-contained and in some cases they reference
other jar files in the filesystem - this means that they may or may not continue to work if you move
them from their original location.

Under certain circumstances the tools might need additional classes, for instance:

• JDBC drivers (see Section 3.4)
• Providing extended algebraic functions (see Section 9.7.3)
• Installing I/O handlers for new table formats (see SUN/252)

In this case the classpath must contain a list of all the jar files in which the required classes can be
found, separated by colons (unix) or semicolons (MS Windows). Note that even if all your jar files
are in a single directory you can't use the name of that directory as a class path - you must name
each jar file, separated by colons/semicolons.

3.2 Java Flags

In most cases it is not necessary to specify any additional arguments to the Java runtime, but it can
be useful in certain circumstances. The two main kinds of options you might want to specify
directly to Java are these:

System properties
System properties are a way of getting information into the Java runtime from the outside,
rather like environment variables. There is a list of the ones which have significance to
STILTS in Section 3.3. You can set them from the command line using a flag of the form
-Dname=value. So for instance to ensure that temporary files are written to the /home/scratch

directory, you could use the flag

-Djava.io.tmpdir=/home/scratch

Memory size
Java runs with a fixed amount of 'heap' memory; this is typically 64Mb by default. If one of
the tools fails with a message that says it's out of memory then this has proved too small for the
job in hand. You can increase the heap memory with the -Xmx flag. To set the heap memory
size to 256 megabytes, use the flag

-Xmx256M

(don't forget the 'M' for megabyte). You will probably find performance is dreadful if you

SUN/256 14

specify a heap size larger than the physical memory of the machine you're running on.

You can specify other options to Java such as tuning and profiling flags etc, but if you want to do
that sort of thing you probably don't need me to tell you about it.

If you are using the stilts command-line script, any flags to it starting -D or -X are passed directly
to the java executable. You can pass other flags to Java with the stilts script's -J flag; for
instance:

stilts -Xmx4M -J-verbose:gc calc 'mjdToIso(0)'

is equivalent to

java -Xmx4M -verbose:gc -jar stilts.jar calc 'mjdToIso(0)'

3.3 System Properties

System properties are a way of getting information into the Java runtime - they are a bit like
environment variables. There are two ways to set them when using STILTS: either on the command
line using arguments of the form -Dname=value (see Section 3.2) or in a file in your home directory
named .starjava.properties, in the form of a name=value line. Thus submitting the flag

-Dvotable.strict=true

on the command line is equivalent to having the following in your .starjava.properties file:

Force strict interpretation of the VOTable standard.
votable.strict=true

The following system properties have special significance to STILTS:

http.proxyHost

Can be used to force HTTP access to go via a named proxy; may be required if you are
attempting access to remote data or services from behind a firewall configured to block direct
HTTP connections. See java documentation for this property for more details.

java.awt.headless

May need to be set to "true" if running the plotting tasks on a headless server. You only need
to worry about this if you see error messages complaining about headlessness.

java.io.tmpdir

The directory in which STILTS will write any temporary files it needs. This is usually only
done if the -disk flag has been specified (see Section 2.1).

jdbc.drivers

Can be set to a (colon-separated) list of JDBC driver classes using which SQL databases can
be accessed (see Section 3.4).

jel.classes

Can be set to a (colon-separated) list of classes containing static methods which define
user-provided functions for synthetic columns or subsets. (see Section 9.7.3).

mark.workaround

If set to "true", this will work around a bug in the mark()/reset() methods of some java
InputStream classes. These are rather common, including in Sun's J2SE system libraries. Use
this if you are seeing errors that say something like "Resetting to invalid mark". Currently
defaults to "false".

service.maxparallel

SUN/256 15

Raises the maximum number of concurrent queries that may be made during a multi-cone
operation. You should only increase this value with great care since you risk overloading
servers and becoming unpopular with data centres. As a rule, you should only increase this
value if you have obtained permission from the data centres whose services on which you will
be using the increased parallelism.

star.basicauth.user

star.basicauth.password

If set, these will provide username and password for HTTP Basic Authentication. Any time the
application attempts to access an HTTP URL and is met by a 401 Unauthorized response, it
will try again supplying these user credentials. This is a rather blunt instrument, since the same
identity is supplied regardless of which URL is being accessed, but it may be of some use in
accessing basic-authentication protected services.

startable.readers

Can be set to a (colon-separated) list of custom table format input handler classes (see
SUN/252).

startable.storage

Can be set to determine the default storage policy. Setting it to "disk" has basically the same
effect as supplying the "-disk" argument on the command line (see Section 2.1). Other
possible values are "adaptive", "memory", "sideways" and "discard"; see SUN/252. The
default is "adaptive", which means storing smaller tables in memory, and larger ones on disk.

startable.writers

Can be set to a (colon-separated) list of custom table format output handler classes (see
SUN/252).

votable.namespacing

Determines how namespacing is handled in input VOTable documents. Known values are
"none" (no namespacing, xmlns declarations in VOTable document will probably confuse
parser), "lax" (anything that looks like it is probably a VOTable element will be treated as a
VOTable element) and "strict" (VOTable elements must be properly declared in one of the
correct VOTable namespaces). May also be set to the classname of a
uk.ac.starlink.votable.Namespacing implementation. The default is "lax".

votable.strict

Set true for strict enforcement of the VOTable standard when parsing VOTables. This
prevents the parser from working round certain common errors, such as missing arraysize

attributes on FIELD or PARAM elements with datatype="char". False by default.

votable.version

Selects the version of the VOTable standard which output VOTables will conform to by
default. May take the values "1.0", "1.1", "1.2" or "1.3". By default, version 1.2 VOTables
are written.

3.4 JDBC Configuration

This section describes additional configuration which must be done to allow the commands to
access SQL-compatible relational databases for reading or writing tables. If you don't need to talk to
SQL-type databases, you can ignore the rest of this section. The steps described here are the
standard ones for configuring JDBC (which sort-of stands for Java Database Connectivity),
described in more detail on Sun's JDBC web page.

To use STILTS with SQL-compatible databases you must:

• Have access to an SQL-compatible database locally or over the network
• Have a JDBC driver appropriate for that database

SUN/256 16

• Install that driver for use with STILTS
• Know the format the driver uses for URLs to access database tables
• Have appropriate privileges on the database to perform the desired operations

Installing the driver consists of two steps:

1. Ensure that the classpath you are using includes this driver class as described in Section 3.1
2. Set the jdbc.drivers system property to the name of the driver class as described in Section

3.3

These steps are all standard for use of the JDBC system. See SUN/252 for information about JDBC
drivers known to work with STIL (the short story is that at least MySQL and PostreSQL will work).

Here is an example of using tcopy to write the results of an SQL query on a table in a MySQL
database as a VOTable:

stilts -classpath /usr/local/jars/mysql-connector-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver \
tcopy \
in="jdbc:mysql://localhost/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
ofmt=votable gsc.vot

or invoking Java directly:

java -classpath stilts.jar:/usr/local/jars/mysql-connect-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver \
uk.ac.starlink.ttools.Stilts tcopy \
in="jdbc:mysql://localhost/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
ofmt=votable out=gsc.vot

You have to exercise some care to get the arguments in the right order here - see Section 3.

Alternatively, you can set some of this up beforehand to make the invocation easier. If you set your
CLASSPATH environment variable to include the driver jar file (and the STILTS classes if you're
invoking Java directly rather than using the scripts), and if you put the line

jdbc.drivers=com.mysql.jdbc.Driver

in the .starjava.properties file in your home directory, then you could avoid having to give the
-classpath and -Djdbc.drivers flags respectively.

SUN/256 17

4 JyStilts - STILTS from Python

Most of the discussions and examples in this document describe using STILTS as a standalone java
application from the command line; in this case, scripting can be achieved by executing one
STILTS command, followed by another, followed by another, perhaps controlled from a shell
script, with intermediate results stored in files.

However, it is also possible to invoke STILTS commands from within the Jython environment.
Jython is a pure-java implementation of the widely-used Python scripting language. Using Jython is
almost exactly the same as using the more usual C-based Python, except that it is not possible to use
extensions which use C code. This means that if you are familiar with Python programming, it is
very easy to string STILTS commands together in Jython.

This approach has several advantages over the conventional command-line usage:

• You can make use of python programming constructions like loops, functions and variables
• Intermediate processing stages can be kept in memory (in a python variable) rather than having

to write them out to a file and read them in for the next command; this can be much more
efficient

• Because of the previous point, there are separate read, filter, processing and write commands,
which means command lines can be shorter and less confusing

• The java startup overhead (typically a couple of seconds) happens only once when entering
jython, not once for every STILTS command

Note however that you will not be able to introduce JyStilts commands into your larger existing
Python programs if those rely on C-based extensions, such as NumPy and SciPy, since JyStilts will
only run in JPython, while C-based extensions will only run in CPython. (See however JNumeric
for some of the Numpy functionality from Jython.)

Usage from jython has syntax which is similar to command-line STILTS, but with a few changes.
The following functions are defined by JyStilts:

• A function tread, which reads a table from a file or URL and turns it into a table object in
jython

• A table method write which takes a table object and writes it to file
• A table method for each STILTS filter (e.g. cmd_head, cmd_select, cmd_addcol)
• A table method for each STILTS output mode (e.g. mode_out, mode_meta, mode_samp),
• A function for each STILTS task (e.g. tmatch2, tcat, plot2d)
• A number of table methods which make table objects integrate nicely into the python

environment

Reasonably detailed documentation for these is provided in the usual Python way ("doc strings"),
and can be accessed using the Python "help" command, however for full documentation and
examples you should refer to this document.

In JyStilts the input, processing, filtering and output are done in separate steps, unlike in
command-line STILTS where they all have to be combined into a single line. This can make the
flow of execution easier to follow. A typical sequence will involve:

1. Reading one or more tables from file using the tread function
2. Perhaps filtering the input table(s) using one or more of the cmd_* filter methods
3. Performing core processing such as crossmatching
4. Perhaps filtering the result using one or more of the cmd_* filter methods
5. If running interactively, perhaps examining the intermediate results using one of the mode_*

output modes
6. Writing the final result to a file using the write method

SUN/256 18

Here is an example command line invocation for crossmatching two tables:

stilts tskymatch2 in1=survey.fits \
icmd1='addskycoords fk4 fk5 RA1950 DEC1950 RA2000 DEC2000' \
in2=mycat.csv ifmt2=csv \
icmd2='select VMAG>18' \
ra1=ALPHA dec1=DELTA ra2=RA2000 dec2=DEC2000 \
error=10 join=2not1 \
out=matched.fits

and here is what it might look like in JyStilts:

>>> import stilts
>>> t1 = stilts.tread('survey.fits')
>>> t1 = t1.cmd_addskycoords(t1, 'fk4', 'fk5', 'RA1950', 'DEC1950', 'RA2000', 'DEC2000')
>>> t2 = stilts.tread('mycat.csv', 'csv')
>>> t2 = t2.cmd_select('VMAG>18')
>>> tm = stilts.tskymatch2(in1=t1, in2=t2, ra1='ALPHA', dec1='DELTA',
... error=10, join='2not1')
>>> tm.write('matched.fits')

When running interactively, it can be convenient to examine the intermediate results before
processing or writing as well, for instance:

>>> tm.mode_count()
columns: 19 rows: 2102
>>> tm.cmd_keepcols('ID ALPHA DELTA').cmd_head(4).write()
+--------+---------------+-----------+
| ID | ALPHA | DELTA |
+--------+---------------+-----------+
| 262 | 149.82439 | -0.11249 |
| 263 | 150.14438 | -0.11785 |
| 265 | 149.92944 | -0.11667 |
| 273 | 149.93185 | -0.12566 |
+--------+---------------+-----------+

More detail about how to run JyStilts and its usage is given in the following subsections.

4.1 Running JyStilts

The easiest way to run JyStilts is to download the standalone jystilts.jar file from the STILTS
web page, and simply run

java -jar jystilts.jar

This file includes jython itself and all the STILTS and JyStilts classes. To use the JyStilts
commands, you will need to import the stilts module using a line like "import stilts" from Jython
in the usual Python way.

Alternatively, you can run JyStilts from an existing Jython installation using just the stilts.jar

file. First, make sure that Jython is installed; it is available from http://www.jython.org/, and comes
as a self-installing jar file. JyStilts has been tested, and appears to work, on versions 2.5.0 and 2.5.1;
it's recommended to use the latest version if you don't have some reason to use one of the others.
Some earlier versions of JyStilts worked with jython 2.2.1, but that no longer seems to be the case;
it might be possible to reinstate this if there is some pressing need.

To use JyStilts, you then just need to start jython with the stilts.jar file on your classpath, for
instance like this:

jython -J-classpath /some/where/stilts.jar

or (C-shell):

SUN/256 19

setenv CLASSPATH /some/where/stilts.jar
jython

Optionally, you can extract the stilts.py module from the stilts.jar file (using a command like
"unzip stilts.jar stilts.py") and put it in a directory on your jython sys.path (e.g.
jythondir/Lib); this may cause jython to compile it to bytecode (stilts$py.class) and thus
improve startup time. Note that in this case you will still need the stilts.jar file on your classpath
as above.

4.2 Table I/O

The tread function reads tables from an external location into JyStilts. Its arguments are as follows:

tread(location, fmt='(auto)', random=False)

and its return value is a table object, which can be interrogated directly, or used in other JyStilts
commands. Usually, the location argument should be a string which gives the filename or URL at
which a table can be found. You can alternatively use a readable python file (or file-like) object for
the location, but be aware that this may be less efficient on memory. As with command-line
STILTS, the fmt argument is one of the options in Section 5.2.1, but may be left as the default if the
format auto-detectable, which currently means if the file is in VOTable, FITS or CDF format. The
random argument can be used to ensure that the returned file has random (i.e. not sequential-only)
access; for some table formats the default way of reading them in means that their rows can only be
accessed in sequence. Depending on what processing you are doing, that may or may not be
satisfactory.

Examples of reading a table are:

>>> import stilts
>>> t1 = stilts.tread('cat.fits')
>>> t2 = stilts.tread(open('cat.fits', 'rb')) # less efficient
>>> t3 = stilts.tread('data.csv', fmt='ascii', random=True)

The most straightforward way to write a table (presumably the result of one or a sequence of
JyStilts commands) is using the write table method:

write(self, location=None, fmt='(auto)')

The location gives either a string which is a filename, or a writable python file (or file-like) object.
Again, use of a filename is preferred as it may(?) be more efficient. If no location is supplied, the
table will be written to standard output (useful for inspection, but a bad idea for binary formats or
very large tables). The fmt argument is one of the output formats in Section 5.2.2, but may be left as
the default if the format can be guessed from the filename.

Examples of writing a table are:

>>> table.write('out.fits')
>>> table.write(open('out.fits', 'wb')) # less efficient?
>>> table.write('catalogue.dat', fmt='csv')
>>> table.write() # display to stdout

Often it's convenient to combine examining the table with filtering steps, for instance:

>>> table.every(100).write()

would write only every hundredth row, and

SUN/256 20

>>> (table.cmd_sorthead(10, 'BMAG')
... .cmd_select('!NULL_VMAG')
... .cmd_keepcols('BMAG VMAG')
... .write())

would write only the BMAG and VMAG columns for the ten rows in which VMAG is non-null
with the lowest BMAG values.

You can also read and write multiple tables, if you use a table format for which that is appropriate.
This generally means FITS (which can store tables in multiple extensions) or VOTable (which can
store multiple TABLE elements in one document). This is done using the treads and twrites

functions. The functions look like this:

treads(location, fmt='(auto)', random=False)
twrites(tables, location=None, fmt='(auto)')

These are similar to the tread and twrite functions, except that treads returns a list of tables
rather than a single table, and twrites's tables argument is an iterable over tables rather than a
single table. Here is an example of reading multiple tables from a multi-extension FITS file,
counting the rows in each, and then writing them out to a multi-TABLE VOTable file:

import stilts
tables = stilts.treads('multi.fits')
print([t.getRowCount() for t in tables])
stilts.twrites(tables, 'multi.vot', fmt='votable')

4.3 Table objects

The tables read by the tread function and produced by operating on them within JyStilts have a
number of methods defined on them. These are explained below.

First, a number of special methods are defined which allow a table to behave in python like a
sequence of rows:

__iter__

This special method means that the table can be treated as an iterable, so that for instance "for
row in table:" will iterate over all rows.

__len__ (random-access tables only)
This special method means that you can use the expression "len(table)" to count the number
of rows. This method is not available for tables with sequential access only.

__getitem__ (random-access tables only)
Returns a row at a given index in the table. This special method means that you can use
indexing expressions like "table[3]" or table[0:10] to obtain the row or rows corresponding
to a given row index or slice. This method is not available for tables with sequential access
only.

__add__, __mul__, __rmul__
These special methods allow the addition and multiplication operators "+" and and "*" to be
used with the sense of concatenation. Thus "table1+table2" will produce a new table with the
rows of table1 followed by the rows of table2. Note this will only work if both tables have
compatible columns. Similarly "table*3" would produce a table like table but with all its
rows repeated three times.

In all of these cases, each row object that is accessed is a tuple of the column values for that row of
the table. The tuple items (table cells) may be accessed using a key which is a numeric index or
slice in the usual way, or with a key which is a column name, or one of the ColumnInfo objects
returned by columns().

SUN/256 21

Sometimes, the result of a table operation will be a table which does not have random access. For
such tables you can iterate over the rows, but not get their row values by indexing.
Non-random-access tables are also peculiar in that getRowCount returns a negative value. To take a
table which may not have random access and make it capable of random access, use the random

filter: "table=table.cmd_random()".

To a large extent it is possible to duplicate the functions of the various STILTS commands by
writing your own python code based on these python-friendly table access methods. Note however
that such python-based processing is likely to be much slower than the STILTS equivalents. If
performance is important to you, you should try in most cases to use the various cmd_* commands
etc for table processing.

Second, some additional utility methods are defined:

columns()

Returns a tuple of the column descriptors for the table. Each item in the tuple is an instance of
the ColumnInfo class; useful methods include getName(), getUnitString(), getUCD().
str(column) will return its name.

coldata(key)

Returns a sequence of the values for the given column. The sequence will have the same
number of elements as the number of rows in the table. The key argument may be either an
integer column index (if negative, counts backwards from the end), or the column name or info
object. The returned value will always be iterable (has __iter__), but will only be indexable
(has __len__ and __getitem__) if the table is random access.

parameters()

Returns a name to value mapping of the table parameters (per-table metadata). This does not
include all the available information about those parameters, for instance unit and UCD
information is not included. For more detailed information, use the StarTable methods. Note
that as currently implemented, changing the values in the returned mapping will not change the
actual table parameter values.

write(location=None, fmt=None)

Outputs the table. The optional location argument gives a filename or writable file object,
and the optional fmt argument gives a format, one of the options listed in Section 5.2.1. If
location is not supplied, output is to standard output, so in an interactive session it will be
printed to the terminal. If fmt is not supplied, an attempt will be made to guess a suitable
format based on the location.

Third, a set of cmd_* methods corresponding to the STILTS filters are available; these are described
in Section 4.4.

Fourth, a set of mode_* methods corresponding to the STILTS output modes are available; these are
described in Section 4.5.

Finally, tables are also instances of the StarTable interface defined by STIL, which is the table I/O
layer underlying STILTS. The full documentation can be found in the user manual and javadocs on
the STIL page, and all the java methods can be used from JyStilts, but in most cases there are more
pythonic equivalents provided, as described above.

Here are some examples of these methods in use:

>>> import stilts
>>> xsc = stilts.tread('/data/table/2mass_xsc.xml') # read table
>>> xsc.mode_count() # count rows and cols
columns: 6 rows: 1646844
>>> print xsc.columns() # full info on columns

SUN/256 22

(id(String), ra(Double)/degrees, dec(Double)/degrees, jmag(Double)/mag, hmag(Double)/mag, kmag(Double)/mag)
>>> print [str(col) for col in xsc.columns()] # column names only
['id', 'ra', 'dec', 'jmag', 'hmag', 'kmag']
>>> row = xsc[1000000] # examine millionth row
>>> print row
(u'19433000+4003190', 295.875, 40.055286, 14.449, 13.906, 13.374)
>>> print row[0] # cell by index
19433000+4003190
>>> print row['ra'], row['dec'] # cells by col name
295.875 40.055286
>>> print len(xsc) # count rows
1646844
>>> print len(xsc+xsc) # concatenate
3293688
>>> print len(xsc*100)
164684400
>>> for row in xsc: # select rows using python commands
... if row[4] - row[3] > 3.0:
... print row[0]
...
11165243+2925509
20491597+5119089
04330238+0858101
01182715-1013248
11244075+5218078
>>> # same thing using stilts (50x faster)
>>> (xsc.cmd_select('hmag - jmag > 3.0')
... .cmd_keepcols('id')
... .write())
+------------------+
| id |
+------------------+
| 11165243+2925509 |
| 20491597+5119089 |
| 04330238+0858101 |
| 01182715-1013248 |
| 11244075+5218078 |
+------------------+

The following are all ways to obtain the value of a given cell in the table from the previous
example.

xsc.getCell(99, 0)
xsc[99][0]
xsc[99]['id']
xsc.coldata(0)[99]
xsc.coldata('id')[99]

Some of these methods may be more efficient than others. Note that none of these methods will
work if the table has sequential-only access.

4.4 Table filter commands (cmd_*)

The STILTS table filters documented in Section 6.1 are available in JyStilts as table methods which
start with the "cmd_" prefix. The return value when calling the method on a table object is another
table object. The arguments, which are the same as those required for the command-line version, are
supplied as a list of unnamed arguments of the cmd_* function. In general the arguments are strings,
but numbers are accepted where appropriate. Use the python help command to see the usage of
each method.

So, to use the tail filter to select only the last ten lines of a table, you can write:

table.cmd_tail(10)

To set units of "Hz" for some columns using the colmeta filter write:

table.cmd_colmeta('-units', 'Hz', 'AFREQ BFREQ CFREQ')

SUN/256 23

Note that where a filter argument is a space-separated list it must appear as a single argument in the
filter invocation, just as in command-line STILTS.

The filter commands are also available as module functions. This means that

stilts.cmd_head(table, 10)

and

table.cmd_head(10)

have exactly the same meaning. It's a matter of taste which you prefer.

4.5 Table output modes (mode_*)

The STILTS table output modes documented in Section 6.4 are available in JyStilts as table
methods which start with the "mode_" prefix. These methods have no return value, but cause
something to happen, in some cases output to be written to standard output. Some of these methods
have named arguments, others have no arguments. Use the python help command to see the usage
of each method.

These methods are straightforward to use. The following example calculates statistics for a table
and writes the results to standard output:

>>> table.mode_stats()

and this one attempts to send the table via the SAMP communications protocol to a running
instance of TOPCAT:

>>> table.mode_samp(client='topcat')

The output modes are also available as module functions. This means that

stilts.mode_samp(table, client='topcat')

and

table.mode_samp(client='topcat)

have exactly the same meaning. It's a matter of taste which you prefer.

4.6 Tasks

The STILTS tasks documented in Appendix B can be used under their usual names if they are
imported from the stilts module. STILTS parameters as are supplied as named arguments of the
python functions. In general they are either table objects for table input parameters or strings, but in
some cases python arrays are accepted, and numbers may be used where appropriate. The STILTS
input format (ifmt, istream), filter (cmd/icmd/ocmd) and output mode (omode) parameters are not
used however; instead perform filtering directly on the table inputs and outputs using the python
cmd_* and mode_* table methods or functions.

Here is an example of concatenating two similar tables together and writing the result:

>>> from stilts import tread, tcat
>>> t1 = tread('data1.csv', fmt='csv')
>>> t2 = tread('data2.csv', fmt='csv')
>>> t12 = tcat([t1,t2], seqcol='seq')
>>> t12.write('t12.csv', fmt='csv')

SUN/256 24

Note that for those tasks which have a parameter named "in" in command-line STILTS, it has been
renamed as "in_" for the python version, to avoid a name clash with the python reserved word. In
most cases, the in parameter is the first, mandatory parameter in any case, and so can be referenced
by position as in the previous example (we could have written "tcat(in_=[t1,t2])" instead).

4.7 Calculation Functions

The various functions from the expression language listed in Section 9.5 are available directly from
JyStilts. Each of the subsections in that section is a class in the stilts module namespace, with
unbound functions representing the functions.

This means you can use them like this:

>>> import stilts
>>> print stilts.Times.mjdToIso(54292)
2007-07-11T00:00:00

or like this:

>>> from stilts import CoordsDegrees
>>> dist = CoordsDegrees.skyDistanceDegrees(ra1, dec1, ra2, dec2)

SUN/256 25

5 Table I/O

Most of the tools in this package either read one or more tables as input, or write one or more tables
as output, or both. This section explains what kind of tables the tools can read and write, and how
you tell them where to find the tables to operate on.

In most cases input and output table specifications are given by parameters with the following
names (or similar ones):

in

Location of the input table

ifmt

Format of the input table

out

Location of the output table

ofmt

Format of the output table

The values of these parameters are discussed in more detail below.

5.1 Table Locations

The location of tables for input and output are usually given using the in and out parameters
respectively. These are often, but not always, filenames. The possibilities are these:

Filename
Very often, you will simply specify a filename as location, and the tool will just read
from/write to it in the usual way.

URL
Tables can be read from URLs directly, and in some cases written to them as well. Some
non-standard URL protocols are supported as well as the usual ones. The list is:

http:

Read from HTTP resources.

ftp:

Read from anonymous FTP resources.

file:

Read from local files; not particularly useful since you can do much the same using just
the filename.

jar:

Specialised protocol for looking inside Java Archive files - see JarURLConnection
documentation.

myspace:

Accesses files in the AstroGrid "MySpace" virtual file store. These URLs look something
like "myspace:/survey/iras_psc.xml", and can access files in the myspace are that the
user is currently logged into. These URLs can be used for both input and output of tables.
To use them you must have an AstroGrid account and the AstroGrid WorkBench or
similar must be running; if you're not currently logged in a dialogue will pop up to ask
you for name and password.

ivo:

Understands ivo-type URLs which signify files in the AstroGrid "MySpace" virtual file
store. These URLs look something like

SUN/256 26

". These URLs can be used for both input and output of tables. To use them you must
have an AstroGrid account and the AstroGrid WorkBench or similar must be running; if
you're not currently logged in a dialogue will pop up to ask you for name and password.

jdbc:

Used for communicating with SQL-compliant relational databases. These are a bit
different to normal URLs - see section Section 3.4.

Minus sign ("-")
The special location "-" (minus sign) indicates standard input (for reading) or standard output
(for writing). This allows you to use STILTS commands in a normal Unix pipeline.

In any of these cases, for input locations compression is taken care of automatically. That means
that you can give the filename or URL of a file which is compressed using gzip, bzip2 or Unix
compress and the program will uncompress it on the fly.

5.2 Table Formats

The generic table commands in STILTS (currently tpipe, tcopy, tmulti, tmultin, tcat, tcatn,
tloop, tjoin, tcube, tmatch1, tmatch2, tmatchn, tskymatch2, pixfoot, pixsample, plot2d,
plot3d, plothist, cdsskymatch, coneskymatch, sqlskymatch, tapquery, tapresume and
regquery) have no native format for table storage, they can process data in a number of formats
equally well. STIL has its own model of what a table consists of, which is basically:

• Some per-table metadata (parameters)
• A number of columns
• Some per-column metadata
• A number of rows, each containing one entry per column

Some table formats have better facilities for storing this sort of thing than others, and when
performing conversions STILTS does its best to translate between them, but it can't perform the
impossible: for instance there is nowhere in a Comma-Separated Values file to store descriptions of
column units, so these will be lost when converting from VOTable to CSV formats.

The formats the package knows about are dependent on the input and output handlers currently
installed. The ones installed by default are listed in the following subsections. More may be added
in the future, and it is possible to install new ones at runtime - see the STIL documentation for
details.

Some formats can be used to hold multiple tables in a single file, and others can only hold a single
table per file.

5.2.1 Input Formats

Some of the tools in this package ask you to specify the format of input tables using the ifmt

parameter. The following list gives the values usually allowed for this (matching is
case-insensitive):

fits

FITS format - FITS binary or ASCII tables can be read. For commands which take a single
input table, by default the first table HDU in the file will used, but this can be altered for
multi-extension FITS files by supplying an identifier after a '#' sign. The identifier can be
either an HDU index or the extension name (EXTNAME header, possibly followed by "-" and
the EXTVER header), so "table.fits#3" means the third HDU extension, and
"table.fits#UV_DATA" means the HDU with the value "UV_DATA" for its EXTNAME
header card.

SUN/256 27

colfits

Column-oriented FITS format. This is where a table is stored as a BINTABLE extension
which contains a single row, each cell of the row containing a whole column of the table it
represents. This has different performance characteristics from normal FITS tables; in
particular it may be considerably more efficient for very large, and especially very wide tables
where not all of the columns are required at any one time. Only available for uncompressed
files on disk.

votable

VOTable format - any legal version 1.0, 1.1, 1.2 or 1.3 format VOTable documents, and many
illegal ones, can be read. For commands which take a single input table, by default the first
TABLE element in the document is used, but this can be altered by supplying the 0-based index
after a '#' sign, so "table.xml#4" means the fifth TABLE element in the document.

cdf

NASA Common Data Format. CDF is described at http://cdf.gsfc.nasa.gov/.

ascii

Plain text file with one row per column in which columns are separated by whitespace.

csv

Comma-Separated Values format, using approximately the conventions used by MS Excel.

tst

Tab-Separated Table format, as used by Starlink's GAIA and ESO's SkyCat amongst other
tools.

ipac

IPAC Table Format.

wdc

World Datacentre Format (experimental).

For more details on these formats, see the descriptions in SUN/253.

In some cases (when using VOTable or FITS format tables) the tools can detect the table format
automatically, and no explicit specification is necessary. If this isn't the case and you omit the
format specification, the tool will fail with a suitable error message. It is always safe to specify the
format explicitly; this will be slightly more efficient, and may lead to more helpful error messages
in the case that the table can't be read correctly.

5.2.2 Output Formats

Some of the tools ask you to specify the format of output tables using the ofmt parameter. The
following list gives the values usually allowed for this; in some cases as you can see there are
several variants of a given format. You can abbreviate these names, and the first match in the list
below will be used, so for instance specifying votable is equivalent to specifying
votable-tabledata and fits is equivalent to fits-plus. Matching is case-insensitive.

fits-plus

FITS file; primary HDU contains a VOTable representation of the metadata, subsequent
extensions contain one or more FITS binary tables (behaves the same as fits-basic for most
purposes)

fits-basic

FITS file; primary HDU is data-less, subsequent extensions contain a FITS binary table

colfits-plus

FITS file containing a BINTABLE with a single row; each cell of the row contains a whole
column's worth of data. The primary HDU also contains a VOTable representation of the
metadata.

SUN/256 28

colfits-basic

FITS file containing a BINTABLE with a single row; each cell of the row contains a whole
column's worth of data. The primary HDU contains nothing.

votable-tabledata

VOTable document with TABLEDATA (pure XML) encoding

votable-binary-inline

VOTable document with BINARY-encoded data inline within a STREAM element. If VOTable
1.3 output is in force (see votable.version system property), votable-binary2-inline is
provided instead.

votable-binary-href

VOTable document with BINARY-encoded data in a separate file (only if not writing to a
stream). If VOTable 1.3 output is in force (see votable.version system property),
votable-binary2-href is provided instead.

votable-fits-href

VOTable document with FITS-encoded data in a separate file (only if not writing to a stream)

votable-fits-inline

VOTable document with FITS-encoded data inline within a STREAM element

ascii

Simple space-separated ASCII file format

text

Human-readable plain text (with headers and column boundaries marked out)

csv

Comma-Separated Value format. The first line is a header which contains the column names.

csv-noheader

Comma-Separated Value format with no header line.

ipac

IPAC Table Format.

tst

Tab-Separated Table format.

html

Standalone HTML document containing a TABLE element

html-element

HTML TABLE element

latex

LaTeX tabular environment

latex-document

LaTeX standalone document containing a tabular environment

mirage

Mirage input format

For more details on these formats, see the descriptions in SUN/253.

In some cases the tools may guess what output format you want by looking at the extension of the
output filename you have specified.

SUN/256 29

6 Table Pipelines

Several of the tasks available in STILTS take one or more input tables, do something or other with
them, and produce one or more output tables. This is a pretty obvious way to go about things, and in
the most straightforward case that's exactly what happens: you name one or more input tables,
specify the processing parameters, and name an output table; the task then reads the input tables
from disk, does the processing and writes the output table to disk.

However, many of the tasks in STILTS allow you to do pre-processing of the input tables before the
main job, post-processing of the output table after the main job, and to decide what happens to the
final tabular result, without any intermediate storage of the data. Examples of the kind of
pre-processing you might want to do are to rearrange the columns so that they have the right units
for the main task, or replace 'magic' values such as -999 with genuine blank values; the kind of
post-processing you might want to do is to sort the rows in the output table or delete some of the
columns you're not interested in. As for the destination of the final table, you might want to write it
to disk, but equally you might not want to store it anywhere, but only be interested in counting the
number of rows, or seeing the minima/maxima of a few of the columns, or you might want to send
it straight to TOPCAT or some other table viewing application for interactive analysis.

Clearly, you could achieve the same effect by running multiple applications: preprocess your
original input tables to write intermediate files on disk, run the main processing application which
reads those files from disk and writes a new output file, run another application to postprocess the
output file and write a new final output file, and finally do something with this such as counting the
rows in it or viewing it in TOPCAT. However, by doing it all within a single task instead, no
intermediate results have to be stored, and the whole sequence can be very much more efficient.
You can think of this (if it helps) like a Unix pipeline, except what is being streamed from the start
to the end of the pipe is not bytes, but table metadata and data. In most cases, the table data is
streamed through the pipeline a row at a time, meaning that the amount of memory required is small
(though in some cases, for instance row sorting and crossmatching, this is not possible).

Tasks which allow this pre/post-processing, or "filtering", have parameters with names like "cmd"
which you use to specify processing steps. Tasks with multiple input tables (tmatch2, tskymatch2,
tcatn, tjoin) may have parameters named icmd1, icmd2, ... for preprocessing the different input
tables and ocmd for postprocessing the output table. tpipe does nothing except filtering, so there is
no distinction between pre- and post-processing, and its filter parameter is just named cmd. tpipe
additionally has a script parameter which allows you to use a text file to write the commands in, to
prevent the command line getting too long. In both cases there is a parameter named omode which
defines the "output mode", that is, what happens to the post-processed output table that comes out
of the end of the pipeline.

Section 6.1 lists the processing steps available, and explains how to use them, Section 6.2 and
Section 6.3 describe the syntax used in some of these filter commands for specifying columns, and
Section 6.4 describes the available output modes. See the examples in the command reference, and
particularly the tpipe examples (Appendix B.29.2), for some examples putting all this together.

6.1 Processing Filters

This section lists the filter commands which can be used for table pipeline processing, in
conjunction with cmd- or script-type parameters.

You can string as many of these together as you like. On the command line, you can repeat the cmd

(or icmd1, or ocmd...) parameter multiple times, or use one cmd parameter and separate different
filter specifiers with semicolons (";"). The effect is the same.

It's important to note that each command in the sequence of processing steps acts on the table at that

SUN/256 30

point in the sequence. Thus either of the two identical invocations:

stilts tpipe cmd='delcols 1; delcols 1; delcols 1'
stilts tpipe cmd='delcols 1' cmd='delcols 1' cmd='delcols 1'

has the same effect as

stilts tpipe cmd='delcols "1 2 3"'

since in the first case the columns are shifted left after each one is deleted, so the table seen by each
step has one fewer column than the one before. Note also the use of quotes in the latter of the
examples above, which is necessary so that the <colid-list> of the delcols command is
interpreted as one argument not three separate words.

The available filters are described in the following subsections.

6.1.1 addcol

Usage:
addcol [-after <col-id> | -before <col-id>]

[-units <units>] [-ucd <ucd>] [-utype <utype>] [-desc <descrip>]
<col-name> <expr>

Add a new column called <col-name> defined by the algebraic expression <expr>. By default the
new column appears after the last column of the table, but you can position it either before or after a
specified column using the -before or -after flags respectively. The -units, -ucd -utype and
-desc flags can be used to define metadata values for the new column.

Syntax for the <expr> and <col-id> arguments is described in the manual.

6.1.2 addpixsample

Usage:
addpixsample [-radius <expr-rad>] [-systems <in-sys> <pix-sys>]

<expr-lon> <expr-lat> <healpix-file>

Samples pixel data from an all-sky image file in HEALPix format. The <healpix-file> argument
must be the filename of a table containing HEALPix pixel data. The URL of such a file can be used
instead, but local files are likely to be more efficient.

The <expr-lon> and <expr-lat> arguments give expressions for the longitude and latitude in
degrees for each row of the input table; this is usually just the column names. The long/lat must
usually be in the same coordinate system as that used for the HEALPix data, so if the one is in
galactic coordinates the other must be as well. If this is not the case, use the -systems flag to give
the input long/lat and healpix data coordinate system names respectively. The available coordinate
system names are:

• icrs: ICRS (Hipparcos) (Right Ascension, Declination)
• fk5: FK5 J2000.0 (Right Ascension, Declination)
• fk4: FK4 B1950.0 (Right Ascension, Declination)
• galactic: IAU 1958 Galactic (Longitude, Latitude)
• supergalactic: de Vaucouleurs Supergalactic (Longitude, Latitude)
• ecliptic: Ecliptic (Longitude, Latitude)

The <expr-rad>, if present, is a constant or expression giving the radius in degrees over which
pixels will be averaged to obtain the result values. Note that this averaging is somewhat

SUN/256 31

approximate; pixels partly covered by the specified disc are weighted the same as those fully
covered. If no radius is specified, the value of the pixel covering the central position will be used.

The <healpix-file> file is a table with one row per HEALPix pixel and one or more columns
representing pixel data. A new column will be added to the output table corresponding to each of
these pixel columns. This type of data is available in FITS tables for a number of all-sky data sets,
particularly from the LAMBDA (http://lambda.gsfc.nasa.gov/) archive; see for instance the page on
foreground products (including dust emission, reddening etc) or WMAP 7 year data. If the filename
given does not appear to point to a file of the appropriate format, an error will result. Note the
LAMBDA files mostly (all?) use galactic coordinates, so coordinate conversion using the -systems

flag may be appropriate, see above.

Syntax for the <expr-lon> , <expr-lat> and <expr-rad> arguments is described in the manual.

This filter is somewhat experimental, and its usage may be changed or replaced in a future version.

Note: you may prefer to use the pixsample command instead.

6.1.3 addresolve

Usage:
addresolve <col-id-objname> <col-name-ra> <col-name-dec>

Performs name resolution on the string-valued column <col-id-objname> and appends two new
columns <col-name-ra> and <col-name-dec> containing the resolved Right Ascension and
Declination in degrees.

Syntax for the <col-id-objname> argument is described in Section 6.2.

UCDs are added to the new columns in a way which tries to be consistent with any UCDs already
existing in the table.

Since this filter works by interrogating a remote service, it will obviously be slow. The current
implementation is experimental; it may be replaced in a future release by some way of doing the
same thing (perhaps a new STILTS task) which is able to work more efficiently by dispatching
multiple concurrent requests.

This is currently implemented using the Simbad service operated by CDS.

6.1.4 addskycoords

Usage:
addskycoords [-epoch <expr>] [-inunit deg|rad|sex] [-outunit deg|rad|sex]

<insys> <outsys> <col-id1> <col-id2> <col-name1> <col-name2>

Add new columns to the table representing position on the sky. The values are determined by
converting a sky position whose coordinates are contained in existing columns. The <col-id>

arguments give identifiers for the two input coordinate columns in the coordinate system named by
<insys>, and the <col-name> arguments name the two new columns, which will be in the
coordinate system named by <outsys>. The <insys> and <outsys> coordinate system specifiers are
one of

• icrs: ICRS (Hipparcos) (Right Ascension, Declination)
• fk5: FK5 J2000.0 (Right Ascension, Declination)
• fk4: FK4 B1950.0 (Right Ascension, Declination)

SUN/256 32

• galactic: IAU 1958 Galactic (Longitude, Latitude)
• supergalactic: de Vaucouleurs Supergalactic (Longitude, Latitude)
• ecliptic: Ecliptic (Longitude, Latitude)

The -inunit and -outunit flags may be used to indicate the units of the existing coordinates and
the units for the new coordinates respectively; use one of degrees, radians or sexagesimal (may
be abbreviated), otherwise degrees will be assumed. For sexagesimal, the two corresponding
columns must be string-valued in forms like hh:mm:ss.s and dd:mm:ss.s respectively.

For certain conversions, the value specified by the -epoch flag is of significance. Where significant
its value defaults to 2000.0.

Syntax for the <expr> , <col-id1> and <col-id2> arguments is described in the manual.

6.1.5 assert

Usage:
assert <expr>

Check that a boolean expression is true for each row. If the expression <expr> does not evaluate
true for any row of the table, execution terminates with an error. As long as no error occurs, the
output table is identical to the input one.

The exception generated by an assertion violation is of class
uk.ac.starlink.ttools.filter.AssertException although that is not usually obvious if you are
running from the shell in the usual way.

Syntax for the <expr> argument is described in Section 9.

6.1.6 badval

Usage:
badval <bad-val> <colid-list>

For each column specified in <colid-list> any occurrence of the value <bad-val> is replaced by a
blank entry.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.7 cache

Usage:
cache

Stores in memory or on disk a temporary copy of the table at this point in the pipeline. This can
provide improvements in efficiency if there is an expensive step upstream and a step which requires
more than one read of the data downstream. If you see an error like "Can't re-read data from stream"
then adding this step near the start of the filters might help.

The result of this filter is guaranteed to be random-access.

See also the random filter, which caches only when the input table is not random-access.

SUN/256 33

6.1.8 check

Usage:
check

Runs checks on the table at the indicated point in the processing pipeline. This is strictly a
debugging measure, and may be time-consuming for large tables.

6.1.9 clearparams

Usage:
clearparams <pname> ...

Clears the value of one or more named parameters. Each of the <pname> values supplied may be
either a parameter name or a simple wildcard expression matching parameter names. Currently the
only wildcarding is a "*" to match any sequence of characters. clearparams * will clear all the
parameters in the table.

It is not an error to supply <pname>s which do not exist in the table - these have no effect.

6.1.10 colmeta

Usage:
colmeta [-name <name>] [-units <units>] [-ucd <ucd>] [-utype <utype>]

[-desc <descrip>]
<colid-list>

Modifies the metadata of one or more columns. Some or all of the name, units, ucd, utype and
description of the column(s), identified by <colid-list> can be set by using some or all of the
listed flags. Typically, <colid-list> will simply be the name of a single column.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.11 delcols

Usage:
delcols <colid-list>

Delete the specified columns. The same column may harmlessly be specified more than once.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.12 every

Usage:
every <step>

Include only every <step>'th row in the result, starting with the first row.

6.1.13 explodeall

SUN/256 34

Usage:
explodeall [-ifndim <ndim>] [-ifshape <dims>]

Replaces any columns which is an N-element arrays with N scalar columns. Only columns with
fixed array sizes are affected. The action can be restricted to only columns of a certain shape using
the flags.

If the -ifndim flag is used, then only columns of dimensionality <ndim> will be exploded. <ndim>
may be 1, 2,

If the -ifshape flag is used, then only columns with a specific shape will be exploded; <dims> is a
space- or comma-separated list of dimension extents, with the most rapidly-varying first, e.g. '2 5'
to explode all 2 x 5 element array columns.

6.1.14 explodecols

Usage:
explodecols <colid-list>

Takes a list of specified columns which represent N-element arrays and replaces each one with N
scalar columns. Each of the columns specified by <colid-list> must have a fixed-length array
type, though not all the arrays need to have the same number of elements.

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.15 fixcolnames

Usage:
fixcolnames

Renames all columns and parameters in the input table so that they have names which have
convenient syntax for STILTS. For the most part this means replacing spaces and other
non-alphanumeric characters with underscores. This is a convenience which lets you use column
names in algebraic expressions and other STILTS syntax.

6.1.16 head

Usage:
head <nrows>

Include only the first <nrows> rows of the table. If the table has fewer than <nrows> rows then it
will be unchanged.

6.1.17 keepcols

Usage:
keepcols <colid-list>

Select the columns from the input table which will be included in the output table. The output table
will include only those columns listed in <colid-list>, in that order. The same column may be
listed more than once, in which case it will appear in the output table more than once.

SUN/256 35

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.18 meta

Usage:
meta [<item> ...]

Provides information about the metadata for each column. This filter turns the table sideways, so
that each row of the output corresponds to a column of the input. The columns of the output table
contain metadata items such as column name, units, UCD etc corresponding to each column of the
input table.

By default the output table contains columns for the following items:

• Index: Position of column in table
• Name: Column name
• Class: Data type of objects in column
• Shape: Shape of array values
• ElSize: Size of each element in column (mostly useful for strings)
• Units: Unit string
• Description: Description of data in the column
• UCD: Unified Content Descriptor
• Utype: Type in data model

as well as any table-specific column metadata items that the table contains.

However, the output may be customised by supplying one or more <item> headings. These may be
selected from the above as well as the following:

• UCD_desc: Textual description of UCD

as well as any table-specific metadata. It is not an error to specify an item for which no metadata
exists in any of the columns (such entries will result in empty columns).

Any table parameters of the input table are propagated to the output one.

6.1.19 progress

Usage:
progress

Monitors progress by displaying the number of rows processed so far on the terminal (standard
error). This number is updated every second or thereabouts; if all the processing is done in under a
second you may not see any output. If the total number of rows in the table is known, an ASCII-art
progress bar is updated, otherwise just the number of rows seen so far is written.

6.1.20 random

Usage:
random

Ensures that random access is available on this table. If the table currently has random access, it has
no effect. If only sequential access is available, the table is cached so that downstream steps will see
the cached, hence random-access, copy.

SUN/256 36

6.1.21 randomview

Usage:
randomview

Ensures that steps downstream only use random access methods for table access. If the table is
sequential only, this will result in an error. Only useful for debugging.

6.1.22 repeat

Usage:
repeat <count>

Repeats the rows of a table multiple times to produce a longer table. The output table will have
<count> times as many rows as the input table.

6.1.23 replacecol

Usage:
replacecol [-name <name>] [-units <units>] [-ucd <ucd>] [-utype <utype>]

[-desc <descrip>]
<col-id> <expr>

Replaces the content of a column with the value of an algebraic expression. The old values are
discarded in favour of the result of evaluating <expr>. You can specify the metadata for the new
column using the -name, -units, -ucd, -utype and -desc flags; for any of these items which you do
not specify, they will take the values from the column being replaced.

It is legal to reference the replaced column in the expression, so for example "replacecol pixsize

pixsize*2" just multiplies the values in column pixsize by 2.

Syntax for the <col-id> and <expr> arguments is described in the manual.

6.1.24 replaceval

Usage:
replaceval <old-val> <new-val> <colid-list>

For each column specified in <colid-list> any instance of <old-val> is replaced by <new-val>.
The value string 'null' can be used for either <old-value> or <new-value> to indicate a blank value
(but see also the badval filter).

Syntax for the <colid-list> argument is described in Section 6.3.

6.1.25 rowrange

Usage:
rowrange <first> <last>|+<count>

Includes only rows in a given range. The range can either be supplied as "<first> <last>", where
row indices are inclusive, or "<first> +<count>". In either case, the first row is numbered 1.

SUN/256 37

Thus, to get the first hundred rows, use either "rowrange 1 100" or "rowrange 1 +100" and to get
the second hundred, either "rowrange 101 200" or "rowrange 101 +100"

6.1.26 select

Usage:
select <expr>

Include in the output table only rows for which the expression <expr> evaluates to true. <expr>
must be an expression which evaluates to a boolean value (true/false).

Syntax for the <expr> argument is described in Section 9.

6.1.27 seqview

Usage:
seqview

Ensures that steps downstream see the table as sequential access. Any attempts at random access
will fail. Only useful for debugging.

6.1.28 setparam

Usage:
setparam [-type byte|short|int|long|float|double|boolean|string]

[-desc <descrip>] [-unit <units>] [-ucd <ucd>] [-utype <utype>]
<pname> <pval>

Sets a named parameter in the table to a given value. The parameter named <pname> is set to the
value <pval>. By default the type of the parameter is determined automatically (if it looks like an
integer it's an integer etc) but this can be overridden using the -type flag. The parameter description
may be set using the -desc flag.

6.1.29 sort

Usage:
sort [-down] [-nullsfirst] <key-list>

Sorts the table according to the value of one or more algebraic expressions. The sort key
expressions appear, as separate (space-separated) words, in <key-list>; sorting is done on the first
expression first, but if that results in a tie then the second one is used, and so on.

Each expression must evaluate to a type that it makes sense to sort, for instance numeric. If the
-down flag is used, the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nullsfirst flag is given then they are considered to come at the start instead.

Syntax for the <key-list> argument is described in Section 9.

6.1.30 sorthead

SUN/256 38

Usage:
sorthead [-tail] [-down] [-nullsfirst] <nrows> <key-list>

Performs a sort on the table according to the value of one or more algebraic expressions, retaining
only <nrows> rows at the head of the resulting sorted table. The sort key expressions appear, as
separate (space-separated) words, in <key-list>; sorting is done on the first expression first, but if
that results in a tie then the second one is used, and so on. Each expression must evaluate to a type
that it makes sense to sort, for instance numeric.

If the -tail flag is used, then the last <nrows> rows rather than the first ones are retained.

If the -down flag is used the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nullsfirst flag is given then they are considered to come at the start instead.

This filter is functionally equivalent to using sort followed by head, but it can be done in one pass
and is usually cheaper on memory and faster, as long as <nrows> is significantly lower than the size
of the table.

Syntax for the <key-list> argument is described in Section 9.

6.1.31 stats

Usage:
stats [<item> ...]

Calculates statistics on the data in the table. This filter turns the table sideways, so that each row of
the output corresponds to a column of the input. The columns of the output table contain statistical
items such as mean, standard deviation etc corresponding to each column of the input table.

By default the output table contains columns for the following items:

• Name: Column name
• Mean: Average
• StDev: Population Standard deviation
• Minimum: Numeric minimum
• Maximum: Numeric maximum
• NGood: Number of non-blank cells

However, the output may be customised by supplying one or more <item> headings. These may be
selected from the above as well as the following:

• NBad: Number of blank cells
• Variance: Population Variance
• SampStDev: Sample Standard Deviation
• SampVariance: Sample Variance
• MedAbsDev: Median Absolute Deviation
• ScMedAbsDev: Median Absolute Deviation * 1.4826
• Skew: Gamma 1 skewness measure
• Kurtosis: Gamma 2 peakedness measure
• Sum: Sum of values
• MinPos: Row index of numeric minimum
• MaxPos: Row index of numeric maximum
• Cardinality: Number of distinct values in column; values >100 ignored

SUN/256 39

• Median: Middle value in sequence
• Quartile1: First quartile
• Quartile2: Second quartile
• Quartile3: Third quartile

Additionally, the form "Q.nn" may be used to represent the quantile corresponding to the proportion
0.nn, e.g.:

• Q.25: First quartile
• Q.625: Fifth octile

Any parameters of the input table are propagated to the output one.

Note that quantile calculations (including median and quartiles) can be expensive on memory. If
you want to calculate quantiles for large tables, it may be wise to reduce the number of columns to
only those you need the quantiles for earlier in the pipeline. No interpolation is performed when
calculating quantiles.

6.1.32 tablename

Usage:
tablename <name>

Sets the table's name attribute to the given string.

6.1.33 tail

Usage:
tail <nrows>

Include only the last <nrows> rows of the table. If the table has fewer than <nrows> rows then it will
be unchanged.

6.1.34 transpose

Usage:
transpose [-namecol <col-id>]

Transposes the input table so that columns become rows and vice versa. The -namecol flag can be
used to specify a column in the input table which will provide the column names for the output
table. The first column of the output table will contain the column names of the input table.

Syntax for the <col-id> argument is described in Section 6.2.

6.1.35 uniq

Usage:
uniq [-count] [<colid-list>]

Eliminates adjacent rows which have the same values. If used with no arguments, then any row
which has identical values to its predecessor is removed.

If the <colid-list> parameter is given then only the values in the specified columns must be equal

SUN/256 40

in order for the row to be removed.

If the -count flag is given, then an additional column with the name DupCount will be prepended to
the table giving a count of the number of duplicated input rows represented by each output row. A
unique row has a DupCount value of 1.

Syntax for the <colid-list> argument is described in Section 6.3.

6.2 Specifying a Single Column

If an argument is specified in the help text for a command with the symbol <col-id> it means you
must give a string which identifies one of the existing columns in a table.

There are three ways you can specify a column in this context:

Column Name
The name of the column may be used if it contains no spaces and doesn't start with a minus
character ('-'). It is usually matched case insensitively. If multiple columns have the same
name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; this is a useful fallback if the column name isn't
suitable for some reason. The first column is '1', the second is '2' and so on. You may
alternatively use the forms '$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running tpipe with
omode=meta or omode=stats on the table may help.

Column ucd$ specifier
If the column has a Unified Content Descriptor (this will usually only be the case for VOTable
or possibly FITS format tables) you can refer to it using an identifier of the form
"ucd$<ucd-spec>". Depending on the version of UCD scheme used, UCDs can contain various
punctuation marks such as underscores, semicolons and dots; for the purpose of this syntax
these should all be represented as underscores ("_"). So to identify a column which has the
UCD "phot.mag;em.opt.R", you should use the identifier "ucd$phot_mag_em_opt_r".
Matching is not case-sensitive. Futhermore, a trailing underscore acts as a wildcard, so that the
above column could also be referenced using the identifier "ucd$phot_mag_". If multiple
columns have UCDs which match the given identifer, the first one will be used.

Column utype$ specifier
If the column has a Utype (this will usually only be the case for VOTable or possibly FITS
format tables) you can refer to it using an identifier of the form "utype$<utype-spec>".
Utypes may contain various punctuation marks such as colons and dots; for the purpose of this
syntax these should all be represented as underscores ("_"). So to identify a column which has
the Utype "ssa:Access.Format", you should use the identifier "utype$ssa_Access_format".
Matching is not case-sensitive. If multiple columns have Utypes which match the given
identifier, the first one will be used.

6.3 Specifying a List of Columns

If an argument is specified in the help text for a command with the symbol <colid-list> it means
you must give a string which identifies a list of zero, one or more of the existing columns in a table.
The string you specify is a separated into separate tokens by whitespace, which means that you will
normally have to surround it in single or double quotes to ensure that it is treated as a single
argument and not several of them.

Each token in the <colid-list> string may be one of the following:

SUN/256 41

Column Name
The name of a column may be used if it contains no spaces and doesn't start with a minus
character ('-'). It is usually matched case insensitively. If multiple columns have the same
name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; this is a useful fallback if the column name isn't
suitable for some reason. The first column is '1', the second is '2' and so on. You may
alternatively use the forms '$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running tpipe with
omode=meta or omode=stats on the table may help.

Wildcard Expression
You can use a simple form of wildcard expression which expands to any columns in the table
whose names match the pattern. Currently, the only special character is an asterisk '*' which
matches any sequence of characters. To match an unknown sequence at the start or end of the
string an asterisk must be given explicitly. Other than that, matching is usually case
insensitive. The order of the expanded list is the same as the order in which the columns
appear in the table.

Thus "col*" will match columns named col1, Column2 and COL_1024, but not decOld. "*MAG*"
will match columns named magnitude, ABS_MAG_U and JMAG. "*" on its own expands to a list of
all the columns of the table in order.

Specifying a list which contains a given column more than once is not usually an error, but what
effect it has depends on the function you are executing.

6.4 Output Modes

This section lists the output modes which can be used as the value of the omode parameter of tpipe
and other commands. Typically, having produced a result table by pipeline processing an input one,
you will write it out by specifying omode=out (or not using the omode parameter at all - out is the
default). However, you can do other things such as calculate statistics, display metadata, etc. In
some of these cases, additional parameters are required. The different output modes, with their
associated parameters, are described in the following subsections.

6.4.1 cgi

Usage:
omode=cgi ofmt=<out-format>

Writes a table to standard output in a way suitable for use as output from a CGI (Common Gateway
Interface) program. This is very much like out mode but a short CGI header giving the MIME
Content-Type is prepended to the output

Additional parameters for this output mode are:

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters).

[Default: votable]

6.4.2 count

SUN/256 42

Usage:
omode=count

Counts the number of rows and columns and writes the result to standard output.

6.4.3 discard

Usage:
omode=discard

Reads all the data in the table in sequential mode and discards it. May be useful in conjunction with
the assert filter.

6.4.4 meta

Usage:
omode=meta

Prints the table metadata to standard output. The name and type etc of each column is tabulated, and
table parameters are also shown.

See the meta filter for more flexible output of table metadata.

6.4.5 out

Usage:
omode=out out=<out-table> ofmt=<out-format>

Writes a new table.

Additional parameters for this output mode are:

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

[Default: -]

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (auto)]

6.4.6 plastic

Usage:
omode=plastic transport=string|file client=<app-name>

Broadcasts the table to any registered Plastic-aware applications. PLASTIC, the PLatform for

SUN/256 43

AStronomical Tool InterConnection, is a tool interoperability protocol. A Plastic hub must be
running in order for this to work.

Additional parameters for this output mode are:

transport = string|file

Determines the method (PLASTIC message) used to perform the PLASTIC communication.
The choices are

• string: VOTable serialized as a string and passed as a call parameter
(ivo://votech.org/votable/load). Not suitable for very large files.

• file: VOTable written to a temporary file and the filename passed as a call parameter
(ivo://votech.org/votable/loadFromURL). The file ought to be deleted once it has been
loaded. Not suitable for inter-machine communication.

If no value is set (null) then a decision will be taken based on the apparent size of the table.

client = <app-name>

Gives the name of a PLASTIC listener application which is to receive the broadcast table. If a
non-null value is given, then only the first registered application which reports its application
name as that value will receive the message. If no value is supplied, the broadcast will be to all
listening applications.

6.4.7 samp

Usage:
omode=samp format=<value> client=<name-or-id>

Sends the table to registered SAMP-aware applications subscribed to a suitable table load MType.
SAMP, the Simple Application Messaging Protocol, is a tool interoperability protocol. A SAMP
Hub must be running for this to work.

Additional parameters for this output mode are:

format = <value>

Gives one or more table format types for attempting the table transmission over SAMP. If
multiple values are supplied, they should be separated by spaces. Each value supplied for this
parameter corresponds to a different MType which may be used for the transmission. If a
single value is used, a SAMP broadcast will be used. If multiple values are used, each
registered client will be interrogated to see whether it subscribes to the corresponding MTypes
in order; the first one to which it is subscribed will be used to send the table. The standard
options are

• votable: use MType table.load.votable

• fits: use MType table.load.fits

If any other string is used which corresponds to one of STILTS's known table output formats,
an attempt will be made to use an ad-hoc MType of the form table.load.format.

[Default: votable fits]

client = <name-or-id>

Identifies a registered SAMP client which is to receive the table. Either the client ID or the
(case-insensitive) application name may be used. If a non-null value is given, then the table
will be sent to only the first client with the given name or ID. If no value is supplied the table
will be sent to all suitably subscribed clients.

SUN/256 44

6.4.8 stats

Usage:
omode=stats

Calculates and displays univariate statistics for each of the numeric columns in the table. The
following entries are shown for each column as appropriate:

• mean
• population standard deviation
• minimum
• maximum
• number of non-null entries

See the stats filter for more flexible statistical calculations.

6.4.9 topcat

Usage:
omode=topcat

Attempts to display the output table directly in TOPCAT. If a TOPCAT instance is already running
on the local host, an attempt will be made to open the table in that. A variety of mechanisms are
used to attempt communication with an existing TOPCAT instance. In order:

1. SAMP using existing hub (TOPCAT v3.4+ only, requires SAMP hub to be running)
2. PLASTIC using existing hub (requires PLASTIC hub to be running)
3. SOAP (requires TOPCAT to run with somewhat deprecated -soap flag, may be limitations on

table size)
4. SAMP using internal, short-lived hub (TOPCAT v3.4+ only, running hub not required, but

may be slow. It's better to start an external hub, e.g. topcat -exthub)

Failing that, an attempt will be made to launch a new TOPCAT instance for display. This only
works if the TOPCAT classes are on the class path.

If large tables are involved, starting TOPCAT with the -disk flag is probably a good idea.

6.4.10 tosql

Usage:
omode=tosql protocol=<jdbc-protocol> host=<value> db=<db-name>

dbtable=<table-name> write=create|dropcreate|append
user=<username> password=<passwd>

Writes a new table to an SQL database. You need the appropriate JDBC drivers and
-Djdbc.drivers set as usual (see Section 3.4).

Additional parameters for this output mode are:

protocol = <jdbc-protocol>

The driver-specific sub-protocol specifier for the JDBC connection. For MySQL's Connector/J
driver, this is mysql, and for PostgreSQL's driver it is postgresql. For other drivers, you may
have to consult the driver documentation.

host = <value>

SUN/256 45

The host which is acting as a database server.

[Default: localhost]

db = <db-name>

The name of the database on the server into which the new table will be written.

dbtable = <table-name>

The name of the table which will be written to the database.

write = create|dropcreate|append

Controls how the values are written to a table in the database. The options are:

• create: Creates a new table before writing. It is an error if a table of the same name
already exists.

• dropcreate: Creates a new database table before writing. If a table of the same name
already exists, it is dropped first.

• append: Appends to an existing table. An error results if the named table has the wrong
structure (number or types of columns) for the data being written.

[Default: create]

user = <username>

User name for the SQL connection to the database.

[Default: mbt]

password = <passwd>

Password for the SQL connection to the database.

SUN/256 46

7 Crossmatching

STILTS offers flexible and efficient facilities for crossmatching tables. Crossmatching is
identifying different rows, which may be in the same or different tables, that refer to the same item.
In an astronomical context such an item is usually, though not necessarily, an astronomical source
or object. This operation corresponds to what in database terminology is called a join.

There are various complexities to specifying such a match. In the first place you have to define
what is the condition that must be satisfied for two rows to be considered matching. In the second
place you must decide what happens if, for a given row, more than one match can be found. Finally,
you have to decide what to do having worked out what the matched rows are; the result will
generally be presented as a new output table, but there are various choices about what columns and
rows it will consist of. Some of these issues are discussed in this section, and others in the reference
sections on the tools themselves in Appendix B.

Matching can in general be a computationally intensive process. The algorithm used by the tmatch*

tasks in STILTS, except in pathological cases, scales as O(N log(N)) or thereabouts, where N is the
total number of rows in all the tables being matched. No preparation (such as sorting) is required on
the tables prior to invoking the matching operation. It is reasonably fast; for instance an RA, Dec
positional match of two 105-row catalogues takes of the order of 60 seconds on current (2005
laptop) hardware. Attempting matches with large tables can lead to running out of memory; the
calculation just mentioned required a java heap size of around 200Mb (-Xmx200M).

In the current release of STILTS the following tasks are provided for crossmatching between local
tables:

tmatch2

Generic crossmatching between two tables.

tskymatch2

Crossmatching between two tables where the matching criterion is a fixed separation on the
sky. This is simply a stripped-down version of tmatch2 provided for convenience when the
full generality is not required.

tmatch1

Generic crossmatching internal to a single table. The basic task this performs is to identify
groups of rows within a single table which match each other.

tmatchn

Generic crossmatching between multiple (>2) tables.

tjoin

Trivial join operation between multiple tables in which no row re-ordering is required. This
barely warrants the term "crossmatch" and the concepts explained in the rest of this section are
not relevant to it.

7.1 Match Criteria

Determining whether one row represents the same item as another is done by comparing the values
in certain of their columns to see if they are the same or similar. The most common astronomical
case is to say that two rows match if their celestial coordinates (right ascension and declination) are
within a given small radius of each other on the sky. There are other possibilities; for instance the
coordinates to compare may be in a Cartesian space, or have a higher (or lower) dimensionality than
two, or the match may be exact rather than within an error radius....

If you just need to match two tables according to sky position with fixed errors you are

SUN/256 47

recommended to use the simplified tskymatch2 task. For other cases, this section describes how to
specify much more flexible match criteria for use with tmatch1, tmatch2 or tmatchn by setting the
following parameters:

matcher

Name of the match criteria type.

params

Fixed value(s) giving the parameters of the match (typically an error radius). If more than one
value is required, the values should be separated by spaces.

values*

Expressions to be compared between rows. This will typically contain the names of one or
more columns, but each element may be an algebraic expression (see Section 9) rather than
just a column name if required. If more than one value is required, the values should be
separated by spaces. There is one of these parameters for each table taking part in the match,
so for tmatch2 you must specify both values1 and values2.

tuning

Fixed value(s) supplying tuning parameters for the match algorithm. If there is more than one
value, they should be separated by spaces. This value will have a sensible default, so you do
not need to supply it, but providing adjusted values may make your match run faster or require
less memory (or the reverse). Adjusting tuning parameters will not change the result of any
match, only the resources required to run it. Looking at the progress output of a match will
indicate what tuning values have been used; adjusting the value a bit up or down is a good way
to experiment.

For example, suppose we wish to locate objects in two tables which are within 3 arcseconds of each
other on the sky. One table has columns RA and DEC which give coordinates in degrees, and the
other has columns RArad and DECrad which give coordinates in radians. These are the arguments
which would be used to tell tmatch2 what the match criteria are:

matcher=sky
params=3
values1='RA DEC'
values2='radiansToDegrees(RArad) radiansToDegrees(DECrad)'

It is clearly important that corresponding values are comparable (in the same units) between the
tables being matched, and in geometrically sensitive cases such as matching on the sky, it's
important that they are the units expected by the matcher as well. To determine what those units are,
either consult the roster below, or run the following command:

stilts tmatch2 help=matcher

which will tell you about all the known matchers and their associated params, values* and tuning

parameters.

The following subsections list the basic matcher types and the requirements of their associated
params, values* and tuning parameters. The units of the required values are given where
significant.

7.1.1 sky: Sky Matching

matcher=sky values*='<ra/degrees> <dec/degrees>'
params='<max-error/arcsec>'
tuning='<healpix-k>'

values*:

SUN/256 48

• ra/degrees: Right Ascension
• dec/degrees: Declination

params:

• max-error/arcsec: Maximum separation along a great circle

tuning:

• healpix-k: Controls sky pixel size. Legal range 0 - 20. 0 is 60deg, 20 is 0.2".

The sky matcher compares positions on the celestial sphere with a fixed error radius. Rows are
considered to match when the two (ra, dec) positions are within max-error arcseconds of each
other along a great circle.

In fact this matching is not restricted to equatorial coordinates - the ra and dec parameters may
represent any longitude-like and latitude-like coordinates in degrees, since the spherical geometry
for the matching is unchanged under such transformations.

7.1.2 skyerr: Sky Matching with Per-Object Errors

matcher=skyerr values*='<ra/degrees> <dec/degrees> <error/arcsec>'
params='<scale/arcsec>'
tuning='<healpix-k>'

values*:

• ra/degrees: Right Ascension
• dec/degrees: Declination
• error/arcsec: Per-object error radius along a great circle

params:

• scale/arcsec: Rough average of per-object error distance; just used for tuning to
set default pixel size

tuning:

• healpix-k: Controls sky pixel size. Legal range 0 - 20. 0 is 60deg, 20 is 0.2".

The skyerr matcher compares positions on the celestial sphere using error radii which can be
different for each row. Rows are considered to match when the separation between the two ra, dec
positions is no larger than the sum of the two per-row error values.

The scale parameter should be a rough average value of the error distances. It is used only to set a
sensible default for healpix-k tuning parameter, and its value does not affect the result. If you set
healpix-k directly, its value is ignored.

As with sky matching, other longitude/latitude coordinate pairs may be used in place of right
ascension and declination.

Note: the semantics of this matcher have changed slightly at version 2.4 of STILTS. In earlier
versions the single parameter was named max-error and provided an additional constraint on the
maximum accepted separation between matched objects. For most uses, the old and new behaviours

SUN/256 49

are expected to give the same results, but in cases of difference, the new behaviour is more likely
what you want.

7.1.3 skyellipse: Sky Matching of Elliptical Regions

matcher=skyellipse values*='<ra/degrees> <dec/degrees> <primary-radius/arcsec>
<secondary-radius/arcsec>
<position-angle/degrees>'

params='<scale/arcsec>'
tuning='<healpix-k>'

values*:

• ra/degrees: Right ascension of centre
• dec/degrees: Declination of centre
• primary-radius/arcsec: Length of ellipse semi-major axis
• secondary-radius/arcsec: Length of ellipse semi-minor axis
• position-angle/degrees: Position angle - measured from north pole to primary

axis, in direction of positive RA

params:

• scale/arcsec: Rough average of ellipse major radius; just used for tuning to set
default pixel size

tuning:

• healpix-k: Controls sky pixel size. Legal range 0 - 20. 0 is 60deg, 20 is 0.2".

The skyellipse matcher compares elliptical regions on the sky for overlap. Each row has to
provide five values, giving the centre, the major and minor radii, and the position angle of an
ellipse. Rows are considered to match if there is any overlap between the ellipses. The goodness of
match is a normalised generalisation of the symmetrical case used by the skyerr matcher, in which
the best possible match is two concentric ellipses, and the worst allowable match is when the
circumferences just touch.

The calculations are approximate since in some cases they rely on projecting the ellipses onto a
Cartesian tangent plane before evaluating the match, so for larger ellipses the criterion will be less
exact. For objects the size of most observed stars or galaxies, this approximation is not expected to
be problematic.

The scale parameter must be supplied, and should be a rough average value of the major radii. it is
used only to set a sensible default for the healpix-k tuning parameter, and its value does not affect
the result. If you set healpix-k directly, the value of scale is ignored.

7.1.4 sky3d: Spherical Polar Matching

matcher=sky3d values*='<ra/degrees> <dec/degrees> <distance>'
params='<error/units of distance>'
tuning='<bin-factor>'

values*:

• ra/degrees: Right Ascension
• dec/degrees: Declination
• distance: Distance from origin

SUN/256 50

params:

• error/units of distance: Maximum Cartesian separation for match

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The sky3d matcher compares positions in the volume of the sky taking account of distance from the
observer. The position in three-dimensional space is calculated for each row using the ra, dec and
distance as spherical polar coordinates, where distance is the distance from the observer along
the line of sight. Rows are considered to match when their positions in this space are within error

units of each other. The units of error are the same as those of distance.

As with sky matching, other longitude/latitude coordinate pairs may be used in place of right
ascension and declination.

7.1.5 exact: Exact Matching

matcher=exact values*='<matched-value>'

values*:

• matched-value: Value for exact match

The exact matcher compares arbitrary key values for exact equality. Rows are considered to match
only if the values in their matched-value columns are exactly the same. These values can be
strings, numbers, or anything else. A blank value never matches, not even with another blank one.
Since the params parameter holds no values, it does not have to be specified. Note that the values
must also be of the same type, so for instance a Long (64-bit) integer value will not match an
Integer (32-bit) value.

7.1.6 1d, 2d, ...: Isotropic Cartesian Matching

matcher=1d values*='<x>'
params='<error>'
tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1

params:

• error: Maximum Cartesian separation for match

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

matcher=2d values*='<x> <y>'
params='<error>'

SUN/256 51

tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1
• y: Cartesian co-ordinate #2

params:

• error: Maximum Cartesian separation for match

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 1d matcher compares positions in 1-dimensional Cartesian space. Rows are considered to
match if their x column values differ by no more than error.

The 2d matcher compares postions in 2-dimensional Cartesian space. Rows are considered to match
if the difference in their (x,y) positions reckoned using Pythagoras is less than error.

Matching in any number of Cartesian dimensions can be done by extending this syntax in the
obvious way.

7.1.7 2d_anisotropic, ...: Anisotropic Cartesian Matching

matcher=2d_anisotropic values*='<x> <y>'
params='<error-in-x> <error-in-y>'
tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1
• y: Cartesian co-ordinate #2

params:

• error-in-x: Axis length of error ellipse in Cartesian co-ordinate #1 direction
• error-in-y: Axis length of error ellipse in Cartesian co-ordinate #2 direction

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_anisotropic matcher compares positions in 2-dimensional Cartesian space using an
anisotropic metric. Rows are considered to match if their (x,y) positions fall within an error ellipse
with axis lengths error-in-x, error-in-y of each other. This kind of match will typically be used
for non-'spatial' spaces, for instance (magnitude,redshift) space, in which the metrics along different
axes are not related to each other.

Matching in any number of dimensions of Cartesian space using an anisotropic metric can be done
by extending this syntax in the obvious way.

7.1.8 2d_cuboid, ...: Cuboid Cartesian Matching

SUN/256 52

matcher=2d_cuboid values*='<x> <y>'
params='<error-in-x> <error-in-y>'
tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1
• y: Cartesian co-ordinate #2

params:

• error-in-x: Half length of cuboid in Cartesian co-ordinate #1 direction
• error-in-y: Half length of cuboid in Cartesian co-ordinate #2 direction

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_cuboid matcher compares positions in 2-dimensional Cartesian space in cuboidal cells.
Rows are considered to match if their (x,y) positions fall within an error cuboid with half-axis
lengths error-in-x, error-in-y of each other. This kind of match is suitable for grouping items
into pixels, though it's not a very efficient way of doing that.

Matching in any number of dimensions using N-dimensional hyper-cuboids can be done by
extending this syntax in the obvious way.

7.1.9 1d_err, 2d_err, ...: Cartesian Matching with Per-Object Errors

matcher=2d_err values*='<x> <y> <error>'
params='<scale>'
tuning='<bin-factor>'

values*:

• x: Cartesian co-ordinate #1
• y: Cartesian co-ordinate #2
• error: Per-object error radius

params:

• scale: Rough average of per-object error distance; just used for tuning in
conjunction with bin factor

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 1d_err, 2d_err, ... matchers compare positions in N-dimensional Cartesian space like the 1d,
2d matchers described in Section 7.1.6, except that the match radius can be different for each row.
Rows are considered to match when the separation reckoned by Pythagoras between the x, y, ...
positions is no larger than the sum of the two per-row error values. Matching in any number of
Cartesian dimensions can be done by extending this syntax in the obvious way.

The scale parameter must be supplied, and should be approximately the characteristic size of the
per-object error values. In conjunction with the bin-factor tuning parameter its value affects the

SUN/256 53

performance of the match, but not the result.

7.1.10 2d_ellipse: Cartesian Matching of Elliptical Regions

matcher=2d_ellipse values*='<x> <y> <primary-radius> <secondary-radius>
<orientation-angle/degrees>'

params='<scale>'
tuning='<bin-factor>'

values*:

• x: X coordinate of centre
• y: Y coordinate of centre
• primary-radius: Length of ellipse semi-major axis
• secondary-radius: Length of ellipse semi-minor axis
• orientation-angle/degrees: Angle from X axis towards Y axis of semi-major

axis

params:

• scale: Rough average of per-object error distance; just used for tuning in
conjunction with bin factor

tuning:

• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_ellipse matcher compares elliptical regions in a 2d plane for overlap. Each row has to
specify five values, giving the centre, the major and minor radii, and the orientation angle of an
ellipse. Rows are considered to match if there is any overlap between the ellipses. The goodness of
match is a normalised generalisation of the symmetrical case used by the isotropic matcher, in
which the best possible match is two concentric ellipses, and the worst allowable match is when the
circumferences just touch.

Note the orientation angle is measured anticlockwise from the horizontal, unlike the position angle
used by the skyellipse matcher.

The scale parameter must be supplied, and should be approximately the characteristic size of the
per-object major radius. In conjunction with the bin-factor tuning parameter its value affects the
performance of the match, but not the result.

7.1.11 Custom Matchers

For advanced users, it is possible to supply the name of a class on the classpath which implements
the uk.ac.starlink.table.join.MatchEngine interface and which has a no-arg constructor. This
allows java programmers to write their own matchers using any match criteria and binning
algorithms they choose.

7.1.12 Matcher Combinations

In addition to the matching criteria listed in the previous subsections, you can build your own by
combining any of these. To do this, take the two (or more) matchers that you want to use, and
separate their names with a "+" character. The values* parameters of the combined matcher should
then hold the concatenation of the values* entries of the constituent matchers, and the same for the
params parameter.

SUN/256 54

So for instance the matcher "sky+1d" could be used with the following syntax:
matcher=sky+1d values*='<ra/degrees> <dec/degrees> <x>'

params='<max-error/arcsec> <error>'
tuning='<healpix-k> <bin-factor>'

values*:

• ra/degrees: Right Ascension
• dec/degrees: Declination
• x: Cartesian co-ordinate #1

params:

• max-error/arcsec: Maximum separation along a great circle
• error: Maximum Cartesian separation for match

tuning:

• healpix-k: Controls sky pixel size. Legal range 0 - 20. 0 is 60deg, 20 is 0.2".
• bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

This would compare positions on the sky with an additional scalar constraint. Rows are considered
to match if both their ra, dec positions are within max-error arcseconds of each other along a great
circle (as for matcher=sky) and their x values differ by no more than error (as for matcher=1d).

This example might be used for instance to identify objects from two catalogues which are within a
couple of arcseconds and also 0.5 blue magnitudes of each other. Rolling your own matchers in this
way can give you very flexible match constraints.

7.2 Multi-Object Matches

The generic matching in STILTS is determined by specified match criteria, as described in Section
7.1. These criteria give conditions for whether two items (table rows) count as matched with each
other. In the case of a pair match, as provided by tmatch2, it is clear how this is to be interpreted.

However, some of the matching tasks (tmatchn in group mode and tmatch1) search for match
groups which may have more than two members. This section explains precisely how STILTS
applies the pair-wise matching criteria it is given to identifying multi-object groups.

In a multi-object match context, the matcher identifies a matched group as the largest possible
group of objects in which each is linked by a pair match to any other object in the group - it is a
group of "friends of friends". Formally, the set of matched groups is a set of disjoint graphs whose
nodes are input table rows and whose edges are successful pair matches, where no successful pair
match exists between nodes in different elements of that set. Thus the set has a minimal number of
elements, and each of its elements is a matched group of maximal size. The important point to note
is that for any particular pair in a matched group, there is no guarantee that the two objects match
each other, only that you can hop from one to the other via pairs which do match.

So in the case of a multi-object sky match on a field which is very crowded compared to the
specified error radius, it is quite possible for all the objects in the input table(s) to end up as part of
the same large matching group. Results at or near this percolation threshold are (a) probably not
useful and (b) likely to take a long time to run. Some care should therefore be exercised when
specifying match criteria in multi-object match contexts.

SUN/256 55

8 Plotting

As of Version 2.0 (October 2008), STILTS offers table plotting commands. These acquire a data
point from each line of one or more input tables, perhaps influenced by the pipelining operations
described in Section 6, and generate some kind of graphical plot from the result. At time of writing,
the following plot types are available:

• plot2d: 2D Scatter Plot
• plot3d: 3D Scatter Plot
• plothist: Histogram

but see also tcube for generating N-dimensional histograms as FITS files. It is hoped to add more
plot types in future releases.

The plotting commands offer considerable control over what is plotted and how it is represented,
and thus unavoidably have rather a large number of parameters. When looking at the command
documentation in Appendix B the Usage sections may look rather daunting. However, the
discussion below and the Examples sections should help. Generating a simple plot is
straightforward and can be done with only three or four parameters; if you have more complicated
requirements for data selection or specific preferences for appearance then you can consult the
documentation for the additional options.

As a simple example, if a file "cat.fits" contains the columns RMAG and BMAG for red and blue
magnitudes, you can draw a two-dimensional colour-magnitude scatter plot with the command:

stilts plot2d in=cat.fits xdata=RMAG ydata=BMAG-RMAG

Since an output file is not specified, the plot is shown on the screen for convenience. To send the
output to a PNG file, do instead:

stilts plot2d in=cat.fits xdata=RMAG ydata=BMAG out=plot.png ofmt=png

in some cases (including the above), the ofmt parameter is not required since STILTS may be able
to guess the format from the output file name. Various other options for output and graphics formats
are described in Section 8.2 and Section 8.3

Some of the parameters use suffixes to define data sets and therefore behave a bit differently from
the parameters elsewhere in STILTS - a discussion of these is given in the following subsection.
Some other plotting-specific topics are also discussed below.

8.1 Parameter Suffixes

Some of the parameters for the plotting tasks behave a little bit differently to other parameters in
STILTS, in order to accommodate related sets of values. If you look at the usage of one of the
plotting commands, for instance in Appendix B.7.1, you will see that a number of the parameters
have the suffixes "N" or "NS". These suffixes can be substituted with any convenient string to
identify parameters which relate to the same input datasets or subsets. Specifically:

Suffix "N":
Denotes an input dataset. At least the inN parameter must be given to identify the source of the
data; any other parameters with the same value of the N suffix relate to that dataset. A dataset
here refers to a particular set of plot data from a table; in most cases each input table
corresponds to a different dataset, though two datasets may correspond to different sets of
columns from the same table.

Suffix "NS":
Denotes a particular subset of the rows in dataset N. At least the subsetNS parameter must be
given to identify the expression by which the subset is defined; any other parameters with the

SUN/256 56

same value of the NS suffix relate to that subset.

Some examples will help to illustrate. The following will generate a Cartesian plot of catalogue
position from a single dataset:

stilts plot2d in=gals.fits xdata=RA ydata=DEC

In this case the N suffix is present on each of the parameters in, xdata and ydata, but is equal to the
empty string, hence invisible. This is perfectly legal, and convenient when only a single table is in
use. If we wish to overplot two datasets however, the dataset suffixes (or one of them at least) have
to be made explicit so that different ones can be used, for instance:

stilts plot2d in1=gals.fits xdata1=RA ydata1=DEC
in2=stars.fits xdata2=RAJ2000 ydata2=DEJ2000

The suffix values "1" and "2" are quite arbitrary and can be chosen as convenient, so the following
would do exactly the same as the previous example:

stilts plot2d in_GAL=gals.fits xdata_GAL=RA ydata_GAL=DEC
in_STAR=stars.fits xdata_STAR=RAJ2000 ydata_STAR=DEJ2000

The other parameters which have the N suffix apply only to the matching dataset, so for instance the
following:

stilts plot2d in1=gals.fits xdata1=RA ydata1=DEC txtlabel1=NGC_ID
in2=stars.fits xdata2=RAJ2000 ydata2=DEJ2000

would draw text labels adjacent to the points from only the gals.fits file giving the contents of its
NGC_ID column.

The NS suffix identifies distinct row subsets within the same or different datasets. A subset is
defined by supplying a boolean inclusion expression (each row is included only if the expression
evaluates true for that row) as the value of a subsetNS parameter. If, as in all the examples we have
seen so far, no subsetNS parameter is supplied for a given dataset, then it is treated as a special
case, as if a single subset with a name equal to the empty string (S="") containing all rows has been
specified. So our earlier simple example:

stilts plot2d in=gals.fits xdata=RA ydata=DEC

is equivalent to

stilts plot2d in=gals.fits xdata=RA ydata=DEC subset=true

If we wish to split the plotted points into two sets based on their R-B colours, we can write
something like:

stilts plot2d in=gals.fits xdata=RA ydata=DEC
subsetX='RMAG-BMAG>0' subsetY='RMAG-BMAG<=0'

This will generate a plot with two subsets shown using different colours and/or plotting symbols.
These colours and symbols are selected automatically. More control over the appearance can be
exercised by setting values for some of the other parameters with NS suffixes, for instance

stilts plot2d in=gals.fits xdata=RA ydata=DEC
subset_A='RMAG-BMAG>0' colour_A=blue
subset_B='RMAG-BMAG<=0' colour_B=red

Again, the suffix strings can be chosen to have any value as convenient.

The dataset- and subset-specific parameters must be put together if there are multiple datasets with
multiple subsets to plot simultaneously, for instance:

SUN/256 57

stilts plot2d in_1=gals.fits xdata_1=RA ydata_1=DEC
subset_1_A='RMAG-BMAG>0' colour_1_A=blue
subset_1_B='RMAG-BMAG<=0' colour_1_B=red

in_2=stars.fits xdata_2=RAJ2000 ydata_2=DEJ2000
colour_2=green

Finally, it's not quite true that the suffixes chosen have no effect on the plot; they may influence the
order in which sets are plotted. Markers drawn for sets plotted earlier may be obscured by the
markers drawn for sets plotted later, so this can affect the appearance of the plot. If you want to
control this, use the sequence parameter. For instance, to ensure that star data appears on top of
galaxy data in the plot, do the following:

stilts plot2d in_GAL=gals.fits xdata_GAL=RA ydata_GAL=DEC
in_STAR=stars.fits xdata_STAR=RAJ2000 ydata_STAR=DEJ2000
sequence=_GAL,_STAR

More examples can be found in the Examples subsections of the individual plotting command
descriptions in Appendix B.

8.2 Output Modes

The plots generated by the plotting commands can be used in various different ways. One thing you
might want to do is to write the output to a file in a given graphics format (out); another is to
preview it directly on the screen (swing). By default one or other of these will happen depending on
whether you specify an output file. However there are other possibilities; these are listed in the
following subsections.

Except for display to the screen, these modes should work happily on a headless machine (one with
no graphics display, as may be the case for a web server). When running headless, you may find it
necessary to set the java system property "java.awt.headless" to true - see Section 3.3.

The default output mode is auto, which means that output is to a file if an output file is specified, or
to the screen if it is not. So often you don't need to specify the omode parameter explicitly.

8.2.1 swing

Usage:
omode=swing

Plot will be displayed in a window on the screen.

8.2.2 out

Usage:
omode=out out=<out-file> ofmt=png|png-transp|gif|jpeg|pdf|eps|eps-gzip

Plot will be written to a file given by out using the graphics format given by ofmt.

8.2.3 cgi

Usage:
omode=cgi ofmt=png|png-transp|gif|jpeg|pdf|eps|eps-gzip

SUN/256 58

Plot will be written in a way suitable for CGI use direct from a web server. The output is in the
graphics format given by ofmt, preceded by a suitable "Content-type" declaration.

8.2.4 discard

Usage:
omode=discard

Plot is drawn, but discarded. There is no output.

8.2.5 auto

Usage:
omode=auto [out=<out-file>]

Behaves as swing or out mode depending on presence of out parameter

8.3 Output Formats

Several of the plot output modes write the plot in some graphics format or other. When selecting an
output format it is important to understand the distinction between bitmapped and vector formats;
basically bitmapped formats represent the image as a grid of finite-sized pixels while vector formats
notionally draw smooth lines. Bitmapped formats are fine for a computer screen, but for high
quality paper printouts you will want a vector format. You can convert from vector to bitmapped
but not (usefully) in the other direction. There are a couple of subtleties to this distinction specific
to STILTS graphical output as discussed below.

The following formats are the available values for the ofmt parameter of the various plot
commands:

png

PNG format. This is a flexible bitmapped format providing transparency and an unlimited
number of colours with good compression. It is fairly widely supported by browsers and other
image viewers, but perhaps not as widely as GIF.

gif

GIF format. This is a very widely-supported bitmapped format providing transparency. The
number of colours is limited to 255 however, so if you are using auxiliary axes (colour
variation to represent higher dimensionality) or other plot features which use a wide range of
colours you may see image degradation.

jpeg

JPEG format. This is a bitmapped format intended primarily for photographs. Transparency is
not supported, and although there is no limit on the maximum number of colours, its lossiness
means that plots generated using it generally look a bit smudged.

pdf

Portable Document Format. This is the format which can be read by Adobe's Acrobat Reader.
It is a widely portable vector format, and is suitable for printing at high resolution, either
standalone or imported into some other presentation format. However, there are a couple of
caveats when it comes to using it with STILTS plots.

1. If used to plot a very large number of points, the output PDF file can get quite large,
though it's much better than for eps output (see below).

2. Because of the way that STILTS does its transparency rendering, the only way that plots
with partially transparent points can be rendered is to draw the body of the plot as a

SUN/256 59

bitmap rather than as vector graphics. This is probably a blessing in disguise since with
very large numbers of points a vector PDF file could get unmanageably large in any case.
So if there is any transparency in the plot, the interior of the plot will be pixellated. The
axes and annotations outside of the plot will still be drawn in vector format however.

eps

Encapsulated Postscript. This is a vector format which is suitable for printing at high resolution
either standalone or imported into some other presentation format (you may need to convert it
via PDF depending on the intended destination). However, there are a couple of caveats when
it comes to using it with STILTS plots.

1. Unfortunately the postscript driver used by STILTS is not very efficient and can result in
large, sometimes very large, postscript output files. This is likely to be a problem for plots
with a large number of non-transparent points. For this reason eps-gzip or pdf may be a
better choice.

2. Postscript has no support for partial transparency, so if plots are drawn with partially
transparent points (common for very large data sets) the only way they can be rendered is
by drawing the body of the plot as a bitmap rather than as vector graphics. This is
probably a blessing in disguise since with very large numbers of points a vector postscript
file would likely be unmanageably large in any case. So if there is any transparency in the
plot, the interior of the plot will be pixellated. The axes and annotations outside of the
plot will still be drawn in vector format however.

eps-gzip

Just like the eps format above except that the output is automatically compressed using the
GZIP format as it is written. Postscript compresses well (typically a factor of 5-10).

8.4 Comparison with TOPCAT plotting

The intention is in future releases for STILTS to provide all the plot types and facilities which are
available from TOPCAT. STILTS may additionally offer more detailed options for controlling plot
appearance, for instance of font and colour selection and tick mark placement. At time of writing
however, only the 2d scatter plot, 3d Cartesian scatter plot and histogram plot types are available,
though these do include the most useful plot types and the most of the options from TOPCAT for
these plot types are available from STILTS too.

As well as the advantage (in some contexts) of being able to generate plots in a scriptable fashion
rather than from a graphical interactive interface, STILTS allows plots to be made from datasets of
unlimited size. While TOPCAT has an effective limit of a few million rows, STILTS can stream
data from tables to do its plotting, so a plot can be made representing an unlimited number of rows
without large memory requirements. In some cases this might lead to plotting times which are a bit
slower than TOPCAT - if this becomes an issue something may be done about it.

SUN/256 60

9 Algebraic Expression Syntax

Many of the STILTS commands allow you to use algebraic expressions based on table columns
when doing things like making row selections, defining new columns, selecting values to plot or
match, and so on. In these cases you are defining an expression which has a value in each row as a
function of the values in the existing columns in that row. This is a powerful feature which permits
you to manipulate and select table data in very flexible ways. The syntax for entering these
expressions is explained in this section.

What you write are actually expressions in the Java language, which are compiled into Java
bytecode before evaluation. However, this does not mean that you need to be a Java programmer to
write them. The syntax is pretty similar to C, but even if you've never programmed in C most
simple things, and many complicated ones, are quite intutitive.

The following explanation gives some guidance and examples for writing these expressions.
Unfortunately a complete tutorial on writing Java is beyond the scope of this document, but it
should provide enough information for even a novice to write useful expressions.

The expressions that you can write are basically any function of all the column values which apply
to a given row; the function result can then be used where STILTS needs a per-row value, for
instance to define a new column. If the built-in operators and functions are not sufficient, or it's
unwieldy to express your function in one line of code, it is possible to add new functions by writing
your own classes - see Section 9.7.3.

Note that since these algebraic expressions often contain spaces, you may need to enclose them in
single or double quotes so that they don't get confused with other parts of the command string.

Note: if Java is running in an environment with certain security restrictions (a security manager
which does not permit creation of custom class loaders) then algebraic expressions won't work at
all. It's not particularly likely that security restrictions will be in place if you are running from the
command line though.

9.1 Referencing Column Values

To create a useful expression which can be evaluated for each row in a table, you will have to refer
to cells in different columns of that row. You can do this in three ways:

By Name
The Name of the column may be used if it is unique (no other column in the table has the same
name) and if it has a suitable form. This means that it must have the form of a Java variable -
basically starting with a letter and continuing with letters, numbers, underscores and currency
symbols. In particular it cannot contain spaces, commas, parentheses etc.

As a special case, if an expression contains just a single column name, rather than some more
complicated expression, then any column name may be used, even one containing
non-alphanumeric characters.

Column names are treated case-insensitively.

By $ID
The "$ID" identifier of the column may always be used to refer to it; this is a useful fallback if
the column name isn't suitable for some reason (for instance it contains spaces or is not
unique). This is just a "$" sign followed by the column index - the first column is $1.

By ucd$ specifier
If the column has a Unified Content Descriptor (this will usually only be the case for VOTable
or possibly FITS format tables) you can refer to it using an identifier of the form

SUN/256 61

ucd$<ucd-spec>". Depending on the version of UCD scheme used, UCDs can contain various
punctuation marks such as underscores, semicolons and dots; for the purpose of this syntax
these should all be represented as underscores ("_"). So to identify a column which has the
UCD "phot.mag;em.opt.R", you should use the identifier "ucd$phot_mag_em_opt_r".
Matching is not case-sensitive. Futhermore, a trailing underscore acts as a wildcard, so that the
above column could also be referenced using the identifier "ucd$phot_mag_". If multiple
columns have UCDs which match the given identifer, the first one will be used.

Note that the same syntax can be used for referencing table parameters (see the next section);
columns take preference so if a column and a parameter both match the requested UCD, the
column value will be used.

By utype$ specifier
If the column has a Utype (this will usually only be the case for VOTable or possibly FITS
format tables) you can refer to it using an identifier of the form "utype$<utype-spec>".
Utypes can contain various punctuation marks such as colons and dots; for the purpose of this
syntax these should all be represented as underscores ("_"). So to identify a column which has
the Utype "ssa:Access.Format", you should use the identifier "utype$ssa_Access_Format".
Matching is not case-sensitive. If multiple columns have Utypes which match the given
identifier, the first one will be used.

Note that the same syntax can be used for referencing table parameters (see the next section);
columns take preference so if a column and a parameter both match the requested Utype, the
column value will be used.

There is a special column whose name is "Index" and whose ID is "$0". The value of this is the
same as the row number (the first row is 1).

The value of the variables so referenced will be a primitive (boolean, byte, short, char, int, long,
float, double) if the column contains one of the corresponding types. Otherwise it will be an Object
of the type held by the column, for instance a String. In practice this means: you can write the name
of a column, and it will evaluate to the numeric (or string) value that that column contains in each
row. You can then use this in normal algebraic expressions such as "B_MAG-U_MAG" as you'd expect.

9.2 Referencing Parameter Values

Some tables have constant values associated with them; these may represent such things as the
epoch at which observations were taken, the name of the catalogue, an angular resolution associated
with all observations, or any number of other things. Such constants are known as table parameters
(not to be confused with parameters passed to STILTS commands) and can be thought of as extra
columns which have the same value for every row. The values of such parameters can be referenced
in STILTS algebraic expressions as follows:

param$name
If the parameter name has a suitable form (starting with a letter and continuing with letters or
numbers) it can be referenced by prefixing that name with the string param$.

ucd$ucd-spec
If the parameter has a Unified Content Descriptor it can be referenced by prefixing the UCD
specifier with the string ucd$. Any punctuation marks in the UCD should be replaced by
underscores, and a trailing underscore is interpreted as a wildcard. See Section 9.1 for more
discussion.

utype$utype-spec
If the parameter has a Utype, it can be referenced by prefixing the Utype specifier with the
string utype$. Any punctuation marks in the Utype should be replaced by underscores. See
Section 9.1 for more discussion.

SUN/256 62

Note that if a parameter has a name in an unsuitable form (e.g. containing spaces) and has no UCD
then it cannot be referenced in an expression.

9.3 Null Values

When no special steps are taken, if a null value (blank cell) is encountered in evaluating an
expression (usually because one of the columns it relies on has a null value in the row in question)
then the result of the expression is also null.

It is possible to exercise more control than this, but it requires a little bit of care, because the
expressions work in terms of primitive values (numeric or boolean ones) which don't in general
have a defined null value. The name "null" in expressions gives you the java null reference, but
this cannot be matched against a primitive value or used as the return value of a primitive
expression.

For most purposes, the following two tips should enable you to work with null values:

Testing for null
To test whether a column contains a null value, prepend the string "NULL_" (use upper case) to
the column name or $ID. This will yield a boolean value which is true if the column contains a
blank, and false otherwise.

Returning null
To return a null value from a numeric expression, use the name "NULL" (upper case). To return
a null value from a non-numeric expression (e.g. a String column) use the name "null" (lower
case).

Null values are often used in conjunction with the conditional operator, "? :"; the expression

test ? tval : fval

returns the value tval if the boolean expression test evaluates true, or fval if test evaluates false.
So for instance the following expression:

Vmag == -99 ? NULL : Vmag

can be used to define a new column which has the same value as the Vmag column for most values,
but if Vmag has the "magic" value -99 the new column will contain a blank. The opposite trick
(substituting a blank value with a magic one) can be done like this:

NULL_Vmag ? -99 : Vmag

Some more examples are given in Section 9.6.

9.4 Operators

The operators are pretty much the same as in the C language. The common ones are:

Arithmetic

+ (add)
- (subtract)
* (multiply)
/ (divide)
% (modulus)

Boolean

SUN/256 63

! (not)
&& (and)
|| (or)
^ (exclusive-or)
== (numeric identity)
!= (numeric non-identity)
< (less than)
> (greater than)
<= (less than or equal)
>= (greater than or equal)

Bitwise

& (and)
| (or)
^ (exclusive-or)
<< (left shift)
>> (right shift)
>>> (logical right shift)

Numeric Typecasts

(byte) (numeric -> signed byte)
(short) (numeric -> 2-byte integer)
(int) (numeric -> 4-byte integer)
(long) (numeric -> 8-byte integer)
(float) (numeric -> 4-type floating point)
(double) (numeric -> 8-byte floating point)

Note you may find the Maths (Section 9.5.8) conversion functions more convenient for
numeric conversions than these.

Other

+ (string concatenation)
[] (array dereferencing)
?: (conditional switch)
instanceof (class membership)

9.5 Functions

Many functions are available for use within your expressions, covering standard mathematical and
trigonometric functions, arithmetic utility functions, type conversions, and some more specialised
astronomical ones. You can use them in just the way you'd expect, by using the function name
(unlike column names, this is case-sensitive) followed by comma-separated arguments in brackets,
so

max(IMAG,JMAG)

will give you the larger of the values in the columns IMAG and JMAG, and so on.

The functions available for use by default are listed by class in the following subsections with their
arguments and short descriptions. The funcs command provides another way to browse these
function descriptions online.

9.5.1 Tilings

SUN/256 64

Pixel tiling functions for the celestial sphere.

htmIndex(level, ra, dec)

Gives the HTM (Hierachical Triangular Mesh) pixel index for a given sky position.

• level (integer): HTM level
• ra (floating point): right ascension in degrees
• dec (floating point): declination in degrees
• return value (long integer): pixel index

healpixNestIndex(k, ra, dec)

Gives the pixel index for a given sky position in the HEALPix NEST scheme.

• k (integer): resolution parameter - log to base 2 of nside
• ra (floating point): right ascension in degrees
• dec (floating point): declination in degrees
• return value (long integer): pixel index

healpixRingIndex(k, ra, dec)

Gives the pixel index for a given sky position in the HEALPix RING scheme.

• k (integer): resolution parameter - log to base 2 of nside
• ra (floating point): right ascension in degrees
• dec (floating point): declination in degrees
• return value (long integer): pixel index

healpixK(pixelsize)

Gives the HEALPix resolution parameter suitable for a given pixel size. This k value is the
logarithm to base 2 of the Nside parameter.

• pixelsize (floating point): pixel size in degrees
• return value (integer): HEALPix resolution parameter k

healpixResolution(k)

Gives the approximate resolution in degrees for a given HEALPix resolution parameter k This
k value is the logarithm to base 2 of the Nside parameter.

• k (integer): HEALPix resolution parameter k
• return value (floating point): approximate angular resolution in degrees

htmLevel(pixelsize)

Gives the HTM level parameter suitable for a given pixel size.

• pixelsize (floating point): required resolution in degrees
• return value (integer): HTM level parameter

htmResolution(level)

Gives the approximate resolution in degrees for a given HTM depth level.

• level (integer): HTM depth
• return value (floating point): approximate angular resolution in degrees

9.5.2 Arithmetic

Standard arithmetic functions including things like rounding, sign manipulation, and
maximum/minimum functions.

SUN/256 65

roundUp(x)

Rounds a value up to an integer value. Formally, returns the smallest (closest to negative
infinity) integer value that is not less than the argument.

• x (floating point): a value.
• return value (integer): x rounded up

roundDown(x)

Rounds a value down to an integer value. Formally, returns the largest (closest to positive
infinity) integer value that is not greater than the argument.

• x (floating point): a value
• return value (integer): x rounded down

round(x)

Rounds a value to the nearest integer. Formally, returns the integer that is closest in value to
the argument. If two integers are equally close, the result is the even one.

• x (floating point): a floating point value.
• return value (integer): x rounded to the nearest integer

roundDecimal(x, dp)

Rounds a value to a given number of decimal places. The result is a float (32-bit floating
point value), so this is only suitable for relatively low-precision values. It's intended for
truncating the number of apparent significant figures represented by a value which you know
has been obtained by combining other values of limited precision. For more control, see the
functions in the Formats class.

• x (floating point): a floating point value
• dp (integer): number of decimal places (digits after the decimal point) to retain
• return value (floating point): floating point value close to x but with a limited apparent

precision

abs(x)

Returns the absolute value of an integer value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned.

• x (integer): the argument whose absolute value is to be determined
• return value (integer): the absolute value of the argument.

abs(x)

Returns the absolute value of a floating point value. If the argument is not negative, the
argument is returned. If the argument is negative, the negation of the argument is returned.

• x (floating point): the argument whose absolute value is to be determined
• return value (floating point): the absolute value of the argument.

max(a, b)

Returns the greater of two integer values. If the arguments have the same value, the result is
that same value.

• a (integer): an argument.
• b (integer): another argument.
• return value (integer): the larger of a and b.

max(a, b)

Returns the greater of two floating point values. If the arguments have the same value, the
result is that same value. If either value is blank, then the result is blank.

SUN/256 66

• a (floating point): an argument.
• b (floating point): another argument.
• return value (floating point): the larger of a and b.

maxReal(a, b)

Returns the greater of two floating point values, ignoring blanks. If the arguments have the
same value, the result is that same value. If one argument is blank, the result is the other one. If
both arguments are blank, the result is blank.

• a (floating point): an argument
• b (floating point): another argument
• return value (floating point): the larger non-blank value of a and b

min(a, b)

Returns the smaller of two integer values. If the arguments have the same value, the result is
that same value.

• a (integer): an argument.
• b (integer): another argument.
• return value (integer): the smaller of a and b.

min(a, b)

Returns the smaller of two floating point values. If the arguments have the same value, the
result is that same value. If either value is blank, then the result is blank.

• a (floating point): an argument.
• b (floating point): another argument.
• return value (floating point): the smaller of a and b.

minReal(a, b)

Returns the smaller of two floating point values, ignoring blanks. If the arguments have the
same value, the result is that same value. If one argument is blank, the result is the other one. If
both arguments are blank, the result is blank.

• a (floating point): an argument
• b (floating point): another argument
• return value (floating point): the larger non-blank value of a and b

9.5.3 Conversions

Functions for converting between strings and numeric values.

toString(fpVal)

Turns a numeric value into a string.

• fpVal (floating point): floating point numeric value
• return value (String): a string representation of fpVal

toString(intVal)

Turns an integer numeric value into a string.

• intVal (long integer): integer numeric value
• return value (String): a string representation of intVal

toString(charVal)

Turns a single character value into a string.

• charVal (char): character numeric value

SUN/256 67

• return value (String): a string representation of charVal

toString(byteVal)

Turns a byte value into a string.

• byteVal (byte): byte numeric value
• return value (String): a string representation of byteVal

toString(booleanVal)

Turns a boolean value into a string.

• booleanVal (boolean): boolean value (true or false)
• return value (String): a string representation of booleanVal ("true" or "false")

toString(objVal)

Turns any object value into a string. As applied to existing string values this isn't really useful,
but it means that you can apply toString to any object value without knowing its type and get
a useful return from it.

• objVal (Object): non-primitive value
• return value (String): a string representation of objVal

parseByte(str)

Attempts to interpret a string as a byte (8-bit signed integer) value. If the input string can't be
interpreted in this way, a blank value will result.

• str (String): string containing numeric representation
• return value (byte): byte value of str

parseShort(str)

Attempts to interpret a string as a short (16-bit signed integer) value. If the input string can't be
interpreted in this way, a blank value will result.

• str (String): string containing numeric representation
• return value (short integer): byte value of str

parseInt(str)

Attempts to interpret a string as an int (32-bit signed integer) value. If the input string can't be
interpreted in this way, a blank value will result.

• str (String): string containing numeric representation
• return value (integer): byte value of str

parseLong(str)

Attempts to interpret a string as a long (64-bit signed integer) value. If the input string can't be
interpreted in this way, a blank value will result.

• str (String): string containing numeric representation
• return value (long integer): byte value of str

parseFloat(str)

Attempts to interpret a string as a float (32-bit floating point) value. If the input string can't be
interpreted in this way, a blank value will result.

• str (String): string containing numeric representation
• return value (floating point): byte value of str

parseDouble(str)

Attempts to interpret a string as a double (64-bit signed integer) value. If the input string can't
be interpreted in this way, a blank value will result.

SUN/256 68

• str (String): string containing numeric representation
• return value (floating point): byte value of str

toByte(value)

Attempts to convert the numeric argument to a byte (8-bit signed integer) result. If it is out of
range, a blank value will result.

• value (floating point): numeric value for conversion
• return value (byte): value converted to type byte

toShort(value)

Attempts to convert the numeric argument to a short (16-bit signed integer) result. If it is out of
range, a blank value will result.

• value (floating point): numeric value for conversion
• return value (short integer): value converted to type short

toInteger(value)

Attempts to convert the numeric argument to an int (32-bit signed integer) result. If it is out of
range, a blank value will result.

• value (floating point): numeric value for conversion
• return value (integer): value converted to type int

toLong(value)

Attempts to convert the numeric argument to a long (64-bit signed integer) result. If it is out of
range, a blank value will result.

• value (floating point): numeric value for conversion
• return value (long integer): value converted to type long

toFloat(value)

Attempts to convert the numeric argument to a float (32-bit floating point) result. If it is out of
range, a blank value will result.

• value (floating point): numeric value for conversion
• return value (floating point): value converted to type float

toDouble(value)

Converts the numeric argument to a double (64-bit signed integer) result.

• value (floating point): numeric value for conversion
• return value (floating point): value converted to type double

toHex(value)

Converts the integer argument to hexadecimal form.

• value (long integer): integer value
• return value (String): hexadecimal representation of value

fromHex(hexVal)

Converts a string representing a hexadecimal number to its integer value.

• hexVal (String): hexadecimal representation of value
• return value (integer): integer value represented by hexVal

9.5.4 Distances

Functions for converting between different measures of cosmological distance.

SUN/256 69

The following parameters are used:

• z: redshift
• H0: Hubble constant in km/sec/Mpc (example value ~70)
• omegaM: Density ratio of the universe (example value 0.3)
• omegaLambda: Normalised cosmological constant (example value 0.7)

For a flat universe, omegaM+omegaLambda=1

The terms and formulae used here are taken from the paper by D.W.Hogg, Distance measures in
cosmology, astro-ph/9905116 (http://arxiv.org/abs/astro-ph/9905116) v4 (2000).

MpcToM(distMpc)

Converts from MegaParsecs to metres.

• distMpc (floating point): distance in Mpc
• return value (floating point): distance in m

mToMpc(distM)

Converts from metres to MegaParsecs.

• distM (floating point): distance in m
• return value (floating point): distance in Mpc

zToDist(z)

Quick and dirty function for converting from redshift to distance.

Warning: this makes some reasonable assumptions about the cosmology and returns the
luminosity distance. It is only intended for approximate use. If you care about the details, use
one of the more specific functions here.

• z (floating point): redshift
• return value (floating point): some distance measure in Mpc

zToAge(z)

Quick and dirty function for converting from redshift to time.

Warning: this makes some reasonable assumptions about the cosmology. It is only intended
for approximate use. If you care about the details use one of the more specific functions here.

• z (floating point): redshift
• return value (floating point): 'age' of photons from redshift z in Gyr

comovingDistanceL(z, H0, omegaM, omegaLambda)

Line-of-sight comoving distance.

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant
• return value (floating point): line-of-sight comoving distance in Mpc

comovingDistanceT(z, H0, omegaM, omegaLambda)

Transverse comoving distance.

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant

SUN/256 70

• return value (floating point): transverse comoving distance in Mpc

angularDiameterDistance(z, H0, omegaM, omegaLambda)

Angular diameter distance.

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant
• return value (floating point): angular diameter distance in Mpc

luminosityDistance(z, H0, omegaM, omegaLambda)

Luminosity distance.

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant
• return value (floating point): luminosity distance in Mpc

lookbackTime(z, H0, omegaM, omegaLambda)

Lookback time. This returns the difference between the age of the universe at time of
observation (now) and the age of the universe at the time when photons of redshift z were
emitted.

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant
• return value (floating point): lookback time in Gyr

comovingVolume(z, H0, omegaM, omegaLambda)

Comoving volume. This returns the all-sky total comoving volume out to a given redshift z.

• z (floating point): redshift
• H0 (floating point): Hubble constant in km/sec/Mpc
• omegaM (floating point): density ratio of the universe
• omegaLambda (floating point): normalised cosmological constant
• return value (floating point): comoving volume in Gpc3

SPEED_OF_LIGHT

Speed of light in m/s.

METRE_PER_PARSEC

Number of metres in a parsec.

SEC_PER_YEAR

Number of seconds in a year.

9.5.5 KCorrections

Functions for calculating K-corrections.

kCorr(filter, redshift, colorType, colorValue)

Calculates K-corrections. This allows you to determine K-corrections for a galaxy, given its

SUN/256 71

redshift and a colour. Filters for GALEX, SDSS, UKIDSS, Johnson, Cousins and 2MASS are
covered.

To define the calculation you must choose both a filter, specified as a KCF_* constant, and a
colour (filter pair) specified as a KCC_* constant. For each available filter, only certain colours
are available, as described in the documentation of the relevant KCF_* constant.

The algorithm used is described at http://kcor.sai.msu.ru/ (http://kcor.sai.msu.ru/). This is
based on the paper "Analytical Approximations of K-corrections in Optical and Near-Infrared
Bands" by I.Chilingarian, A.-L.Melchior and I.Zolotukhin (2010MNRAS.405.1409C
(http://adsabs.harvard.edu/abs/2010MNRAS.405.1409C)), but extended to include GALEX
UV bands and with redshift coverage up to 0.5 as described in "Universal UV-optical
Colour-Colour-Magnitude Relation of Galaxies" by I.Chilingarian and I.Zolotukhin
(2012MNRAS.419.1727C (http://adsabs.harvard.edu/abs/2012MNRAS.419.1727C)).

• filter (KCorrections.KFilter): KCF_* constant defining the filter for which you want to
calculate the K-correction

• redshift (floating point): galaxy redshift; this should be in the range 0-0.5
• colorType (KCorrections.KColor): KCC_* constant defining the filter pair for the

calculation; check the KCF_* constant documentation to see which ones are permitted for a
given filter

• colorValue (floating point): the value of the colour
• return value (floating point): K correction

KCF_FUV

GALEX FUV filter (AB). Use with KCC_FUVNUV or KCC_FUVu.

KCF_NUV

GALEX NUV filter (AB). Use with KCC_NUVg or KCC_NUVr.

KCF_u

SDSS u filter (AB). Use with KCC_ur, KCC_ui or KCC_uz.

KCF_g

SDSS g filter (AB). Use with KCC_gr, KCC_gi or KCC_gz.

KCF_r

SDSS r filter (AB). Use with KCC_gr or KCC_ur.

KCF_i

SDSS i filter (AB). Use with KCC_gi or KCC_ui.

KCF_z

SDSS z filter (AB). Use with KCC_rz, KCC_gz or KCC_uz.

KCF_Y

UKIDSS Y filter (AB). Use with KCC_YH or KCC_YK.

KCF_J

UKIDSS J filter (AB). Use with KCC_JK or KCC_JH.

KCF_H

UKIDSS H filter (AB). Use with KCC_HK or KCC_JH.

SUN/256 72

KCF_K

UKIDSS K filter (AB). Use with KCC_JK or KCC_HK.

KCF_U

Johnson U filter (Vega). Use with KCC_URc.

KCF_B

Johnson B filter (Vega). Use with KCC_BRc or KCC_BIc.

KCF_V

Johnson V filter (Vega). Use with KCC_VIc or KCC_VRc.

KCF_Rc

Cousins Rc filter (Vega). Use with KCC_BRc or KCC_VRc.

KCF_Ic

Cousins Ic filter (Vega). Use with KCC_VIc.

KCF_J2

2MASS J filter (Vega). Use with KCC_J2Ks2 or KCC_J2H2.

KCF_H2

2MASS H filter (Vega). Use with KCC_H2Ks2 or KCC_J2H2.

KCF_Ks2

2MASS Ks filter (Vega). Use with KCC_J2Ks2 or KCC_H2Ks2.

KCC_BIc

Johnson B - Cousins Ic colour.

KCC_BRc

Johnson B - Cousins Rc colour.

KCC_FUVNUV

GALEX FUV - NUV colour.

KCC_FUVu

GALEX FUV - SDSS u colour.

KCC_gi

SDSS g - i colour.

KCC_gr

SDSS g - r colour.

KCC_gz

SDSS g - z colour.

KCC_H2Ks2

SUN/256 73

2MASS H - Ks colour.

KCC_HK

UKIDSS H - K colour.

KCC_J2H2

2MASS J - H colour.

KCC_J2Ks2

2MASS J - Ks colour.

KCC_JH

UKIDSS J - H colour.

KCC_JK

UKIDSS J - K colour.

KCC_NUVg

GALEX NUV - SDSS g colour.

KCC_NUVr

GALEX NUV - SDSS r colour.

KCC_rz

SDSS r - SDSS z colour.

KCC_ui

SDSS u - SDSS i colour.

KCC_URc

Johnson U - Cousins Rc colour.

KCC_ur

SDSS u - r colour.

KCC_uz

SDSS u - z colour.

KCC_VIc

Johnson V - Cousins Ic colour.

KCC_VRc

Johnson V - Cousins Rc colour.

KCC_YH

UKIDSS Y - H colour.

KCC_YK

UKIDSS Y - K colour.

SUN/256 74

9.5.6 Times

Functions for conversion of time values between various forms. The forms used are

Modified Julian Date (MJD)
A continuous measure in days since midnight at the start of 17 November 1858. Based on
UTC.

ISO 8601
A string representation of the form yyyy-mm-ddThh:mm:ss.s, where the T is a literal character
(a space character may be used instead). Based on UTC.

Julian Epoch
A continuous measure based on a Julian year of exactly 365.25 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a 'J'; J2000.0 is defined as 2000 January 1.5 in the TT
timescale.

Besselian Epoch
A continuous measure based on a tropical year of about 365.2422 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a 'B'.

Decimal Year
Fractional number of years AD represented by the date. 2000.0, or equivalently
1999.99recurring, is midnight at the start of the first of January 2000. Because of leap years,
the size of a unit depends on what year it is in.

Therefore midday on the 25th of October 2004 is 2004-10-25T12:00:00 in ISO 8601 format,
53303.5 as an MJD value, 2004.81588 as a Julian Epoch and 2004.81726 as a Besselian Epoch.

Currently this implementation cannot be relied upon to better than a millisecond.

isoToMjd(isoDate)

Converts an ISO8601 date string to Modified Julian Date. The basic format of the isoDate

argument is yyyy-mm-ddThh:mm:ss.s, though some deviations from this form are permitted:

• The 'T' which separates date from time can be replaced by a space
• The seconds, minutes and/or hours can be omitted
• The decimal part of the seconds can be any length, and is optional
• A 'Z' (which indicates UTC) may be appended to the time

Some legal examples are therefore: "1994-12-21T14:18:23.2", "1968-01-14", and
"2112-05-25 16:45Z".

• isoDate (String): date in ISO 8601 format
• return value (floating point): modified Julian date corresponding to isoDate

dateToMjd(year, month, day, hour, min, sec)

Converts a calendar date and time to Modified Julian Date.

• year (integer): year AD
• month (integer): index of month; January is 1, December is 12
• day (integer): day of month (the first day is 1)
• hour (integer): hour (0-23)
• min (integer): minute (0-59)
• sec (floating point): second (0<=sec<60)

SUN/256 75

• return value (floating point): modified Julian date corresponding to arguments

dateToMjd(year, month, day)

Converts a calendar date to Modified Julian Date.

• year (integer): year AD
• month (integer): index of month; January is 1, December is 12
• day (integer): day of month (the first day is 1)
• return value (floating point): modified Julian date corresponding to 00:00:00 of the date

specified by the arguments

decYearToMjd(decYear)

Converts a Decimal Year to a Modified Julian Date.

• decYear (floating point): decimal year
• return value (floating point): modified Julian Date

mjdToIso(mjd)

Converts a Modified Julian Date value to an ISO 8601-format date-time string. The output
format is yyyy-mm-ddThh:mm:ss.

• mjd (floating point): modified Julian date
• return value (String): ISO 8601 format date corresponding to mjd

mjdToDate(mjd)

Converts a Modified Julian Date value to an ISO 8601-format date string. The output format is
yyyy-mm-dd.

• mjd (floating point): modified Julian date
• return value (String): ISO 8601 format date corresponding to mjd

mjdToTime(mjd)

Converts a Modified Julian Date value to an ISO 8601-format time-only string. The output
format is hh:mm:ss.

• mjd (floating point): modified Julian date
• return value (String): ISO 8601 format time corresponding to mjd

mjdToDecYear(mjd)

Converts a Modified Julian Date to Decimal Year.

• mjd (floating point): modified Julian Date
• return value (floating point): decimal year

formatMjd(mjd, format)

Converts a Modified Julian Date value to a date using a customisable date format. The format
is as defined by the java.text.SimpleDateFormat

(http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html) class. The default
output corresponds to the string "yyyy-MM-dd'T'HH:mm:ss"

• mjd (floating point): modified Julian date
• format (String): formatting patttern
• return value (String): custom formatted time corresponding to mjd

mjdToJulian(mjd)

Converts a Modified Julian Date to Julian Epoch. For approximate purposes, the result of this
routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

SUN/256 76

• mjd (floating point): modified Julian date
• return value (floating point): Julian epoch

julianToMjd(julianEpoch)

Converts a Julian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

• julianEpoch (floating point): Julian epoch
• return value (floating point): modified Julian date

mjdToBesselian(mjd)

Converts Modified Julian Date to Besselian Epoch. For approximate purposes, the result of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

• mjd (floating point): modified Julian date
• return value (floating point): Besselian epoch

besselianToMjd(besselianEpoch)

Converts Besselian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

• besselianEpoch (floating point): Besselian epoch
• return value (floating point): modified Julian date

unixMillisToMjd(unixMillis)

Converts from milliseconds since the Unix epoch (1970-01-01T00:00:00) to a modified Julian
date value

• unixMillis (long integer): milliseconds since the Unix epoch
• return value (floating point): modified Julian date

mjdToUnixMillis(mjd)

Converts from modified Julian date to milliseconds since the Unix epoch
(1970-01-01T00:00:00).

• mjd (floating point): modified Julian date
• return value (long integer): milliseconds since the Unix epoch

9.5.7 TrigDegrees

Standard trigonometric functions with angles in degrees.

sinDeg(theta)

Sine of an angle.

• theta (floating point): an angle, in degrees
• return value (floating point): the sine of the argument

cosDeg(theta)

Cosine of an angle.

• theta (floating point): an angle, in degrees

SUN/256 77

• return value (floating point): the cosine of the argument

tanDeg(theta)

Tangent of an angle.

• theta (floating point): an angle, in degrees
• return value (floating point): the tangent of the argument.

asinDeg(x)

Arc sine. The result is in the range of -90 through 90.

• x (floating point): the value whose arc sine is to be returned.
• return value (floating point): the arc sine of the argument in degrees

acosDeg(x)

Arc cosine. The result is in the range of 0.0 through 180.

• x (floating point): the value whose arc cosine is to be returned.
• return value (floating point): the arc cosine of the argument in degrees

atanDeg(x)

Arc tangent. The result is in the range of -90 through 90.

• x (floating point): the value whose arc tangent is to be returned.
• return value (floating point): the arc tangent of the argument in degrees

atan2Deg(y, x)

Converts rectangular coordinates (x,y) to polar (r,theta). This method computes the phase
theta by computing an arc tangent of y/x in the range of -180 to 180.

• y (floating point): the ordinate coordinate
• x (floating point): the abscissa coordinate
• return value (floating point): the theta component in degrees of the point (r,theta) in

polar coordinates that corresponds to the point (x,y) in Cartesian coordinates.

9.5.8 Maths

Standard mathematical and trigonometric functions. Trigonometric functions work with angles in
radians.

sin(theta)

Sine of an angle.

• theta (floating point): an angle, in radians.
• return value (floating point): the sine of the argument.

cos(theta)

Cosine of an angle.

• theta (floating point): an angle, in radians.
• return value (floating point): the cosine of the argument.

tan(theta)

Tangent of an angle.

• theta (floating point): an angle, in radians.
• return value (floating point): the tangent of the argument.

SUN/256 78

asin(x)

Arc sine of an angle. The result is in the range of -pi/2 through pi/2.

• x (floating point): the value whose arc sine is to be returned.
• return value (floating point): the arc sine of the argument (radians)

acos(x)

Arc cosine of an angle. The result is in the range of 0.0 through pi.

• x (floating point): the value whose arc cosine is to be returned.
• return value (floating point): the arc cosine of the argument (radians)

atan(x)

Arc tangent of an angle. The result is in the range of -pi/2 through pi/2.

• x (floating point): the value whose arc tangent is to be returned.
• return value (floating point): the arc tangent of the argument (radians)

exp(x)

Euler's number e raised to a power.

• x (floating point): the exponent to raise e to.
• return value (floating point): the value e x, where e is the base of the natural logarithms.

log10(x)

Logarithm to base 10.

• x (floating point): argument
• return value (floating point): log

10
(x)

ln(x)

Natural logarithm.

• x (floating point): argument
• return value (floating point): log

e
(x)

sqrt(x)

Square root. The result is correctly rounded and positive.

• x (floating point): a value.
• return value (floating point): the positive square root of x. If the argument is NaN or less

than zero, the result is NaN.

hypot(x, y)

Returns the square root of the sum of squares of its two arguments. Doing it like this may
avoid intermediate overflow or underflow.

• x (floating point): a value
• y (floating point): a value
• return value (floating point): sqrt(x 2 + y

2)

atan2(y, x)

Converts rectangular coordinates (x,y) to polar (r,theta). This method computes the phase
theta by computing an arc tangent of y/x in the range of -pi to pi.

• y (floating point): the ordinate coordinate
• x (floating point): the abscissa coordinate
• return value (floating point): the theta component (radians) of the point (r,theta) in

polar coordinates that corresponds to the point (x,y) in Cartesian coordinates.

pow(a, b)

SUN/256 79

Exponentiation. The result is the value of the first argument raised to the power of the second
argument.

• a (floating point): the base.
• b (floating point): the exponent.
• return value (floating point): the value a

b .

sinh(x)

Hyperbolic sine.

• x (floating point): parameter
• return value (floating point): result

cosh(x)

Hyperbolic cosine.

• x (floating point): parameter
• return value (floating point): result

tanh(x)

Hyperbolic tangent.

• x (floating point): parameter
• return value (floating point): result

asinh(x)

Inverse hyperbolic sine.

• x (floating point): parameter
• return value (floating point): result

acosh(x)

Inverse hyperbolic cosine.

• x (floating point): parameter
• return value (floating point): result

atanh(x)

Inverse hyperbolic tangent.

• x (floating point): parameter
• return value (floating point): result

E

Euler's number e, the base of natural logarithms.

PI

Pi, the ratio of the circumference of a circle to its diameter.

Infinity

Positive infinite floating point value.

NaN

Not-a-Number floating point value. Use with care; arithmetic and logical operations behave in
strange ways near NaN (for instance, NaN!=NaN). For most purposes this is equivalent to the
blank value.

RANDOM

SUN/256 80

Evaluates to a random number in the range 0<=x<1. This is different for each cell of the table.
The quality of the randomness may not be particularly good.

9.5.9 Arrays

Functions which perform aggregating operations on array-valued cells. The functions in this class
such as mean, sum, maximum etc can only be used on values which are already arrays. In most cases
that means on values in table columns which are declared as array-valued. FITS and VOTable
tables can have columns which contain array values, but other formats such as CSV cannot.

There is also a set of functions named array with various numbers of arguments, which let you
assemble an array value from a list of scalar numbers. This can be used for instance to get the mean
of a set of three magnitudes by using an expression like "mean(array(jmag, hmag, kmag))".

sum(array)

Returns the sum of all the non-blank elements in the array. If array is not a numeric array,
null is returned.

• array (Object): array of numbers
• return value (floating point): sum of all the numeric values in array

mean(array)

Returns the mean of all the non-blank elements in the array. If array is not a numeric array,
null is returned.

• array (Object): array of numbers
• return value (floating point): mean of all the numeric values in array

variance(array)

Returns the population variance of all the non-blank elements in the array. If array is not a
numeric array, null is returned.

• array (Object): array of numbers
• return value (floating point): variance of the numeric values in array

stdev(array)

Returns the population standard deviation of all the non-blank elements in the array. If array
is not a numeric array, null is returned.

• array (Object): array of numbers
• return value (floating point): standard deviation of the numeric values in array

minimum(array)

Returns the smallest of the non-blank elements in the array. If array is not a numeric array,
null is returned.

• array (Object): array of numbers
• return value (floating point): minimum of the numeric values in array

maximum(array)

Returns the largest of the non-blank elements in the array. If array is not a numeric array,
null is returned.

• array (Object): array of numbers
• return value (floating point): maximum of the numeric values in array

median(array)

SUN/256 81

Returns the median of the non-blank elements in the array. If array is not a numeric array,
null is returned.

• array (Object): array of numbers
• return value (floating point): median of the numeric values in array

quantile(array, quant)

Returns a quantile value of the non-blank elements in the array. Which quantile is determined
by the quant value; values of 0, 0.5 and 1 give the minimum, median and maximum
respectively. A value of 0.99 would give the 99th percentile.

• array (Object): array of numbers
• quant (floating point): number in the range 0-1 deterining which quantile to calculate
• return value (floating point): quantile corresponding to quant

size(array)

Returns the number of elements in the array. If array is not an array, zero is returned.

• array (Object): array
• return value (integer): size of array

count(array)

Returns the number of non-blank elements in the array. If array is not an array, zero is
returned.

• array (Object): array (may or may not be numeric)
• return value (integer): number of non-blank elements in array

join(array, joiner)

Returns a string composed of concatenating all the elements of an array, separated by a joiner
string. If array is not an array, null is returned.

• array (Object): array of numbers or strings
• joiner (String): text string to interpose between adjacent elements
• return value (String): string composed of array elements separated by joiner strings

array(x1)

Returns a numeric array built from a given element.

• x1 (floating point): array element 1
• return value (array of floating point): 1-element array

array(x1, x2)

Returns a numeric array built from given elements.

• x1 (floating point): array element 1
• x2 (floating point): array element 2
• return value (array of floating point): 2-element array

array(x1, x2, x3)

Returns a numeric array built from given elements.

• x1 (floating point): array element 1
• x2 (floating point): array element 2
• x3 (floating point): array element 3
• return value (array of floating point): 3-element array

array(x1, x2, x3, x4)

Returns a numeric array built from given elements.

• x1 (floating point): array element 1

SUN/256 82

• x2 (floating point): array element 2
• x3 (floating point): array element 3
• x4 (floating point): array element 4
• return value (array of floating point): 4-element array

array(x1, x2, x3, x4, x5)

Returns a numeric array built from given elements.

• x1 (floating point): array element 1
• x2 (floating point): array element 2
• x3 (floating point): array element 3
• x4 (floating point): array element 4
• x5 (floating point): array element 5
• return value (array of floating point): 5-element array

array(x1, x2, x3, x4, x5, x6)

Returns a numeric array built from given elements.

• x1 (floating point): array element 1
• x2 (floating point): array element 2
• x3 (floating point): array element 3
• x4 (floating point): array element 4
• x5 (floating point): array element 5
• x6 (floating point): array element 6
• return value (array of floating point): 6-element array

array(x1, x2, x3, x4, x5, x6, x7)

Returns a numeric array built from given elements.

• x1 (floating point): array element 1
• x2 (floating point): array element 2
• x3 (floating point): array element 3
• x4 (floating point): array element 4
• x5 (floating point): array element 5
• x6 (floating point): array element 6
• x7 (floating point): array element 7
• return value (array of floating point): 7-element array

array(x1, x2, x3, x4, x5, x6, x7, x8)

Returns a numeric array built from given elements.

• x1 (floating point): array element 1
• x2 (floating point): array element 2
• x3 (floating point): array element 3
• x4 (floating point): array element 4
• x5 (floating point): array element 5
• x6 (floating point): array element 6
• x7 (floating point): array element 7
• x8 (floating point): array element 8
• return value (array of floating point): 8-element array

9.5.10 Fluxes

Functions for conversion between flux and magnitude values. Functions are provided for
conversion between flux in Janskys and AB magnitudes.

SUN/256 83

Some constants for approximate conversions between different magnitude scales are also provided:

• Constants JOHNSON_AB_*, for Johnson <-> AB magnitude conversions, from Frei and Gunn,
Astronomical Journal 108, 1476 (1994), Table 2 (1994AJ....108.1476F
(http://adsabs.harvard.edu/abs/1994AJ....108.1476F)).

• Constants VEGA_AB_*, for Vega <-> AB magnitude conversions, from Blanton et al.,
Astronomical Journal 129, 2562 (2005), Eqs. (5) (2005AJ....129.2562B
(http://adsabs.harvard.edu/abs/2005AJ....129.2562B)).

abToJansky(magAB)

Converts AB magnitude to flux in Jansky.

F/Jy=10(23-(AB+48.6)/2.5)

• magAB (floating point): AB magnitude value
• return value (floating point): equivalent flux in Jansky

janskyToAb(fluxJansky)

Converts flux in Jansky to AB magnitude.

AB=2.5*(23-log
10

(F/Jy))-48.6

• fluxJansky (floating point): flux in Jansky
• return value (floating point): equivalent AB magnitude

luminosityToFlux(lumin, dist)

Converts luminosity to flux given a luminosity distance.

F=lumin/(4 x Pi x dist2)

• lumin (floating point): luminosity
• dist (floating point): luminosity distance
• return value (floating point): equivalent flux

fluxToLuminosity(flux, dist)

Converts flux to luminosity given a luminosity distance.

lumin=(4 x Pi x dist2) F

• flux (floating point): flux
• dist (floating point): luminosity distance
• return value (floating point): equivalent luminosity

JOHNSON_AB_V

Approximate offset between Johnson and AB magnitudes in V band.
V

J
~=V

AB
+JOHNSON_AB_V.

JOHNSON_AB_B

Approximate offset between Johnson and AB magnitudes in B band.
B

J
~=B

AB
+JOHNSON_AB_B.

JOHNSON_AB_Bj

Approximate offset between Johnson and AB magnitudes in Bj band.
Bj

J
~=Bj

AB
+JOHNSON_AB_Bj.

JOHNSON_AB_R

Approximate offset between Johnson and AB magnitudes in R band.
R

J
~=R

AB
+JOHNSON_AB_R.

SUN/256 84

JOHNSON_AB_I

Approximate offset between Johnson and AB magnitudes in I band. I
J
~=I

AB
+JOHNSON_AB_I.

JOHNSON_AB_g

Approximate offset between Johnson and AB magnitudes in g band. g
J
~=g

AB
+JOHNSON_AB_g.

JOHNSON_AB_r

Approximate offset between Johnson and AB magnitudes in r band. r
J
~=r

AB
+JOHNSON_AB_r.

JOHNSON_AB_i

Approximate offset between Johnson and AB magnitudes in i band. i
J
~=i

AB
+JOHNSON_AB_i.

JOHNSON_AB_Rc

Approximate offset between Johnson and AB magnitudes in Rc band.
Rc

J
~=Rc

AB
+JOHNSON_AB_Rc.

JOHNSON_AB_Ic

Approximate offset between Johnson and AB magnitudes in Ic band.
Ic

J
~=Ic

AB
+JOHNSON_AB_Ic.

JOHNSON_AB_uPrime

Offset between Johnson and AB magnitudes in u' band (zero).
u'

J
=u'

AB
+JOHNSON_AB_uPrime=u'

AB
.

JOHNSON_AB_gPrime

Offset between Johnson and AB magnitudes in g' band (zero).
g'

J
=g'

AB
+JOHNSON_AB_gPrime=g'

AB
.

JOHNSON_AB_rPrime

Offset between Johnson and AB magnitudes in r' band (zero).
r'

J
=r'

AB
+JOHNSON_AB_rPrime=r'AB.

JOHNSON_AB_iPrime

Offset between Johnson and AB magnitudes in i' band (zero).
i'

J
=i'

AB
+JOHNSON_AB_iPrime=i'AB.

JOHNSON_AB_zPrime

Offset between Johnson and AB magnitudes in z' band (zero).
z'

J
=z'

AB
+JOHNSON_AB_zPrime=z'

AB
.

VEGA_AB_J

Approximate offset between Vega (as in 2MASS) and AB magnitudes in J band.
J
Vega

~=J
AB

+VEGA_AB_J.

VEGA_AB_H

Approximate offset between Vega (as in 2MASS) and AB magnitudes in H band.
H

Vega
~=HAB+VEGA_AB_H.

VEGA_AB_K

Approximate offset between Vega (as in 2MASS) and AB magnitudes in K band.

SUN/256 85

AB
+VEGA_AB_K.

9.5.11 Strings

String manipulation and query functions.

concat(s1, s2)

Concatenates two strings. In most cases the same effect can be achieved by writing s1+s2, but
blank values can sometimes appear as the string "null" if you do it like that.

• s1 (String): first string
• s2 (String): second string
• return value (String): s1 followed by s2

concat(s1, s2, s3)

Concatenates three strings. In most cases the same effect can be achieved by writing s1+s2+s3,
but blank values can sometimes appear as the string "null" if you do it like that.

• s1 (String): first string
• s2 (String): second string
• s3 (String): third string
• return value (String): s1 followed by s2 followed by s3

concat(s1, s2, s3, s4)

Concatenates four strings. In most cases the same effect can be achieved by writing
s1+s2+s3+s4, but blank values can sometimes appear as the string "null" if you do it like that.

• s1 (String): first string
• s2 (String): second string
• s3 (String): third string
• s4 (String): fourth string
• return value (String): s1 followed by s2 followed by s3 followed by s4

equals(s1, s2)

Determines whether two strings are equal. Note you should use this function instead of s1==s2,
which can (for technical reasons) return false even if the strings are the same.

• s1 (String): first string
• s2 (String): second string
• return value (boolean): true if s1 and s2 are both blank, or have the same content

equalsIgnoreCase(s1, s2)

Determines whether two strings are equal apart from possible upper/lower case distinctions.

• s1 (String): first string
• s2 (String): second string
• return value (boolean): true if s1 and s2 are both blank, or have the same content apart

from case folding

startsWith(whole, start)

Determines whether a string starts with a certain substring.

• whole (String): the string to test
• start (String): the sequence that may appear at the start of whole
• return value (boolean): true if the first few characters of whole are the same as start

endsWith(whole, end)

SUN/256 86

Determines whether a string ends with a certain substring.

• whole (String): the string to test
• end (String): the sequence that may appear at the end of whole
• return value (boolean): true if the last few characters of whole are the same as end

contains(whole, sub)

Determines whether a string contains a given substring.

• whole (String): the string to test
• sub (String): the sequence that may appear within whole

• return value (boolean): true if the sequence sub appears within whole

length(str)

Returns the length of a string in characters.

• str (String): string
• return value (integer): number of characters in str

split(words)

Splits a string into an array of space-separated words. One or more spaces separates each word
from the next. Leading and trailing spaces are ignored.

The result is an array of strings, and if you want to use the individual elements you need to use
square-bracket indexing, with [0] representing the first object

• words (String): string with embedded spaces delimiting the words
• return value (array of String): array of the separate words; you can extract the individual

words from the result using square bracket indexing

split(words, regex)

Splits a string into an array of words separated by a given regular expression.

The result is an array of strings, and if you want to use the individual elements you need to use
square-bracket indexing, with [0] representing the first object

• words (String): string with multiple parts
• regex (String): regular expression delimiting the different words in the words parameter
• return value (array of String): array of the separate words; you can extract the individual

words from the result using square bracket indexing

matches(str, regex)

Tests whether a string matches a given regular expression.

• str (String): string to test
• regex (String): regular expression string
• return value (boolean): true if regex matches str anywhere

matchGroup(str, regex)

Returns the first grouped expression matched in a string defined by a regular expression. A
grouped expression is one enclosed in parentheses.

• str (String): string to match against
• regex (String): regular expression containing a grouped section
• return value (String): contents of the matched group (or null, if regex didn't match str)

replaceFirst(str, regex, replacement)

Replaces the first occurrence of a regular expression in a string with a different substring
value.

• str (String): string to manipulate

SUN/256 87

• regex (String): regular expression to match in str

• replacement (String): replacement string
• return value (String): same as str, but with the first match (if any) of regex replaced by

replacement

replaceAll(str, regex, replacement)

Replaces all occurrences of a regular expression in a string with a different substring value.

• str (String): string to manipulate
• regex (String): regular expression to match in str

• replacement (String): replacement string
• return value (String): same as str, but with all matches of regex replaced by

replacement

substring(str, startIndex)

Returns the last part of a given string. The substring begins with the character at the specified
index and extends to the end of this string.

• str (String): the input string
• startIndex (integer): the beginning index, inclusive
• return value (String): last part of str, omitting the first startIndex characters

substring(str, startIndex, endIndex)

Returns a substring of a given string. The substring begins with the character at startIndex
and continues to the character at index endIndex-1 Thus the length of the substring is
endIndex-startIndex.

• str (String): the input string
• startIndex (integer): the beginning index, inclusive
• endIndex (integer): the end index, inclusive
• return value (String): substring of str

toUpperCase(str)

Returns an uppercased version of a string.

• str (String): input string
• return value (String): uppercased version of str

toLowerCase(str)

Returns an uppercased version of a string.

• str (String): input string
• return value (String): uppercased version of str

trim(str)

Trims whitespace from both ends of a string.

• str (String): input string
• return value (String): str with any spaces trimmed from start and finish

padWithZeros(value, ndigit)

Takes an integer argument and returns a string representing the same numeric value but
padded with leading zeros to a specified length.

• value (long integer): numeric value to pad
• ndigit (integer): the number of digits in the resulting string
• return value (String): a string evaluating to the same as value with at least ndigit

characters

SUN/256 88

9.5.12 Formats

Functions for formatting numeric values.

formatDecimal(value, dp)

Turns a floating point value into a string with a given number of decimal places using standard
settings.

• value (floating point): value to format
• dp (integer): number of decimal places (digits after the decmal point)
• return value (String): formatted string

formatDecimalLocal(value, dp)

Turns a floating point value into a string using current locale settings. For instance if language
is set to French, decimal points will be represented as a comma "," instead of a full stop ".".
Otherwise behaves the same as the corresponding formatDecimal function.

• value (floating point): value to format
• dp (integer): number of decimal places (digits after the decmal point)
• return value (String): formatted string

formatDecimal(value, format)

Turns a floating point value into a formatted string using standard settings. The format string
is as defined by Java's java.text.DecimalFormat

(http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html) class.

• value (floating point): value to format
• format (String): format specifier
• return value (String): formatted string

formatDecimalLocal(value, format)

Turns a floating point value into a formatted string using current locale settings. For instance if
language is set to French, decimal points will be represented as a comma "," instead of a full
stop ".". Otherwise behaves the same as the corresponding formatDecimal function.

• value (floating point): value to format
• format (String): format specifier
• return value (String): formatted string

9.5.13 CoordsRadians

Functions for angle transformations and manipulations, based on radians rather than degrees. In
particular, methods for translating between radians and HH:MM:SS.S or DDD:MM:SS.S type
sexagesimal representations are provided.

radiansToDms(rad)

Converts an angle in radians to a formatted degrees:minutes:seconds string. No fractional part
of the seconds field is given.

• rad (floating point): angle in radians
• return value (String): DMS-format string representing rad

radiansToDms(rad, secFig)

Converts an angle in radians to a formatted degrees:minutes:seconds string with a given
number of decimal places in the seconds field.

SUN/256 89

• rad (floating point): angle in radians
• secFig (integer): number of decimal places in the seconds field
• return value (String): DMS-format string representing rad

radiansToHms(rad)

Converts an angle in radians to a formatted hours:minutes:seconds string. No fractional part of
the seconds field is given.

• rad (floating point): angle in radians
• return value (String): HMS-format string representing rad

radiansToHms(rad, secFig)

Converts an angle in radians to a formatted hours:minutes:seconds string with a given number
of decimal places in the seconds field.

• rad (floating point): angle in radians
• secFig (integer): number of decimal places in the seconds field
• return value (String): HMS-format string representing rad

dmsToRadians(dms)

Converts a formatted degrees:minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters dm[s], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

• dms (String): formatted DMS string
• return value (floating point): angle in radians specified by dms

hmsToRadians(hms)

Converts a formatted hours:minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters hm[s], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

• hms (String): formatted HMS string
• return value (floating point): angle in radians specified by hms

dmsToRadians(deg, min, sec)

Converts degrees, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 degrees. This routine uses the sign bit of the deg argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values). It is illegal for the min or sec arguments to be negative.

• deg (floating point): degrees part of angle
• min (floating point): minutes part of angle
• sec (floating point): seconds part of angle
• return value (floating point): specified angle in radians

hmsToRadians(hour, min, sec)

Converts hours, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 hours. This routine uses the sign bit of the hour argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values).

• hour (floating point): degrees part of angle
• min (floating point): minutes part of angle
• sec (floating point): seconds part of angle
• return value (floating point): specified angle in radians

SUN/256 90

skyDistanceRadians(ra1, dec1, ra2, dec2)

Calculates the separation (distance around a great circle) of two points on the sky in radians.

• ra1 (floating point): right ascension of point 1 in radians
• dec1 (floating point): declination of point 1 in radians
• ra2 (floating point): right ascension of point 2 in radians
• dec2 (floating point): declination of point 2 in radians
• return value (floating point): angular distance between point 1 and point 2 in radians

hoursToRadians(hours)

Converts hours to radians.

• hours (floating point): angle in hours
• return value (floating point): angle in radians

degreesToRadians(deg)

Converts degrees to radians.

• deg (floating point): angle in degrees
• return value (floating point): angle in radians

radiansToDegrees(rad)

Converts radians to degrees.

• rad (floating point): angle in radians
• return value (floating point): angle in degrees

raFK4toFK5radians(raFK4, decFK4)

Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Right
Ascension. This assumes zero proper motion in the FK5 frame.

• raFK4 (floating point): right ascension in B1950.0 FK4 system (radians)
• decFK4 (floating point): declination in B1950.0 FK4 system (radians)
• return value (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4toFK5radians(raFK4, decFK4)

Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Declination
This assumes zero proper motion in the FK5 frame.

• raFK4 (floating point): right ascension in B1950.0 FK4 system (radians)
• decFK4 (floating point): declination in B1950.0 FK4 system (radians)
• return value (floating point): declination in J2000.0 FK5 system (radians)

raFK5toFK4radians(raFK5, decFK5)

Converts a J2000.0 FK5 position to B1950.0 FK4 at an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

• raFK5 (floating point): right ascension in J2000.0 FK5 system (radians)
• decFK5 (floating point): declination in J2000.0 FK5 system (radians)
• return value (floating point): right ascension in the FK4 system (radians)

decFK5toFK4radians(raFK5, decFK5)

Converts a J2000.0 FK5 position to B1950.0 FK4 at an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

• raFK5 (floating point): right ascension in J2000.0 FK5 system (radians)
• decFK5 (floating point): declination in J2000.0 FK5 system (radians)
• return value (floating point): right ascension in the FK4 system (radians)

raFK4toFK5Radians(raFK4, decFK4, bepoch)

SUN/256 91

Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Right Ascension. This assumes
zero proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position
in the FK4 frame was determined.

• raFK4 (floating point): right ascension in B1950.0 FK4 system (radians)
• decFK4 (floating point): declination in B1950.0 FK4 system (radians)
• bepoch (floating point): Besselian epoch
• return value (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4toFK5Radians(raFK4, decFK4, bepoch)

Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Declination. This assumes zero
proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position in
the FK4 frame was determined.

• raFK4 (floating point): right ascension in B1950.0 FK4 system (radians)
• decFK4 (floating point): declination in B1950.0 FK4 system (radians)
• bepoch (floating point): Besselian epoch
• return value (floating point): declination in J2000.0 FK5 system (radians)

raFK5toFK4Radians(raFK5, decFK5, bepoch)

Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

• raFK5 (floating point): right ascension in J2000.0 FK5 system (radians)
• decFK5 (floating point): declination in J2000.0 FK5 system (radians)
• bepoch (floating point): Besselian epoch
• return value (floating point): right ascension in the FK4 system (radians)

decFK5toFK4Radians(raFK5, decFK5, bepoch)

Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

• raFK5 (floating point): right ascension in J2000.0 FK5 system (radians)
• decFK5 (floating point): declination in J2000.0 FK5 system (radians)
• bepoch (floating point): Besselian epoch
• return value (floating point): right ascension in the FK4 system (radians)

DEGREE_RADIANS

The size of one degree in radians.

HOUR_RADIANS

The size of one hour of right ascension in radians.

ARC_MINUTE_RADIANS

The size of one arcminute in radians.

ARC_SECOND_RADIANS

The size of one arcsecond in radians.

9.5.14 Coverage

Functions related to coverage and footprints. One coverage standard is Multi-Order Coverage maps,
described at http://www.ivoa.net/Documents/MOC/ (http://www.ivoa.net/Documents/MOC/).

SUN/256 92

inMoc(mocLocation, ra, dec)

Indicates whether a given sky position is within a given MOC (Multi-Order Coverage map). If
the given mocLocation value does not represent a MOC (for instance no file exists or the file is
not in MOC format) a warning will be issued the first time it's referenced, and the result will be
false.

• mocLocation (String): location of a FITS MOC file, either as a filename or a URL
• ra (floating point): right ascension in degrees
• dec (floating point): declination in degrees
• return value (boolean): true iff the given position falls within the given MOC

9.5.15 CoordsDegrees

Functions for angle transformations and manipulations, with angles generally in degrees. In
particular, methods for translating between degrees and HH:MM:SS.S or DDD:MM:SS.S type
sexagesimal representations are provided.

degreesToDms(deg)

Converts an angle in degrees to a formatted degrees:minutes:seconds string. No fractional part
of the seconds field is given.

• deg (floating point): angle in degrees
• return value (String): DMS-format string representing deg

degreesToDms(deg, secFig)

Converts an angle in degrees to a formatted degrees:minutes:seconds string with a given
number of decimal places in the seconds field.

• deg (floating point): angle in degrees
• secFig (integer): number of decimal places in the seconds field
• return value (String): DMS-format string representing deg

degreesToHms(deg)

Converts an angle in degrees to a formatted hours:minutes:seconds string. No fractional part of
the seconds field is given.

• deg (floating point): angle in degrees
• return value (String): HMS-format string representing deg

degreesToHms(deg, secFig)

Converts an angle in degrees to a formatted hours:minutes:seconds string with a given number
of decimal places in the seconds field.

• deg (floating point): angle in degrees
• secFig (integer): number of decimal places in the seconds field
• return value (String): HMS-format string representing deg

dmsToDegrees(dms)

Converts a formatted degrees:minutes:seconds string to an angle in degrees. Delimiters may be
colon, space, characters dm[s], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

• dms (String): formatted DMS string
• return value (floating point): angle in degrees specified by dms

hmsToDegrees(hms)

Converts a formatted hours:minutes:seconds string to an angle in degrees. Delimiters may be

SUN/256 93

colon, space, characters hm[s], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

• hms (String): formatted HMS string
• return value (floating point): angle in degrees specified by hms

dmsToDegrees(deg, min, sec)

Converts degrees, minutes, seconds to an angle in degrees.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 degrees. This routine uses the sign bit of the deg argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values). It is illegal for the min or sec arguments to be negative.

• deg (floating point): degrees part of angle
• min (floating point): minutes part of angle
• sec (floating point): seconds part of angle
• return value (floating point): specified angle in degrees

hmsToDegrees(hour, min, sec)

Converts hours, minutes, seconds to an angle in degrees.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 hours. This routine uses the sign bit of the hour argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values).

• hour (floating point): degrees part of angle
• min (floating point): minutes part of angle
• sec (floating point): seconds part of angle
• return value (floating point): specified angle in degrees

skyDistanceDegrees(ra1, dec1, ra2, dec2)

Calculates the separation (distance around a great circle) of two points on the sky in degrees.

• ra1 (floating point): right ascension of point 1 in degrees
• dec1 (floating point): declination of point 1 in degrees
• ra2 (floating point): right ascension of point 2 in degrees
• dec2 (floating point): declination of point 2 in degrees
• return value (floating point): angular distance between point 1 and point 2 in degrees

9.6 Examples

Here are some examples for defining new columns; the expressions below could appear as the
<expr> in a tpipe addcol or sortexpr command).

Average

(first + second) * 0.5

Square root

sqrt(variance)

Angle conversion

radiansToDegrees(DEC_radians)
degreesToRadians(RA_degrees)

SUN/256 94

Conversion from string to number

parseInt($12)
parseDouble(ident)

Conversion from number to string

toString(index)

Conversion between numeric types

toShort(obs_type)
toDouble(range)

or

(short) obs_type
(double) range

Conversion from sexagesimal to degrees

hmsToDegrees(RA1950)
dmsToDegrees(decDeg,decMin,decSec)

Conversion from degrees to sexagesimal

degreesToDms($3)
degreesToHms(RA,2)

Outlier clipping

min(1000, max(value, 0))

Converting a magic value to null

jmag == 9999 ? NULL : jmag

Converting a null value to a magic one

NULL_jmag ? 9999 : jmag

Taking the third scalar element from an array-valued column

psfCounts[2]

and here are some examples of boolean expressions that could be used for row selection (appearing
in a tpipe select command)

Within a numeric range

RA > 100 && RA < 120 && Dec > 75 && Dec < 85

Within a circle

$2*$2 + $3*$3 < 1
skyDistanceDegrees(ra0,dec0,hmsToDegrees(RA),dmsToDegrees(DEC))<15./3600.

First 100 rows

index <= 100

SUN/256 95

(though you could use tpipe cmd='head 100' instead)

Every tenth row

index % 10 == 0

(though you could use tpipe cmd='every 10' instead)

String equality/matching

equals(SECTOR, "ZZ9 Plural Z Alpha")
equalsIgnoreCase(SECTOR, "zz9 plural z alpha")
startsWith(SECTOR, "ZZ")
contains(ph_qual, "U")

String regular expression matching

matches(SECTOR, "[XYZ] Alpha")

Test for non-blank value

! NULL_ellipticity

9.7 Advanced Topics

This section contains some notes on getting the most out of the algebraic expressions facility. If
you're not a Java programmer, some of the following may be a bit daunting - read on at your own
risk!

9.7.1 Expression evaluation

This note provides a bit more detail for Java programmers on what is going on here; it describes
how the use of functions in STILTS algebraic expressions relates to normal Java code.

The expressions which you write are compiled to Java bytecode when you enter them (if there is a
'compilation error' it will be reported straight away). The functions listed in the previous
subsections are all the public static methods of the classes which are made available by default.
The classes listed are all in the package uk.ac.starlink.ttools.func. However, the public static
methods are all imported into an anonymous namespace for bytecode compilation, so that you write
(sqrt(x,y) and not Maths.sqrt(x,y). The same happens to other classes that are imported (which
can be in any package or none) - their public static methods all go into the anonymous namespace.
Thus, method name clashes are a possibility.

This cleverness is all made possible by the rather wonderful JEL
(http://www.gnu.org/software/jel/).

9.7.2 Instance Methods

There is another category of functions which can be used apart from those listed in Section 9.5.
These are called, in Java/object-oriented parlance, "instance methods" and represent functions that
can be executed on an object.

It is possible to invoke any of its public instance methods on any object (though not on primitive
values - numeric and boolean ones). The syntax is that you place a "." followed by the method
invocation after the object you want to invoke the method on, hence NAME.substring(3) instead of
substring(NAME,3). If you know what you're doing, feel free to go ahead and do this. However,

SUN/256 96

most of the instance methods you're likely to want to use have equivalents in the normal functions
listed in the previous section, so unless you're a Java programmer or feeling adventurous, you may
be best off ignoring this feature.

9.7.3 Adding User-Defined Functions

The functions provided by default for use with algebraic expressions, while powerful, may not
provide all the operations you need. For this reason, it is possible to write your own extensions to
the expression language. In this way you can specify abritrarily complicated functions. Note
however that this will only allow you to define new columns or subsets where each cell is a
function only of the other cells in the same row - it will not allow values in one row to be functions
of values in another.

In order to do this, you have to write and compile a (probably short) program in the Java language.
A full discussion of how to go about this is beyond the scope of this document, so if you are new to
Java and/or programming you may need to find a friendly local programmer to assist (or mail the
author). The following explanation is aimed at Java programmers, but may not be incomprehensible
to non-specialists.

The steps you need to follow are:

1. Write and compile a class containing one or more static public methods representing the
function(s) required

2. Make this class available on the application's classpath at runtime as described in Section 3.1
3. Specify the class's name to the application, as the value of the jel.classes system property

(colon-separated if there are several) as described in Section 3.3

Any public static methods defined in the classes thus specified will then be available for use. They
should be defined to take and return the relevant primitive or Object types for the function required.
For instance a class written as follows would define a three-value average:

public class AuxFuncs {
public static double average3(double x, double y, double z) {

return (x + y + z) / 3.0;
}

}

and the command

stilts tpipe cmd='addcol AVERAGE "average3($1,$2,$3)"'

would add a new column named AVERAGE giving the average of the first three existing columns.
Exactly how you would build this is dependent on your system, but it might involve doing
something like the following:

1. Writing a file named AuxFuncs.java containing the above code
2. Compiling it using a command like "javac AuxFuncs.java"
3. Running tpipe using the flags "stilts -classpath . -Djel.classes=AuxFuncs tpipe"

SUN/256 97

A Commands By Category

This section lists the commands available broken down by the category of function they provide.
Some commands appear in more than one category. Detailed descriptions and examples for each
command can be found in Appendix B.

Format conversion:

• tcopy (Appendix B.20): Converts between table formats
• votcopy (Appendix B.31): Transforms between VOTable encodings

See also Section 5.

Generic table manipulation:

• tcopy (Appendix B.20): Converts between table formats
• tpipe (Appendix B.29): Performs pipeline processing on a table
• tmulti (Appendix B.27): Writes multiple tables to a single container file
• tmultin (Appendix B.28): Writes multiple processed tables to single container file
• tcat (Appendix B.18): Concatenates multiple similar tables
• tcatn (Appendix B.19): Concatenates multiple tables
• tloop (Appendix B.22): Generates a single-column table from a loop variable
• tjoin (Appendix B.23): Joins multiple tables side-to-side
• tcube (Appendix B.21): Calculates N-dimensional histograms

See also Section 6.

Crossmatching:

• tmatch1 (Appendix B.24): Performs a crossmatch internal to a single table
• tmatch2 (Appendix B.25): Crossmatches 2 tables using flexible criteria
• tmatchn (Appendix B.26): Crossmatches multiple tables using flexible criteria
• tskymatch2 (Appendix B.30): Crossmatches 2 tables on sky position
• cdsskymatch (Appendix B.2): Crossmatches table on sky position against

VizieR/SIMBAD table
• coneskymatch (Appendix B.3): Crossmatches table on sky position against remote cone

service
• sqlskymatch (Appendix B.13): Crossmatches table on sky position against SQL table

See also Section 7.

Plotting:

• plot2d (Appendix B.7): 2D Scatter Plot
• plot3d (Appendix B.8): 3D Scatter Plot
• plothist (Appendix B.9): Histogram

See also Section 8.

Sky Pixel Operations:

• pixfoot (Appendix B.5): Generates Multi-Order Coverage maps
• pixsample (Appendix B.6): Samples from a HEALPix pixel data file

VOTables:

• votcopy (Appendix B.31): Transforms between VOTable encodings
• votlint (Appendix B.32): Validates VOTable documents

Virtual Observatory service access:

• cdsskymatch (Appendix B.2): Crossmatches table on sky position against
VizieR/SIMBAD table

SUN/256 98

• coneskymatch (Appendix B.3): Crossmatches table on sky position against remote cone
service

• tapquery (Appendix B.16): Queries a Table Access Protocol server
• tapresume (Appendix B.17): Resumes a previous query to a Table Access Protocol server
• taplint (Appendix B.15): Tests TAP services
• regquery (Appendix B.10): Queries the VO registry

SQL Database access:

• sqlclient (Appendix B.12): Executes SQL statements
• sqlupdate (Appendix B.14): Updates values in an SQL table
• sqlskymatch (Appendix B.13): Crossmatches table on sky position against SQL table

Miscellaneous:

• server (Appendix B.11): Runs an HTTP server to perform STILTS commands
• calc (Appendix B.1): Evaluates expressions
• funcs (Appendix B.4): Browses functions used by algebraic expression language

SUN/256 99

B Command Reference

This appendix provides the reference documentation for the commands in the package. For each
one a description of its purpose, a list of its command-line arguments, and some examples are
given.

B.1 calc: Evaluates expressions

calc is a very simple utility for evaluating expressions. It uses the same expression evaluator as is
used in tpipe and the other generic table tasks for things like creating new columns, so it can be
used as a quick test to see what expressions work, or in order to evaluate expressions using the
various algebraic functions documented in Section 9.5. Since usually no table is involved, you can't
refer to column names in the expressions. It has one mandatory parameter, the expression to
evaluate, and writes the result to the screen.

B.1.1 Usage

The usage of calc is

stilts <stilts-flags> calc table=<table>
[expression=]<expr>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

expression = <expr>

An expression to evaluate. The functions in Section 9.5 can be used.

table = <table>

A table which provides the context within which expression is evaluated. This parameter is
optional, and will usually not be required; its only purpose is to allow use of constant
expressions (table parameters) associated with the table. These can be referenced using
identifiers of the form param$*, ucd$* or utype$* - see Section 9.2 for more detail.

B.1.2 Examples

Here are some examples of using calc:

stilts calc 1+2

Calculates one plus two. Writes "3" to standard output.

stilts calc 'isoToMjd("2005-12-25T00:00:00")'

Works out the Modified Julian Day corresponding to Christmas 2005. The output is "53729.0".

stilts calc 'param$author' table=catalogue.xml

In this case the expression is evaluated in the context of the supplied table, which means that
the table's parameters can be referenced in the expression. This example just outputs the value
of the table parameter named "author".

SUN/256 100

B.2 cdsskymatch: Crossmatches table on sky position against VizieR/SIMBAD table

cdsskymatch uses the CDS X-Match service to join a local table to one of the tables hosted by the
Centre de Données astronomiques de Strasbourg. This includes all of the VizieR tables and the
SIMBAD database. The service is very fast, and in most cases it is the best way to match a local
table against a large external table hosted by a service. It is almost certainly much better than using
coneskymatch, though it is less flexible than TAP.

The local table is uploaded to the X-Match service in chunks, and the matches for each chunk are
retrieved in turn and eventually stitched together to form the final result. The tool only uploads sky
position and an identifier for each row of the input table, but all columns of the input table are
reinstated in the result for reference.

The remote table in most cases contains only a subset of the the columns in the relevant VizieR
table, including the most useful ones. The service currently provides no straightforward way to
acquire columns which are not returned by default.

Acknowledgement: CDS note that if the use of the X-Match service is useful to your research, they
would appreciate the following acknowledgement:

"This research made use of the cross-match service provided by CDS, Strasbourg."

B.2.1 Usage

The usage of cdsskymatch is

stilts <stilts-flags> cdsskymatch ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args>
out=<out-table> ofmt=<out-format>
ra=<expr> dec=<expr>
radius=<value/arcsec> cdstable=<value>
find=all|best|best-remote|each|each-dist
blocksize=<int-value> maxrec=<int-value>
serviceurl=<url-value> usemoc=true|false
presort=true|false fixcols=none|dups|all
suffixin=<label> suffixremote=<label>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

blocksize = <int-value>

The CDS Xmatch service operates limits on the maximum number of rows that can be
uploaded and the maximum number of rows that is returned as a result from a single query. In
the case of large input tables, they are broken down into smaller blocks, and one request is sent
to the external service for each block. This parameter controls the number of rows in each
block. For an input table with fewer rows than this value, the whole thing is done as a single
request.

At time of writing, the maximum upload size is 100Mb (about 3Mrow; this does not depend on
the width of your table), and the maximum return size is 2Mrow.

Large blocksizes tend to be good (up to a point) for reducing the total amount of time a large
xmatch operation takes, but they can make it harder to see the job progressing. There is also

SUN/256 101

the danger (for ALL-type find modes) of exceeding the return size limit, which will result in
truncation of the returned result.

[Default: 50000]

cdstable = <value>

Identifier of the table from the CDS crossmatch service that is to be matched against the local
table. This identifier may be the standard VizieR identifier (e.g. "II/246/out" for the 2MASS
Point Source Catalogue) or "simbad" to indicate SIMBAD data.

See for instance the TAPVizieR table searching facility at
http://tapvizier.u-strasbg.fr/adql/ to find VizieR catalogue identifiers.

dec = <expr>

Declination in degrees in the ICRS coordinate system for the position of each row of the input
table. This may simply be a column name, or it may be an algebraic expression calculated
from columns as explained in Section 9. If left blank, an attempt is made to guess from UCDs,
column names and unit annotations what expression to use.

find = all|best|best-remote|each|each-dist

Determines which pair matches are included in the result.

• all: All matches
• best: Matched rows, best remote row for each input row
• best-remote: Matched rows, best input row for each remote row
• each: One row per input row, contains best remote match or blank
• each-dist: One row per input row, column giving distance only for best match

Note only the all mode is symmetric between the two tables.

Note also that there is a bug in best-remote matching. If the match is done in multiple
blocks, it's possible for a remote table row to appear matched against one local table row per
uploaded block, rather than just once for the whole result. If you're worried about that, set
blocksize >= rowCount. This may be fixed in a future release.

[Default: all]

fixcols = none|dups|all

Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmd = <cmds>

Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

SUN/256 102

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

[Default: false]

maxrec = <int-value>

Limit to the number of rows resulting from this operation. If the value is negative (the default)
no limit is imposed. Note however that there can be truncation of the result if the number of
records returned from a single chunk exceeds the service hard limit (2,000,000 at time of
writing).

[Default: -1]

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or

SUN/256 103

populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

presort = true|false

If true, the rows are sorted by HEALPix index before they are uploaded to the CDS X-Match
service. If the match is done in multiple blocks, this may improve efficiency, since when
matching against a large remote catalogue the X-Match service likes to process requests in
which sources are grouped into a small region rather than scattered all over the sky.

Note this will have a couple of other side effects that may be undesirable: it will read all the
input rows into the task at once, which may make it harder to assess progress, and it will affect
the order of the rows in the output table.

It is probably only worth setting true for rather large (multi-million-row?) multi-block
matches, where both local and remote catalogues are spread over a significant fraction of the
sky. But feel free to experiment.

[Default: false]

ra = <expr>

Right ascension in degrees in the ICRS coordinate system for the position of each row of the
input table. This may simply be a column name, or it may be an algebraic expression
calculated from columns as explained in Section 9. If left blank, an attempt is made to guess
from UCDs, column names and unit annotations what expression to use.

radius = <value/arcsec>

Maximum distance from the local table (ra,dec) position at which counterparts from the remote
table will be identified. This is a fixed value is given in arcseconds, and must be in the range
[0,180] (this limit is currently enforced by the CDS Xmatch service).

serviceurl = <url-value>

The URL at which the CDS Xmatch service can be found. Normally this should not be altered
from the default, but if other implementations of the same service are known, this parameter
can be used to access them.

[Default: http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync]

suffixin = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output

SUN/256 104

table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: _in]

suffixremote = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the CDS result table.

[Default: _cds]

usemoc = true|false

If true, first acquire a MOC coverage map from CDS, and use that to pre-filter rows before
uploading them for matching. This should improve efficiency, but have no effect on the result.

[Default: true]

B.2.2 Examples

Here are some examples of cdsskymatch:

stilts cdsskymatch cdstable=II/246/out find=all
in=dr5qso.fits ra=RA dec=DEC radius=1 out=qso_2mass.fits

Matches a local catalogue dr5qso.fits against the VizieR table II/246/out (the 2MASS
Point Source Catalogue). The search radius is 1 arcsecond, and all 2MASS sources within the
radius of each input source are returned.

stilts cdsskymatch cdstable=simbad find=best
in=sources.txt ifmt=ascii ra=RAJ2000 dec=DEJ2000 radius=8.5
blocksize=1000 icmd=progress omode=topcat

This finds the closest object in the SIMBAD database within 8.5 arcsec for each row of an
input ASCII table. Uploads are done in blocks of 1,000 rows at a time, and progress is
displayed on the console. When the match is complete, the result is sent directly to a running
instance of TOPCAT.

B.3 coneskymatch: Crossmatches table on sky position against remote cone service

Note: this command is very inefficient for large tables, and in most cases cdsskymatch or tapquery
provide better alternatives.

coneskymatch is a utility which performs a cone search-like query to a remote server for each row
of an input table. Each of these queries returns a table with one row for each item held by the server
in the region of sky represented by the input row. The results of all the queries are then
concatenated into one big output table which is the output of this command.

The type of virtual observatory service queried is determined by the servicetype parameter.
Typically it will be a Cone Search service, which queries a remote catalogue for astronomical
objects or sources in a particular region. However, you can also query Simple Image Access and
Simple Spectral Access services in just the same way, to return tables of available image and
spectral resources in the relevant regions.

The identity of the server to query is given by the serviceurl parameter. Some advice about how
to locate URLs for suitable services is given in Appendix B.3.3.

SUN/256 105

The effect of this command is like doing a positional crossmatch where one of the catalogues is
local and the other is remote and exposes its data via a cone search/SIA/SSA service. Because of
both the network communication and the necessarily naive crossmatching algorithm (which scales
linearly with the size of the local catalogue) however, it is only suitable if the local catalogue has a
reasonably small number of rows, unless you are prepared to wait a long time.

The parallel parameter allows you to perform multiple cone searches concurrently, so that instead
of completing the first cone search, then the second, then the third, the program can be executing a
number of them at once. This can speed up operation considerably, especially in the face of network
latency, but beware that submitting a very large number of queries simultaneously to the same
server may overload it, resulting in some combination of failed queries, ultimately slower runtimes,
and unpopularity with server admins. Best to start with a low parallelism and cautiously increase it
to see whether there are gains in performance.

Note that when running, coneskymatch can generate a lot of WARNING messages. Most of these
are complaining about badly formed VOTables being returned from the cone search services.
STILTS does its best to work out what the service responses mean in this case, and usually makes a
good enough job of it.

Note: this task was known as multicone in its experimental form in STILTS v1.2 and v1.3.

B.3.1 Usage

The usage of coneskymatch is

stilts <stilts-flags> coneskymatch ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args>
out=<out-table> ofmt=<out-format>
ra=<expr> dec=<expr> sr=<expr/deg>
find=best|all|each usefoot=true|false
footnside=<int-value>
copycols=<colid-list>
scorecol=<col-name> parallel=<n>
erract=abort|ignore |retry|retry<n>
ostream=true|false fixcols=none|dups|all
suffix0=<label> suffix1=<label>
servicetype=cone|sia|ssa
serviceurl=<url-value> verb=1|2|3
dataformat=<value> emptyok=true|false
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

copycols = <colid-list>

List of columns from the input table which are to be copied to the output table. Each column
identified here will be prepended to the columns of the combined output table, and its value for
each row taken from the input table row which provided the parameters of the query which
produced it. See Section 6.3 for list syntax. The default setting is "*", which means that all
columns from the input table are included in the output.

[Default: *]

dataformat = <value>

Indicates the format of data objects described in the returned table. The meaning of this is
dependent on the value of the servicetype parameter:

SUN/256 106

• servicetype=cone: not used
• servicetype=sia: gives the MIME type of images referenced in the output table, also

special values "GRAPHIC" and "ALL".(value of the SIA FORMAT parameter)
• servicetype=ssa: gives the MIME type of spectra referenced in the output table, also

special values "votable", "fits", "compliant", "graphic", "all", and others (value of
the SSA FORMAT parameter).

dec = <expr>

Declination in degrees in the ICRS coordinate system for the position of each row of the input
table. This may simply be a column name, or it may be an algebraic expression calculated
from columns as explained in Section 9. If left blank, an attempt is made to guess from UCDs,
column names and unit annotations what expression to use.

emptyok = true|false

Whether the table metadata which is returned from a search result with zero rows is to be
believed. According to the spirit, though not the letter, of the cone search standard, a cone
search service which returns no data ought nevertheless to return the correct column headings.
Unfortunately this is not always the case. If this parameter is set true, it is assumed that the
service behaves properly in this respect; if it does not an error may result. In that case, set this
parameter false. A consequence of setting it false is that in the event of no results being
returned, the task will return no table at all, rather than an empty one.

[Default: true]

erract = abort|ignore |retry|retry<n>

Determines what will happen if any of the individual cone search requests fails. By default the
task aborts. That may be the best thing to do, but for unreliable or poorly implemented services
you may find that some searches fail and others succeed so it can be best to continue operation
in the face of a few failures. The options are:

• abort: failure of any query terminates the task
• ignore : failure of a query is treated the same as a query which returns no rows
• retry: failed queries are retried until they succeed; use with care - if the failure is for

some good, or at least reproducible reason this could prevent the task from ever
completing

• retry<n>: failed queries are retried at most a fixed number <n> of times If they still fail
the task terminates.

[Default: abort]

find = best|all|each

Determines which matches are retained.

• best: Only the matching query table row closest to the input table row will be output.
Input table rows with no matches will be omitted. (Note this corresponds to the best1

option in the pair matching commands, and best1 is a permitted alias).
• all: All query table rows which match the input table row will be output. Input table rows

with no matches will be omitted.
• each: There will be one output table row for each input table row. If matches are found,

the closest one from the query table will be output, and in the case of no matches, the
query table columns will be blank.

[Default: all]

fixcols = none|dups|all

Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from

SUN/256 107

• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

footnside = <int-value>

Determines the HEALPix Nside parameter for use with the MOC footprint service. This tuning
parameter determines the resolution of the footprint if available. Larger values give better
resolution, hence a better chance of avoiding unnecessary queries, but processing them takes
longer and retrieving and storing them is more expensive.

The value must be a power of 2, and at the time of writing, the MOC service will not supply
footprints at resolutions greater than nside=512, so it should be <=512.

Only used if usefoot=true.

icmd = <cmds>

Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

[Default: false]

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is

SUN/256 108

performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

ostream = true|false

If set true, this will cause the operation to stream on output, so that the output table is built up
as the results are obtained from the cone search service. The disadvantage of this is that some
output modes and formats need multiple passes through the data to work, so depending on the
output destination, the operation may fail if this is set. Use with care (or be prepared for the
operation to fail).

[Default: false]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

parallel = <n>

Allows multiple cone searches to be performed concurrently. If set to the default value, 1, the
cone query corresponding to the first row of the input table will be dispatched, when that is

SUN/256 109

completed the query corresponding to the second row will be dispatched, and so on. If set to
<n>, then queries will be overlapped in such a way that up to approximately <n> may be
running at any one time.

Whether increasing <n> is a good idea, and what might be a sensible maximum value, depends
on the characteristics of the service being queried. In particular, setting it to too large a number
may overload the service resulting in some combination of failed queries, ultimately slower
runtimes, and unpopularity with server admins.

The maximum value permitted for this parameter by default is 10. This limit may be raised by
use of the service.maxparallel system property but use that option with great care since you
may overload services and make yourself unpopular with data centre admins. As a rule, you
should only increase this value if you have obtained permission from the data centres whose
services on which you will be using the increased parallelism.

[Default: 1]

ra = <expr>

Right ascension in degrees in the ICRS coordinate system for the position of each row of the
input table. This may simply be a column name, or it may be an algebraic expression
calculated from columns as explained in Section 9. If left blank, an attempt is made to guess
from UCDs, column names and unit annotations what expression to use.

scorecol = <col-name>

Gives the name of a column in the output table to contain the distance between the requested
central position and the actual position of the returned row. The distance returned is an angular
distance in degrees. If a null value is chosen, no distance column will appear in the output
table.

[Default: Separation]

servicetype = cone|sia|ssa

Selects the type of data access service to contact. Most commonly this will be the Cone Search
service itself, but there are one or two other possibilities:

• cone: Cone Search protocol - returns a table of objects found near each location. See
Cone Search standard.

• sia: Simple Image Access protocol - returns a table of images near each location. See
SIA standard.

• ssa: Simple Spectral Access protocol - returns a table of spectra near each location. See
SSA standard.

[Default: cone]

serviceurl = <url-value>

The base part of a URL which defines the queries to be made. Additional parameters will be
appended to this using CGI syntax ("name=value", separated by '&' characters). If this value
does not end in either a '?' or a '&', one will be added as appropriate.

See Appendix B.3.3 for discussion of how to locate service URLs corresponding to given
datasets.

sr = <expr/deg>

Expression which evaluates to the search radius in degrees for the request at each row of the
input table. This will often be a constant numerical value, but may be the name or ID of a
column in the input table, or a function involving one.

suffix0 = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

SUN/256 110

[Default: _0]

suffix1 = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the cone result table.

[Default: _1]

usefoot = true|false

Determines whether an attempt will be made to restrict searches in accordance with available
footprint information. If this is set true, then before any of the per-row queries are performed,
an attempt may be made to acquire footprint information about the servce. If such information
can be obtained, then queries which fall outside the footprint, and hence which are known to
yield no results, are skipped. This can speed up the search considerably.

Currently, the only footprints available are those provided by the CDS MOC (Multi-Order
Coverage map) service, which covers VizieR and a few other cone search services.

[Default: true]

verb = 1|2|3

Verbosity level of the tables returned by the query service. A value of 1 indicates the bare
minimum and 3 indicates all available information.

B.3.2 Examples

Here are some examples of coneskymatch:

stilts coneskymatch serviceurl=http://archive.stsci.edu/hst/search.php \
in=messier.xml sr=0.05 out=matches.xml

This queries the HST cone search service from Space Telescope for records within .05 degrees
of each Messier object contained in a local VOTable messier.xml. The sky positions in the
input catalogue are guessed from the available table metadata. The result is written to a new
VOTable, matches.xml. Since the servicetype parameter is not given, the default (cone
search) service type is assumed.

stilts coneskymatch
servicetype=sia \
serviceurl=http://irsa.ipac.caltech.edu/cgi-bin/2MASS/IM/nph-im_sia?type=ql&ds=asky \
in=messier.xml ra=RA dec=DEC \
dataformat=image/fits \
out=fitsimages.xml

This is similar to the previous example, but instead of querying an HST cone search server for
catalogue objects near the input table positions, it queries a 2MASS Simple Image Access
(SIA) server for images. It also explicitly names the columns holding the J2000 positions of
reach record in the input catalogue as RA and DEC. The search radius parameter (sr) is not set
here; for SIA queries the default search radius is zero, which has the special meaning of
including any image which covers the requested position. Setting dataformat=image/fits

(which is the default) requests only records describing FITS-format images to be returned;
setting it to an empty value might return other formats such as JPEG too.

stilts coneskymatch \
serviceurl='http://www.nofs.navy.mil/cgi-bin/vo_cone.cgi?CAT=NOMAD' \
in=vizier.xml#7 \
icmd='addskycoords -inunit sex fk4 fk5 RAB1950 DEB1950 RAJ2000 DEJ2000' \
icmd='progress'
ra=RAJ2000 dec=DEJ2000 sr=0.01 \
ocmd='replacecol -units deg RA hmsToDegrees(RA[0],RA[1],RA[2])' \

SUN/256 111

ocmd='replacecol -units deg DEC dmsToDegrees(DEC[0],DEC[1],DEC[2])' \
omode=topcat

In this example some pre-processing of the input catalogue and post-processing of the output
catalogue is performed as well as the multiple cone search itself.

The input catalogue, which is the 8th TABLE element in a VOTable file, contains sky
positions in sexagesimal FK4 (B1950) coordinates. The icmd=addskycoords... parameter
specifies a filter which will add new columns in FK5 (J2000) degrees, which are what the
coneskymatch command requires. The icmd=progress parameter specifies a filter which will
write progress information to the terminal so you can see how the queries are progressing.

The NOMAD service specified by the serviceurl parameter used here happens to return
results with the RA/DEC columns represented in a rather eccentric format, namely 3-element
floating point arrays representing (hours,minutes,seconds)/(degrees,minutes,seconds). The two
ocmd=replacecol... filters replace the values of these columns with the scalar equivalents in
degrees. Finally, the omode=topcat parameter causes the result table to be loaded directly into
TOPCAT (if it is available).

stilts coneskymatch serviceurl='http://archive.stsci.edu/iue/search.php?' \
in=queries.txt ifmt=ascii \
ra='$1' dec='$2' \
sr='$3' copycols='$4' \
out=found.fits

Here the input is a plain text table with four unnamed columns, giving in order the right
ascension, declination, positional error and name of target objects. The command carries out a
cone search to the named service for each one. Note in this case the search radius (sr
parameter) is taken from the table and so varies for each query. The copycols parameter has
the value '$4', which means that the value of the fourth column of the input table will be
prepended to each row of the output table for which it is responsible. Output is to a FITS table.

B.3.3 Locating Cone Query Service URLs

To use the coneskymatch command you need the service URL (also known as the base URL or
access URL) of a cone search, SIA or SSA service to use. If you know one of these representing a
service that you wish to use, you can use it directly.

If you don't, you will need to find the URL from somewhere. It is the job of the Virtual Observatory
Registry to keep a record of where you can find various astronomical services, so this is where you
should look.

There are various ways you can interrogate the registry; the easiest is probably to use a graphical
registry search tool. One such tool is AstroGrid's VOExplorer, which allows you to perform
sophisticated searches for cone search, SIA or SSA services. Another option is to use TOPCAT; the
Cone Search, SIA and SSA load dialogues allow you to search the registry for these services prior
to performing a query; you can just use the registry part and cut'n'paste the URL which is shown.

Other registry querying tools are available, including STILTS's regquery (Appendix B.10)
command. See that section of the manual for details, but for instance to locate registered Cone
Search services which have something to do with SDSS data, you could execute the following:

stilts regquery query="capability/@standardID = 'ivo://ivoa.net/std/ConeSearch' and title like '%SDSS%'" \
ocmd="keepcols 'shortName AccessUrl'" \
ofmt=ascii

Writing just query="capability/@standardID = 'ivo://ivoa.net/std/ConeSearch'" with no
further qualification would give you all registered cone search services.

SUN/256 112

B.4 funcs: Browses functions used by algebraic expression language

funcs is a utility which allows you to browse the functions you can use in STILTS's algebraic
expression language. Invoking the command causes a window to pop up on the display with two
parts. The left hand panel contains a tree-like representation of the functions available - the top level
shows the classes (categories) into which the functions are divided, and if you open these up (by
double clicking on them) each contains a list of functions and constants in that class. If you click on
any of these classes or their constituent functions or constants, a full descritption of what they are
and how to use them will appear in the right hand panel.

The information available from this command is the same as that given in Section 9.5, but the
graphical browser may be a more convenient way to view the documentation. There are no
parameters.

B.4.1 Usage

The usage of funcs is

stilts <stilts-flags> funcs

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

This task has no parameters.

B.5 pixfoot: Generates Multi-Order Coverage maps

pixfoot takes a list of sky positions from an input table and generates a pixel map describing a sky
region which includes them all. Currently the output is to a format known as a Multi-Order
Coverage map (MOC), which is a HEALPix-based format composed of a list of HEALPix pixels of
different sizes, which can efficiently describe complex regions. Other output formats may be
introduced in the future.

See also the Coverage class for MOC-related functions.

B.5.1 Usage

The usage of pixfoot is

stilts <stilts-flags> pixfoot ifmt=<in-format> istream=true|false
icmd=<cmds> order=<int-value> ra=<expr>
dec=<expr> radius=<expr> mocfmt=fits|ascii
out=<out-file>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

dec = <expr>

Declination in degrees for the position of each row of the input table. This may simply be a
column name, or it may be an algebraic expression calculated from columns as explained in
Section 9. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

SUN/256 113

icmd = <cmds>

Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

[Default: false]

mocfmt = fits|ascii

Determines the output format for the MOC file.

[Default: fits]

order = <int-value>

Maximum HEALPix order for the MOC. This defines the maximum resolution of the output
coverage map. The angular resolution corresponding to order k is approximately
180/sqrt(3.Pi)/2^k (3520*2^-k arcmin).

[Default: 13]

out = <out-file>

The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

[Default: -]

ra = <expr>

Right ascension in degrees for the position of each row of the input table. This may simply be
a column name, or it may be an algebraic expression calculated from columns as explained in
Section 9. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

SUN/256 114

radius = <expr>

Expression which evaluates to the radius in degrees of the cone at each row of the input table.
The default is "0", which treats each position as a point rather than a cone, but a constant or an
expression as described in Section 9 may be used instead.

[Default: 0]

B.5.2 Examples

Here are some examples of pixfoot:

stilts pixfoot in=survey.vot order=8 mocfmt=fits out=sfoot.fits

Generates an order-8 FITS MOC file from the point positions of rows in the given VOTable.
The columns representing sky position are determined automatically (if possible) by
examining the metadata in the input table.

stilts pixfoot in='jdbc:mysql://localhost/astro1#SELECT * FROM first1'
icmd='addskycoords galactic icrs GLON GLAT ALPHA DELTA'
ra=ALPHA dec=DELTA radius=20./3600.
order=13 mocfmt=fits out=first.moc

Generates an order-13 FITS MOC file from positions in a table held in a database. The
positions in the original table are in galactic coordinates, so have to be converted to equatorial
(ICRS) first. The map is formed in this case by surrounding each point by a disc of 20 arcsec.
Note that JDBC database access will have to be set up as per Section 3.4 for this command to
work.

B.6 pixsample: Samples from a HEALPix pixel data file

pixsample samples data at the sky position represented by each row from an all-sky map contained
in a HEALPix-format pixel data file. Such files are actually tables (usually in FITS format) in
which the row number corresponds to a HEALPix pixel index, and the pixel values are cell
contents; one or more columns may be present containing values for one or more all-sky maps. The
result of this command is to add a column to the input table representing the pixel data at the
position of each input row for each of the data columns in the HEALPix table.

This command does not attempt to convert between coordinate systems except as instructed, so it is
important to know what coordinate system the HEALPix file is in, and ensure that the coordinates
supplied from the input table match this. You may need to examine the documentation or headers of
the HEALPix file in question to find out. See the Examples section for some examples.

There is a choice of how the sampling is done; the simplest way is just to use the value of the pixel
covering the indicated position. An alternative is to average over a disc of given radius (perhaps a
function of the input row). Other options (e.g. max/min) could easily be added.

Although HEALPix is not a common format for storing image data in general, it is used for storing
a number of important all-sky data sets such as the WMAP results and Schlegel dust maps. The
NASA LAMBDA (http://lambda.gsfc.nasa.gov/) (Legacy Archive for Microwave Background Data
Analysis) archive has a number of maps in a suitable format, including foreground data like
predicted reddening as well as CMB maps.

B.6.1 Usage

The usage of pixsample is

SUN/256 115

stilts <stilts-flags> pixsample in=<table> ifmt=<in-format> icmd=<cmds>
pixdata=<pix-table> pfmt=<in-format>
pcmd=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args>
out=<out-table> ofmt=<out-format>
pixorder=nested|ring|(auto) stat=point|mean
lon=<expr> lat=<expr>
insys=icrs|fk5|fk4|galactic|supergalactic|ecliptic
pixsys=icrs|fk5|fk4|galactic|supergalactic|ecliptic
radius=<expr>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

icmd = <cmds>

Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

insys = icrs|fk5|fk4|galactic|supergalactic|ecliptic

Specifies the sky coordinate system in which sample positions are provided by the lon/lat
parameters. If the sample positions are given in the same coordinate system as that given by
the pixel data table, both the insys and pixsys parameters may be set null.

The available coordinate systems are:

• icrs: ICRS (Hipparcos) (Right Ascension, Declination)
• fk5: FK5 J2000.0 (Right Ascension, Declination)
• fk4: FK4 B1950.0 (Right Ascension, Declination)
• galactic: IAU 1958 Galactic (Longitude, Latitude)
• supergalactic: de Vaucouleurs Supergalactic (Longitude, Latitude)
• ecliptic: Ecliptic (Longitude, Latitude)

lat = <expr>

Expression which evaluates to the latitude coordinate in degrees in the input table at which

SUN/256 116

positions are to be sampled from the pixel data table. This will usually be the name or ID of a
column in the input table, or an expression involving one. If this coordinate does not match the
coordinate system used by the pixel data table, both coordinate systems must be set using the
insys and pixsys parameters.

lon = <expr>

Expression which evaluates to the longitude coordinate in degrees in the input table at which
positions are to be sampled from the pixel data table. This will usually be the name or ID of a
column in the input table, or an expression involving one. If this coordinate does not match the
coordinate system used by the pixel data table, both coordinate systems must be set using the
insys and pixsys parameters.

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

SUN/256 117

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

pcmd = <cmds>

Commands to operate on the pixel data table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

pfmt = <in-format>

File format for the HEALPix pixel data table. This is usually, but not necessarily, FITS.

[Default: fits]

pixdata = <pix-table>

The location of the table containing the pixel data. The data must be in the form of a HEALPix
table, with one pixel per row in HEALPix order. These files are typically, but not necessarily,
FITS tables. A filename or URL may be used, but a local file will be more efficient.

Some HEALPix format FITS tables seem to have rows which contain 1024-element arrays of
pixels instead of single pixel values. This (rather perverse?) format is not currently supported
here, but if there is demand support could be added.

pixorder = nested|ring|(auto)

Selects the pixel ordering scheme used by the pixel data file. There are two different ways of
ordering pixels in a HEALPix file, "ring" and "nested", and the sampler needs to know which
one is in use. If you know which is in use, choose the appropriate value for this parameter; if
(auto) is used it will attempt to work it out from headers in the file (the ORDERING header).
If no reliable ordering scheme can be determined, the command will fail with an error.

[Default: (auto)]

pixsys = icrs|fk5|fk4|galactic|supergalactic|ecliptic

Specifies the sky coordinate system used for the HEALPix data in the pixdata file. If the
sample positions are given in the same coordinate system as that given by the pixel data table,
both the insys and pixsys parameters may be set null.

The available coordinate systems are:

• icrs: ICRS (Hipparcos) (Right Ascension, Declination)
• fk5: FK5 J2000.0 (Right Ascension, Declination)
• fk4: FK4 B1950.0 (Right Ascension, Declination)
• galactic: IAU 1958 Galactic (Longitude, Latitude)
• supergalactic: de Vaucouleurs Supergalactic (Longitude, Latitude)
• ecliptic: Ecliptic (Longitude, Latitude)

radius = <expr>

Determines the radius in degrees over which pixels will be sampled to generate the output
statistic in accordance with the value of the stat parameter. This will typically be a constant
value, but it may be an algebraic expression based on columns from the input table.

SUN/256 118

Not used if stat=point.

stat = point|mean

Determines how the pixel values will be sampled to generate an output value. The options are:

• point: Uses the value at the pixel covering the supplied position. In this case the radius

parameter is not used.
• mean: Averages the values over all the pixels within a radius given by the radius

parameter. This averaging is somewhat approximate; all pixels which are mostly within
the radius are averaged with equal weights.

[Default: point]

B.6.2 Examples

Here are some examples of pixsample:

stilts pixsample in=szdata.fits pixdata=wmap_ilc_7yr_v4.fits
lat=GAL_LAT lon=GAL_LON pcmd='keepcols TEMPERATURE'
out=szdata_cmb.fits

Samples from a HEALPix file containing WMAP data are added to an input file szdata.fits,
giving an output file szdata_cmb.fits which is the same but with an additional column
TEMPERATURE. The sampling is done using the default statistical mode point, which just takes a
point sample at the input position. The HEALPix file must have its pixels ordered using
galactic coordinates, since that is the coordinate system available from the input table.

The pixdata file used here can be found (at time of writing) at
http://lambda.gsfc.nasa.gov/data/map/dr4/dfp/ilc/wmap_ilc_7yr_v4.fits (24 Mbyte).

stilts pixsample in=messier.xml pixdata=lambda_sfd_ebv.fits
stat=mean radius=5./60.
insys=icrs pixsys=galactic lon=RA2000 lat=DEC2000

Samples data from a HEALPix table, averaging over a sampling radius of 5 arcmin. The
coordinates in the input table are only available as ICRS (RA,Dec) coordinates, and the
arrangement of the HEALPix pixels in the pixel data file uses galactic coordinates (you can
only determine this by looking at the FITS headers or documentation of that file), so it is
necessary to use the insys and pixsys parameters for conversion.

The pixdata file used here can be found (at time of writing) at
http://lambda.gsfc.nasa.gov/data/foregrounds/SFD/lambda_sfd_ebv.fits (25 Mbyte).

B.7 plot2d: 2D Scatter Plot

plot2d performs two-dimensional scatter plots, sending the output to a graphical display or writing
it to a file in some vector or bitmapped graphics format. You need to supply it with values for one
or more X and Y datasets, in terms of table columns, and it will generate a plot with a point for each
row. There are many options available to configure the detailed appearance of the plot, but in its
simplest form invocation is quite straightforward. See Section 8 for more discussion on use of the
plotting commands.

B.7.1 Usage

The usage of plot2d is

stilts <stilts-flags> plot2d xpix=<int-value> ypix=<int-value>

SUN/256 119

font=dialog|serif|... fontsize=<int-value>
fontstyle=plain|bold|italic|bold-italic
legend=true|false title=<value>
omode=swing|out|cgi|discard|auto
out=<out-file>
ofmt=png|png-transp|gif|jpeg|pdf|eps|eps-gzip
inN=<table> ifmtN=<in-format>
istreamN=true|false cmdN=<cmds> xdataN=<expr>
ydataN=<expr> auxdataN=<expr>
xlo=<float-value> ylo=<float-value>
auxlo=<float-value> xhi=<float-value>
yhi=<float-value> auxhi=<float-value>
xlog=true|false ylog=true|false
auxlog=true|false xflip=true|false
yflip=true|false auxflip=true|false
xlabel=<value> ylabel=<value> auxlabel=<value>
xerrorN=<expr>|[<lo-expr>],[<hi-expr>]
yerrorN=<expr>|[<lo-expr>],[<hi-expr>]
auxshader=rainbow|pastel|... txtlabelN=<value>
subsetNS=<expr> nameNS=<value>
colourNS=<rrggbb>|red|blue|...
shapeNS=filled_circle|open_circle|...
sizeNS=<int-value> transparencyNS=<int-value>
lineNS=DotToDot|LinearRegression
linewidthNS=<int-value>
dashNS=dot|dash|...|<a,b,...>
hideNS=true|false
errstyleNS=lines|capped_lines|...
grid=true|false antialias=true|false
sequence=<suffix>,<suffix>,...

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

antialias = true|false

Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false simply sets each pixel in the
line to on or off. For vector-type graphics output formats, or for cases in which no diagonal
lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down slightly.

[Default: true]

auxdataN = <expr>

Gives a column name or expression for the aux axis data for table N. The expression is a
numeric algebraic expression based on column names as described in Section 9

auxflip = true|false

If set true, the scale on the aux axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

auxhi = <float-value>

The upper limit for the plotted aux axis. If not set, a value will be chosen which is high enough
to accommodate all the data.

auxlabel = <value>

Specifies a label to be used for annotating axis aux. A default values based on the plotted data
will be used if no value is supplied for this parameter.

auxlo = <float-value>

The lower limit for the plotted aux axis. If not set, a value will be chosen which is low enough

SUN/256 120

to accommodate all the data.

auxlog = true|false

If false (the default), the scale on the aux axis is linear; if true it is logarithmic.

[Default: false]

auxshader = rainbow|pastel|...

Determines how data from auxiliary axes will be displayed. Generally this is some kind of
colour ramp. These are the available colour fixing options:

• rainbow

• pastel

• standard

• heat

• colour

• hue

• greyscale

• red-blue

and these are the available colour modifying options:

• hsv_h

• hsv_s

• hsv_v

• intensity

• rgb_red

• rgb_green

• rgb_blue

• yuv_y

• yuv_u

• yuv_v

• transparency

[Default: rainbow]

cmdN = <cmds>

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

colourNS = <rrggbb>|red|blue|...

Defines the colour of markers plotted. The value may be a 6-digit hexadecimal number giving
red, green and blue intensities, e.g. "ff00ff" for magenta. Alternatively it may be the name of
one of the pre-defined colours. These are currently red, blue, green, grey, magenta, cyan,
orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter
name.

dashNS = dot|dash|...|<a,b,...>

Defines the dash style for any lines drawn in data set NS To generate a dashed line the value
may be one of the named dash types:

• dot

SUN/256 121

• dash

• longdash

• dotdash

or may be a comma-separated string of on/off length values such as "4,2,8,2". A null value
indicates a solid line.

Only has an effect if the lineNS parameter is set to draw lines.

errstyleNS = lines|capped_lines|...

Defines the way in which error bars (or ellipses, or...) will be represented for data set NS if
errors are being displayed. The following options are available:

• none

• lines

• capped_lines

• caps

• arrows

• ellipse

• crosshair_ellipse

• rectangle

• crosshair_rectangle

• filled_ellipse

• filled_rectangle

[Default: lines]

font = dialog|serif|...

Determines the font that will be used for textual annotation of the plot, including axes etc. At
least the following fonts will be available:

• serif

• sansserif

• monospaced

• dialog

• dialoginput

as well as a range of system-dependent fonts, possibly including

• abyssinica_sil

• ar_pl_uming_cn

• ar_pl_uming_hk

• ar_pl_uming_tw

• ar_pl_uming_tw_mbe

• bitstream_charter

• century_schoolbook_l

• cm_roman

• cm_roman_asian

• cm_roman_ce

• cm_roman_cyrillic

• cm_roman_greek

• cm_sans

• cm_sans_asian

• cm_sans_ce

• cm_sans_cyrillic

• cm_sans_greek

• cm_typewriter

• cm_typewriter_asian

• cm_typewriter_ce

• cm_typewriter_cyrillic

SUN/256 122

• cm_typewriter_greek

• courier_10_pitch

• cursor

[Default: dialog]

fontsize = <int-value>

Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic

Gives a style in which the font is to be applied for plot annotations. Options are plain, bold,
italic and bold-italic.

[Default: plain]

grid = true|false

If true, grid lines are drawn on the plot. If false, they are absent.

[Default: true]

hideNS = true|false

Indicates whether the actual markers plotted for each point should be hidden. Normally this is
false, but you may want to set it to true if the point positions are being revealed in some other
way, for instance by error markers or lines drawn between them.

[Default: false]

ifmtN = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

inN = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmtN parameter.

istreamN = true|false

If set true, the inN table will be read as a stream. It is necessary to give the ifmtN parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

[Default: false]

legend = true|false

Determines whether a legend showing which plotting style is used for each data set. Defaults
to true if there is more than one set, false otherwise.

lineNS = DotToDot|LinearRegression

Determines what line if any will be plotted along with the data points. The options are:

• null: No line is plotted.
• DotToDot: Each point is joined to the next one in sequence by a straight line.
• LinearRegression: A linear regression line is plotted based on all the points which are

SUN/256 123

visible in the plot. Note that the regression coefficients take no account of points out of
the visible range.

linewidthNS = <int-value>

Sets the line width in pixels for any lines drawn in data set NS.

Only has an effect if the lineNS parameter is set to draw lines.

[Default: 1]

nameNS = <value>

Provides a name to use for a subset with the symbolic label NS. This name will be used for
display in the legend, if one is displayed.

ofmt = png|png-transp|gif|jpeg|pdf|eps|eps-gzip

Graphics format in which the plot is written to the output file. One of:

• png: PNG
• png-transp: PNG with transparent background
• gif: GIF
• jpeg: JPEG
• pdf: Portable Document Format
• eps: Encapsulated PostScript
• eps-gzip: Gzipped Encapsulated PostScript

May default to a sensible value depending on the filename given by out.

omode = swing|out|cgi|discard|auto

Determines how the drawn plot will be output.

• swing: Plot will be displayed in a window on the screen.
• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

out = <out-file>

The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

sequence = <suffix>,<suffix>,...

Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.
The value of this parameter is a comma-separated list of the "NS" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably alphabetic by suffix).

shapeNS = filled_circle|open_circle|...

Defines the shapes for the markers that are plotted in data set NS. The following shapes are
available:

• filled_circle

• open_circle

• cross

SUN/256 124

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

sizeNS = <int-value>

Defines the marker size in pixels for markers plotted in data set NS. If the value is negative, an
attempt will be made to use a suitable size according to how many points there are to be
plotted.

[Default: -1]

subsetNS = <expr>

Gives the selection criterion for the subset labelled "NS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

title = <value>

A one-line title to display at the top of the plot.

transparencyNS = <int-value>

Determines the transparency of plotted markers for data set NS. A value of <n> means that
opacity is only achieved (the background is only blotted out) when <n> pixels of this colour
have been plotted on top of each other.

The minimum value is 1, which means opaque markers.

txtlabelN = <value>

Gives an expression which will label each plotted point. If given, the text (or number) resulting
from evaluating the expression will be written near each point which is plotted.

xdataN = <expr>

Gives a column name or expression for the x axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

xerrorN = <expr>|[<lo-expr>],[<hi-expr>]

Gives expressions for the errors on X coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

xflip = true|false

If set true, the scale on the x axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

xhi = <float-value>

The upper limit for the plotted x axis. If not set, a value will be chosen which is high enough to

SUN/256 125

accommodate all the data.

xlabel = <value>

Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no value is supplied for this parameter.

xlo = <float-value>

The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xlog = true|false

If false (the default), the scale on the x axis is linear; if true it is logarithmic.

[Default: false]

xpix = <int-value>

The width of the output graphic in pixels.

[Default: 400]

ydataN = <expr>

Gives a column name or expression for the y axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

yerrorN = <expr>|[<lo-expr>],[<hi-expr>]

Gives expressions for the errors on Y coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

yflip = true|false

If set true, the scale on the y axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

yhi = <float-value>

The upper limit for the plotted y axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

ylabel = <value>

Specifies a label to be used for annotating axis y. A default values based on the plotted data
will be used if no value is supplied for this parameter.

ylo = <float-value>

The lower limit for the plotted y axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

ylog = true|false

If false (the default), the scale on the y axis is linear; if true it is logarithmic.

[Default: false]

ypix = <int-value>

The height of the output graphic in pixels.

[Default: 300]

SUN/256 126

B.7.2 Examples

Here are some examples of plot2d in use:

stilts plot2d in=cat.xml xdata=RMAG-BMAG ydata=BMAG

Plots a colour-magnitude diagram. Since no omode or out value has been specified, the plot is
posted directly to the graphics display for inspection. By adding the parameter
out=xyplot.eps the plot could be written to an Encapsulated Postscript file instead.

The generated plot is here.

stilts plot2d in=6dfgs_mini.xml xdata=RMAG-BMAG ydata=BMAG
subset1=SGFLAG==1 name1=galaxy colour1=blue shape1=open_circle
subset2=SGFLAG==2 name2=star colour2=e010f0 shape2=x size2=3
xlo=-1 xhi=4.5 ylo=10 yhi=20 xpix=500 ypix=250
out=xyplot2.png

Plots a colour-magnitude diagram with multiple subsets. The subsets are labelled "1" and "2"
with separate sets of parameters applying to each. The selections for the sets are given by the
subset* parameters; set 1 is those rows with the SGFLAG column equal to 1 and set 2 is those
rows with the SGFLAG column equal to 2. The boundaries of the plot in data coordinates are
set explicitly rather than being determined from the data (this is faster) and the plot size in
pixels is also set explicitly rather than taking the default values. Output is to a PNG file.

The generated plot is here.

stilts plot2d in1=iras_psc.fits cmd1='addskycoords fk5 galactic RA DEC GLON GLAT'
xdata1=GLON ydata1=GLAT
auxdata1=FNU_100 auxlog=true auxflip=true size1=0 transparency1=3
in2=messier.xml cmd2='addskycoords fk5 galactic RA DEC GLON GLAT'
xdata2=GLON ydata2=GLAT
txtlabel2=RADIUS>16?("M"+ID):"" cmd2='addcol SIZE sqrt(RADIUS/2)'
xerror2=SIZE yerror2=SIZE
subset2a=true hide2a=true colour2a=black errstyle2a=ellipse
subset2b=true hide2b=true colour2b=black errstyle2b=filled_ellipse

transparency2b=6
xlabel='Galactic Longitude' ylabel='Galactic Latitude' title='The Sky'
legend=false grid=false fontsize=12 fontstyle=bold-italic
xlo=0 xhi=360 ylo=-90 yhi=+90 xpix=600 ypix=300
out=skyplot.png

You can do quite complicated things.

The generated plot is here.

B.8 plot3d: 3D Scatter Plot

plot3d performs three-dimensional scatter plots, sending the output to a graphical display or
writing it to a file in some vector or bitmapped graphics format. You need to supply it with values
for one or more X, Y and Z datasets, in terms of table columns, and it will generate a plot with a
point for each row. There are many options available to configure the detailed appearance of the
plot, but in its simplest form invocation is quite straightforward. See Section 8 for more discussion
on use of the plotting commands.

B.8.1 Usage

The usage of plot3d is

stilts <stilts-flags> plot3d xpix=<int-value> ypix=<int-value>
font=dialog|serif|... fontsize=<int-value>

SUN/256 127

fontstyle=plain|bold|italic|bold-italic
legend=true|false title=<value>
omode=swing|out|cgi|discard|auto
out=<out-file>
ofmt=png|png-transp|gif|jpeg|pdf|eps|eps-gzip
inN=<table> ifmtN=<in-format>
istreamN=true|false cmdN=<cmds> xdataN=<expr>
ydataN=<expr> zdataN=<expr> auxdataN=<expr>
xlo=<float-value> ylo=<float-value>
zlo=<float-value> auxlo=<float-value>
xhi=<float-value> yhi=<float-value>
zhi=<float-value> auxhi=<float-value>
xlog=true|false ylog=true|false
zlog=true|false auxlog=true|false
xflip=true|false yflip=true|false
zflip=true|false auxflip=true|false
xlabel=<value> ylabel=<value> zlabel=<value>
auxlabel=<value>
xerrorN=<expr>|[<lo-expr>],[<hi-expr>]
yerrorN=<expr>|[<lo-expr>],[<hi-expr>]
zerrorN=<expr>|[<lo-expr>],[<hi-expr>]
auxshader=rainbow|pastel|... txtlabelN=<value>
subsetNS=<expr> nameNS=<value>
colourNS=<rrggbb>|red|blue|...
shapeNS=filled_circle|open_circle|...
sizeNS=<int-value> transparencyNS=<int-value>
lineNS=DotToDot|LinearRegression
linewidthNS=<int-value>
dashNS=dot|dash|...|<a,b,...>
hideNS=true|false
errstyleNS=lines|capped_lines|...
grid=true|false antialias=true|false
sequence=<suffix>,<suffix>,...
fog=<float-value> phi=<float-value>
theta=<float-value>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

antialias = true|false

Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false simply sets each pixel in the
line to on or off. For vector-type graphics output formats, or for cases in which no diagonal
lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down slightly.

[Default: true]

auxdataN = <expr>

Gives a column name or expression for the aux axis data for table N. The expression is a
numeric algebraic expression based on column names as described in Section 9

auxflip = true|false

If set true, the scale on the aux axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

auxhi = <float-value>

The upper limit for the plotted aux axis. If not set, a value will be chosen which is high enough
to accommodate all the data.

auxlabel = <value>

Specifies a label to be used for annotating axis aux. A default values based on the plotted data

SUN/256 128

will be used if no value is supplied for this parameter.

auxlo = <float-value>

The lower limit for the plotted aux axis. If not set, a value will be chosen which is low enough
to accommodate all the data.

auxlog = true|false

If false (the default), the scale on the aux axis is linear; if true it is logarithmic.

[Default: false]

auxshader = rainbow|pastel|...

Determines how data from auxiliary axes will be displayed. Generally this is some kind of
colour ramp. These are the available colour fixing options:

• rainbow

• pastel

• standard

• heat

• colour

• hue

• greyscale

• red-blue

and these are the available colour modifying options:

• hsv_h

• hsv_s

• hsv_v

• intensity

• rgb_red

• rgb_green

• rgb_blue

• yuv_y

• yuv_u

• yuv_v

• transparency

[Default: rainbow]

cmdN = <cmds>

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

colourNS = <rrggbb>|red|blue|...

Defines the colour of markers plotted. The value may be a 6-digit hexadecimal number giving
red, green and blue intensities, e.g. "ff00ff" for magenta. Alternatively it may be the name of
one of the pre-defined colours. These are currently red, blue, green, grey, magenta, cyan,
orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter
name.

dashNS = dot|dash|...|<a,b,...>

SUN/256 129

Defines the dash style for any lines drawn in data set NS To generate a dashed line the value
may be one of the named dash types:

• dot

• dash

• longdash

• dotdash

or may be a comma-separated string of on/off length values such as "4,2,8,2". A null value
indicates a solid line.

Only has an effect if the lineNS parameter is set to draw lines.

errstyleNS = lines|capped_lines|...

Defines the way in which error bars (or ellipses, or...) will be represented for data set NS if
errors are being displayed. The following options are available:

• none

• lines

• capped_lines

• caps

• arrows

• cuboid

• ellipse

• crosshair_ellipse

• rectangle

• crosshair_rectangle

• filled_ellipse

• filled_rectangle

[Default: lines]

fog = <float-value>

Sets the level of fogging used to provide a visual indication of depth. Object plotted further
away from the viewer appear more washed-out by a white fog. The default value gives a bit of
fogging; increase it to make the fog thicker, or set to zero if no fogging is required.

[Default: 1.0]

font = dialog|serif|...

Determines the font that will be used for textual annotation of the plot, including axes etc. At
least the following fonts will be available:

• serif

• sansserif

• monospaced

• dialog

• dialoginput

as well as a range of system-dependent fonts, possibly including

• abyssinica_sil

• ar_pl_uming_cn

• ar_pl_uming_hk

• ar_pl_uming_tw

• ar_pl_uming_tw_mbe

• bitstream_charter

• century_schoolbook_l

• cm_roman

• cm_roman_asian

• cm_roman_ce

SUN/256 130

• cm_roman_cyrillic

• cm_roman_greek

• cm_sans

• cm_sans_asian

• cm_sans_ce

• cm_sans_cyrillic

• cm_sans_greek

• cm_typewriter

• cm_typewriter_asian

• cm_typewriter_ce

• cm_typewriter_cyrillic

• cm_typewriter_greek

• courier_10_pitch

• cursor

[Default: dialog]

fontsize = <int-value>

Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic

Gives a style in which the font is to be applied for plot annotations. Options are plain, bold,
italic and bold-italic.

[Default: plain]

grid = true|false

If true, grid lines are drawn on the plot. If false, they are absent.

[Default: true]

hideNS = true|false

Indicates whether the actual markers plotted for each point should be hidden. Normally this is
false, but you may want to set it to true if the point positions are being revealed in some other
way, for instance by error markers or lines drawn between them.

[Default: false]

ifmtN = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

inN = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmtN parameter.

istreamN = true|false

If set true, the inN table will be read as a stream. It is necessary to give the ifmtN parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

SUN/256 131

[Default: false]

legend = true|false

Determines whether a legend showing which plotting style is used for each data set. Defaults
to true if there is more than one set, false otherwise.

lineNS = DotToDot|LinearRegression

Determines what line if any will be plotted along with the data points. The options are:

• null: No line is plotted.
• DotToDot: Each point is joined to the next one in sequence by a straight line.
• LinearRegression: A linear regression line is plotted based on all the points which are

visible in the plot. Note that the regression coefficients take no account of points out of
the visible range.

linewidthNS = <int-value>

Sets the line width in pixels for any lines drawn in data set NS.

Only has an effect if the lineNS parameter is set to draw lines.

[Default: 1]

nameNS = <value>

Provides a name to use for a subset with the symbolic label NS. This name will be used for
display in the legend, if one is displayed.

ofmt = png|png-transp|gif|jpeg|pdf|eps|eps-gzip

Graphics format in which the plot is written to the output file. One of:

• png: PNG
• png-transp: PNG with transparent background
• gif: GIF
• jpeg: JPEG
• pdf: Portable Document Format
• eps: Encapsulated PostScript
• eps-gzip: Gzipped Encapsulated PostScript

May default to a sensible value depending on the filename given by out.

omode = swing|out|cgi|discard|auto

Determines how the drawn plot will be output.

• swing: Plot will be displayed in a window on the screen.
• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

out = <out-file>

The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

phi = <float-value>

Angle in degrees through which the 3D plot is rotated abound the Z axis prior to drawing.

[Default: 30.0]

sequence = <suffix>,<suffix>,...

Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.

SUN/256 132

The value of this parameter is a comma-separated list of the "NS" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably alphabetic by suffix).

shapeNS = filled_circle|open_circle|...

Defines the shapes for the markers that are plotted in data set NS. The following shapes are
available:

• filled_circle

• open_circle

• cross

• x

• open_square

• open_diamond

• open_triangle_up

• open_triangle_down

• filled_square

• filled_diamond

• filled_triangle_up

• filled_triangle_down

sizeNS = <int-value>

Defines the marker size in pixels for markers plotted in data set NS. If the value is negative, an
attempt will be made to use a suitable size according to how many points there are to be
plotted.

[Default: -1]

subsetNS = <expr>

Gives the selection criterion for the subset labelled "NS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

theta = <float-value>

Angle in degrees through which the 3D plot is rotated towards the viewer (i.e. about the
horizontal axis of the viewing plane) prior to drawing.

[Default: 15.0]

title = <value>

A one-line title to display at the top of the plot.

transparencyNS = <int-value>

Determines the transparency of plotted markers for data set NS. A value of <n> means that
opacity is only achieved (the background is only blotted out) when <n> pixels of this colour
have been plotted on top of each other.

The minimum value is 1, which means opaque markers.

txtlabelN = <value>

Gives an expression which will label each plotted point. If given, the text (or number) resulting
from evaluating the expression will be written near each point which is plotted.

xdataN = <expr>

Gives a column name or expression for the x axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

SUN/256 133

xerrorN = <expr>|[<lo-expr>],[<hi-expr>]

Gives expressions for the errors on X coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

xflip = true|false

If set true, the scale on the x axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

xhi = <float-value>

The upper limit for the plotted x axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

xlabel = <value>

Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no value is supplied for this parameter.

xlo = <float-value>

The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xlog = true|false

If false (the default), the scale on the x axis is linear; if true it is logarithmic.

[Default: false]

xpix = <int-value>

The width of the output graphic in pixels.

[Default: 300]

ydataN = <expr>

Gives a column name or expression for the y axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

yerrorN = <expr>|[<lo-expr>],[<hi-expr>]

Gives expressions for the errors on Y coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

yflip = true|false

If set true, the scale on the y axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

yhi = <float-value>

SUN/256 134

The upper limit for the plotted y axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

ylabel = <value>

Specifies a label to be used for annotating axis y. A default values based on the plotted data
will be used if no value is supplied for this parameter.

ylo = <float-value>

The lower limit for the plotted y axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

ylog = true|false

If false (the default), the scale on the y axis is linear; if true it is logarithmic.

[Default: false]

ypix = <int-value>

The height of the output graphic in pixels.

[Default: 300]

zdataN = <expr>

Gives a column name or expression for the z axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

zerrorN = <expr>|[<lo-expr>],[<hi-expr>]

Gives expressions for the errors on Z coordinates for table N. The following forms are
permitted:

• <expr>: symmetric error value
• <lo-expr>,<hi-expr>:distinct lower and upper error values
• <lo-expr>,: lower error value only
• ,<hi-expr>: upper error value only
• null: no errors

The expression in each case is a numeric algebraic expression based on column names as
described in Section 9.

zflip = true|false

If set true, the scale on the z axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

zhi = <float-value>

The upper limit for the plotted z axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

zlabel = <value>

Specifies a label to be used for annotating axis z. A default values based on the plotted data
will be used if no value is supplied for this parameter.

zlo = <float-value>

The lower limit for the plotted z axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

zlog = true|false

If false (the default), the scale on the z axis is linear; if true it is logarithmic.

[Default: false]

B.8.2 Examples

SUN/256 135

Here are some examples of plot3d in use:

stilts plot3d in=cat.xml xdata=RMAG ydata=BMAG zdata=VEL zlog=true

Plots a 3-d scatter plot of red magnitude vs. blue magnitude vs. velocity; the velocity is plotted
on a logarithmic scale. Since no omode or out value has been specified, the plot is posted
directly to the graphics display for inspection. By adding the parameter out=xyplot.eps the
plot could be written to an Encapsulated Postscript file instead.

The generated plot is here.

stilts plot3d in=sim1.fits xdata=x ydata=y zdata=z
cmd='addcol vel "sqrt(velx*velx+vely*vely+velz*velz)"' auxdata=vel auxlog=true
xpix=500 ypix=400 phi=50 theta=10 out=cube.jpeg

Plots the x, y, z positions of particles from a file containing the result of a simulation run. Here
an auxiliary axis is used to colour-code the points according their velocity. This is done by
introducing a new vel column to the table using the addcol filter command, so that the vel

column can be used as the value for the auxdata parameter. Alternatively, the given expression
for the velocity could have been used directly as the value of the auxdata parameter.

Additionally, the phi and theta parameters are given to adjust the orientation of the cube.

The generated plot is here.

B.9 plothist: Histogram

plothist performs histogram plots, sending the output to a graphical display or writing it to a file
in some vector or bitmapped graphics format. You need to supply it with values for one or more
sets of X values, in terms of table columns, and it will bin the data and draw bars appropriately. Plot
bounds, bin widths etc may be supplied expliicitly, but will be calculated from the data and set from
defaults as appropriate otherwise. There are many options available to configure the detailed
appearance of the plot, but in its simplest form invocation is quite straightforward. See Section 8 for
more discussion on use of the plotting commands.

B.9.1 Usage

The usage of plothist is

stilts <stilts-flags> plothist xpix=<int-value> ypix=<int-value>
font=dialog|serif|... fontsize=<int-value>
fontstyle=plain|bold|italic|bold-italic
legend=true|false title=<value>
omode=swing|out|cgi|discard|auto
out=<out-file>
ofmt=png|png-transp|gif|jpeg|pdf|eps|eps-gzip
inN=<table> ifmtN=<in-format>
istreamN=true|false cmdN=<cmds>
xdataN=<expr> xlo=<float-value>
xhi=<float-value> xlog=true|false
xflip=true|false xlabel=<value>
subsetNS=<expr> nameNS=<value>
colourNS=<rrggbb>|red|blue|...
barstyleNS=fill|open|...
linewidthNS=<int-value>
dashNS=dot|dash|...|<a,b,...>
grid=true|false antialias=true|false
sequence=<suffix>,<suffix>,...
ylo=<float-value> yhi=<float-value>
ylog=true|false ylabel=<value>
weightN=<value> binwidth=<float-value>
norm=true|false cumulative=true|false

SUN/256 136

binbase=<float-value>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

antialias = true|false

Controls whether lines are drawn using antialiasing, where applicable. If lines are drawn to a
bitmapped-type graphics output format setting this parameter to true smooths the lines out by
using gradations of colour for diagonal lines, and setting it false simply sets each pixel in the
line to on or off. For vector-type graphics output formats, or for cases in which no diagonal
lines are drawn, the setting of this parameter has no effect. Setting it true may slow the plot
down slightly.

[Default: true]

barstyleNS = fill|open|...

Defines how histogram bars will be drawn for dataset NS. The options are:

• fill

• open

• tops

• spikes

• fillover

• openover

[Default: fill]

binbase = <float-value>

Adjusts the offset of the bins. By default zero (or one for logarithmic X axis) is a boundary
between bins; other boundaries are defined by this and the bin width. If this value is adjusted,
the lower bound of one of the bins will be set to this value, so all the bins move along by the
corresponding distance.

[Default: 0]

binwidth = <float-value>

Defines the width on the X axis of histogram bins. If the X axis is logarithmic, then this is a
multiplicative value.

cmdN = <cmds>

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

colourNS = <rrggbb>|red|blue|...

Defines the colour of bars plotted for data set NS. The value may be a 6-digit hexadecimal
number giving red, green and blue intensities, e.g. "ff00ff" for magenta. Alternatively it may
be the name of one of the pre-defined colours. These are currently red, blue, green, grey,
magenta, cyan, orange, pink, yellow, black and white.

For most purposes, either the American or the British spelling is accepted for this parameter

SUN/256 137

name.

cumulative = true|false

Determines whether historams are cumulative. When false (the default), the height of each bar
is determined by counting the number of points which fall into the range on the X axis that it
covers. When true, the height is determined by counting all the points between negative
infinity and the upper bound of the range on the X axis that it covers.

[Default: false]

dashNS = dot|dash|...|<a,b,...>

Defines the dashing pattern for lines drawn for dataset NS. To generate a dashed line the value
may be one of the named dash types:

• dot

• dash

• longdash

• dotdash

or may be a comma-separated string of on/off length values such as "4,2,8,2". A null value
indicates a solid line. Only certain bar styles are affected by the dash pattern.

font = dialog|serif|...

Determines the font that will be used for textual annotation of the plot, including axes etc. At
least the following fonts will be available:

• serif

• sansserif

• monospaced

• dialog

• dialoginput

as well as a range of system-dependent fonts, possibly including

• abyssinica_sil

• ar_pl_uming_cn

• ar_pl_uming_hk

• ar_pl_uming_tw

• ar_pl_uming_tw_mbe

• bitstream_charter

• century_schoolbook_l

• cm_roman

• cm_roman_asian

• cm_roman_ce

• cm_roman_cyrillic

• cm_roman_greek

• cm_sans

• cm_sans_asian

• cm_sans_ce

• cm_sans_cyrillic

• cm_sans_greek

• cm_typewriter

• cm_typewriter_asian

• cm_typewriter_ce

• cm_typewriter_cyrillic

• cm_typewriter_greek

• courier_10_pitch

• cursor

[Default: dialog]

SUN/256 138

fontsize = <int-value>

Sets the font size used for plot annotations.

[Default: 12]

fontstyle = plain|bold|italic|bold-italic

Gives a style in which the font is to be applied for plot annotations. Options are plain, bold,
italic and bold-italic.

[Default: plain]

grid = true|false

If true, grid lines are drawn on the plot. If false, they are absent.

[Default: true]

ifmtN = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

inN = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmtN parameter.

istreamN = true|false

If set true, the inN table will be read as a stream. It is necessary to give the ifmtN parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

[Default: false]

legend = true|false

Determines whether a legend showing which plotting style is used for each data set. Defaults
to true if there is more than one set, false otherwise.

linewidthNS = <int-value>

Defines the line width for lines drawn as part of the bars for dataset NS. Only certain bar styles
are affected by the line width.

[Default: 2]

nameNS = <value>

Provides a name to use for a subset with the symbolic label NS. This name will be used for
display in the legend, if one is displayed.

norm = true|false

Determines whether bin counts are normalised. If true, histogram bars are scaled such that
summed height of all bars over the whole dataset is equal to one. Otherwise (the default), no
scaling is done.

[Default: false]

ofmt = png|png-transp|gif|jpeg|pdf|eps|eps-gzip

Graphics format in which the plot is written to the output file. One of:

SUN/256 139

• png: PNG
• png-transp: PNG with transparent background
• gif: GIF
• jpeg: JPEG
• pdf: Portable Document Format
• eps: Encapsulated PostScript
• eps-gzip: Gzipped Encapsulated PostScript

May default to a sensible value depending on the filename given by out.

omode = swing|out|cgi|discard|auto

Determines how the drawn plot will be output.

• swing: Plot will be displayed in a window on the screen.
• out: Plot will be written to a file given by out using the graphics format given by ofmt.
• cgi: Plot will be written in a way suitable for CGI use direct from a web server. The

output is in the graphics format given by ofmt, preceded by a suitable "Content-type"
declaration.

• discard: Plot is drawn, but discarded. There is no output.
• auto: Behaves as swing or out mode depending on presence of out parameter

[Default: auto]

out = <out-file>

The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

sequence = <suffix>,<suffix>,...

Can be used to control the sequence in which different datasets and subsets are plotted. This
will affect which symbols are plotted on top of, and so potentially obscure, which other ones.
The value of this parameter is a comma-separated list of the "NS" suffixes which appear on the
parameters which apply to subsets. The sets which are named will be plotted in order, so the
first-named one will be at the bottom (most likely to be obscured). Note that if this parameter
is supplied, then only those sets which are named will be plotted, so this parameter may also be
used to restrict which plots appear (though it may not be the most efficient way of doing this).
If no explicit value is supplied for this parameter, sets will be plotted in some sequence
decided by STILTS (probably alphabetic by suffix).

subsetNS = <expr>

Gives the selection criterion for the subset labelled "NS". This is a boolean expression which
may be the name of a boolean-valued column or any other boolean-valued expression. Rows
for which the expression evaluates true will be included in the subset, and those for which it
evaluates false will not.

title = <value>

A one-line title to display at the top of the plot.

weightN = <value>

Defines a weighting for each point accumulated to determine the height of plotted bars. If this
parameter has a value other than 1 (the default) then instead of simply accumulating the
number of points per bin to determine bar height, the bar height will be the sum over the
weighting expression for the points in each bin. Note that with weighting, the figure drawn is
no longer strictly speaking a histogram.

When weighted, bars can be of negative height. An anomaly of the plot as currently
implemented is that the Y axis never descends below zero, so any such bars are currently
invisible. This may be amended in a future release (contact the author to lobby for such an
amendment).

[Default: 1]

SUN/256 140

xdataN = <expr>

Gives a column name or expression for the x axis data for table N. The expression is a numeric
algebraic expression based on column names as described in Section 9

xflip = true|false

If set true, the scale on the x axis will increase in the opposite sense from usual (e.g. right to
left rather than left to right).

[Default: false]

xhi = <float-value>

The upper limit for the plotted x axis. If not set, a value will be chosen which is high enough to
accommodate all the data.

xlabel = <value>

Specifies a label to be used for annotating axis x. A default values based on the plotted data
will be used if no value is supplied for this parameter.

xlo = <float-value>

The lower limit for the plotted x axis. If not set, a value will be chosen which is low enough to
accommodate all the data.

xlog = true|false

If false (the default), the scale on the x axis is linear; if true it is logarithmic.

[Default: false]

xpix = <int-value>

The width of the output graphic in pixels.

[Default: 400]

yhi = <float-value>

Upper bound for Y axis. Autogenerated from the data if not supplied.

ylabel = <value>

Specifies a label for annotating the vertical axis. A default value based on the type of
histogram will be used if no value is supplied for this parameter.

[Default: Count]

ylo = <float-value>

Lower bound for Y axis.

[Default: 0]

ylog = true|false

Whether to use a logarithmic scale for the Y axis.

[Default: false]

ypix = <int-value>

The height of the output graphic in pixels.

[Default: 300]

B.9.2 Examples

Here are some examples of plothist in use:

stilts plothist in=cat.xml xdata=RMAG-BMAG

Plots a histogram of the R-B colour. The plot is displayed directly on the screen.

The generated plot is here.

SUN/256 141

stilts plothist in=cat.xml xdata=RMAG-BMAG ofmt=eps-gzip out=hist.eps.gz

Makes the same plot as the previous example, but writes it to a gzipped encapsulated postscript
file instead of displaying it on the screen.

The generated plot is here.

stilts plothist inJ=2mass_xsc.fits xdataJ=j_m_k20fe barstyleJ=tops
inH=2mass_xsc.fits xdataH=h_m_k20fe barstyleH=tops
inK=2mass_xsc.fits xdataK=k_m_k20fe barstyleK=tops
binwidth=0.1 xlo=12 xhi=16 xflip=true xlabel=Magnitude xpix=500
out=2mass.gif

Overplots histograms of three different columns from the same input table. These are treated as
three separate datasets which all happen to use the same input file. The different datasets are
labelled "J", "H" and "K" so these suffixes appear on all the dataset-dependent parameters
which are supplied. The binwidth and X range are specified explicitly rather than leaving them
to be chosen automatically by examining the data.

The generated plot is here.

B.10 regquery: Queries the VO registry

regquery submits a query to the Virtual Observatory registry and returns the result as a table
containing all the records which match the condition specified. The resulting table can be written
out in any of the supported formats or otherwise processed in the usual ways. Making use of this
command requires an understanding of the VOResource schema.

It is important to note that the results of this command give a very much flattened and incomplete
view of the results of a full registry query. That is because the contents of an IVOA Registry (see
the IVOA Resource Metadata and VOResource documents for more detail) are hierarchical and
cannot be faithfully represented in a simple tabular structure. Other superior registry search clients
exist; this command is just useful for viewing the results in a rather simplified way which can be
represented as a table.

B.10.1 Usage

The usage of regquery is

stilts <stilts-flags> regquery query=<value> regurl=<url-value>
soapout=<out-file> ocmd=<cmds>
omode=<out-mode> <mode-args> out=<out-table>
ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

SUN/256 142

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

query = <value>

Text of an ADQL WHERE clause targeted at the VOResource 1.0 schema defining which
resource records you wish to retrieve from the registry. Some examples are:

• @xsi:type like '%Organisation%'

• capability/@standardID = 'ivo://ivoa.net/std/ConeSearch' and title like

'%SDSS%'

• curation/publisher like 'CDS%' and title like '%galax%'

A full description of ADQL syntax and of the VOResource schema is well beyond the scope of
this documentation, but in general you want to use <field-name> like '<value>' where '%' is
a wildcard character. Logical operators and and or and parentheses can be used to group and
combine expressions. To work out the various <field-name>s you need to look at the

SUN/256 143

VOResource 1.0 schema; you can find some more discussion in the documentation of the
NVO IVOARegistry package.

regurl = <url-value>

The URL of a SOAP endpoint which provides a VOResource1.0 IVOA registry service. Some
known suitable registry endpoints at time of writing are

• http://registry.astrogrid.org/astrogrid-registry/services/RegistryQueryv1_0

• http://registry.euro-vo.org/services/RegistrySearch

• http://vao.stsci.edu/directory/ristandardservice.asmx

[Default:
http://registry.astrogrid.org/astrogrid-registry/services/RegistryQueryv1_0]

soapout = <out-file>

If set to a non-null value, this gives the destination for the text of the request and response
SOAP messages. The special value "-" indicates standard output.

B.10.2 Examples

Here are some examples of regquery:

stilts regquery query="title like '%IRAS%'" ofmt=ascii out=iras.txt

Retrieves all the records in the registry whose title field contain the string "IRAS". The '%'
characters function as wildcards for the ADQL like operator. The output is written to a local
ASCII table which can be examined later.

stilts regquery query="capability/@standardID = 'ivo://ivoa.net/std/ConeSearch'
and curation/@publisher like '%astrogrid%'"

omode=count

Searches for all resources which offer a cone search service and are published by AstroGrid. In
this case the records are not stored, but the omode=count output mode counts the rows. This
therefore tells you how many AstroGrid cone search services are in the registry.

stilts regquery query="capability/@standardID = 'ivo://ivoa.net/std/SSA'"
ocmd="keepcols 'identifier accessUrl'"
ofmt=ascii out=-

Queries the registry for all Simple Spectral Access services. The keepcols filter takes the
result and throws away all the columns except for identifier and accessUrl, and these are
written to the terminal int ASCII format.

B.11 server: Runs an HTTP server to perform STILTS commands

server runs an HTTP server which makes some or all of the various STILTS tasks available to
local or remote clients making HTTP requests rather than using the more usual command line
interface.

When you run server it will start up a server which runs until it is interrupted, and write to the
screen the base URL at which it can be accessed, for instance "http://localhost:2112/stilts/".
If you point your browser here you will see some examples (hyperlinks to server requests) of how
to use the server. Currently there are two main sets of capabilities:

Tasks (baseURL /task/ task-name)
There is a URL as above associated with each STILTS task provided by the server. The task

SUN/256 144

parameters are passed in the usual way for HTTP queries, using
application/x-www-form-urlencoded (see e.g. the HTML FORM specification). Some
examples are given in the Client Examples subsection below. Either HTTP GET or POST
methods may be used; since the task invocations will normally be idempotent, GET is more
respectable, but long URLs can cause trouble in some circumstances (MS IE apparently
imposes a limit of about 2000 characters) so POST may be preferable for lengthy invocations.

Forms (baseURL /form/)
There are a couple of example HTML Forms which can be used to access the server tasks.
These by no means show all the capabilities of the tasks that they use, they are just intended to
be examples of how forms can be used in this way.

In general if you request a URL which contains no useful information, an attempt will be made to
return an HTML page directing you to a more useful starting point.

You might want to run STILTS in server mode if you are providing a web service to external users
which is able to access files residing on the server, for instance generating table plots or row
selections on the fly. This can be done without the server mode, for instance by invoking the stilts

script or java from a CGI script to serve each request, but using server mode has two advantages:
first it provides correct HTTP headers such as Content-Types, and secondly it avoids the Java
startup overheads for each invocation. Note however that in its current form no great attention has
been paid to security, so it may be possible for clients to read and write files and expend significant
system resources by making certain requests to the server. Anyone exposing the STILTS HTTP
server directly to external clients should bear this in mind.

For more flexibility you can run STILTS in servlet mode. See the javadocs and sources of the
uk.ac.starlink.ttools.server.TaskServlet class. The server command is a fairly thin wrapper
around this, which simply deploys the servlet in an embedded web application container (Jetty). By
using the servlet class in your own custom web application instead you can customise the way it is
accessed, for instance providing improved security.

Note: The server command and associated servlet code are at time of writing (v2.0) experimental,
and probably buggy and missing some features which ought to be present. If you have requirements
which are not currently provided, please contact the author for discussion.

B.11.1 Usage

The usage of server is

stilts <stilts-flags> server port=<int-value> basepath=<value>
tasks=<task-name> ...
tablefactory=file|dirs:...|locator:...

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

basepath = <value>

Base path on the server at which request URLs are rooted. The default is /stilts, which
means that for instance requests to execute task plot2d should be directed to the URL
http://host:portnum/stilts/task/plot2d?name=value&name=value...

[Default: /stilts]

port = <int-value>

Port number on which the server should run.

SUN/256 145

[Default: 2112]

tablefactory = file|dirs:...|locator:...

This parameter determines how input table names (typically the in parameter of table
processing commands) are used to acquire references to actual table data. The default
behaviour is for input table names to be treated as filenames, in conjunction with some file
type parameter. While this is usually sensible for local use, in server situations it may be
inappropriate, since you don't want external users to have read access to your entire filesystem.

This parameter gives options for alternative ways of mapping table names to table data items.
The currently available options are:

• file: default behaviour - names are treated as filenames
• dirs:<dir>:<dir>:...: following the "dirs:" prefix a list of directories is specified

which will be searched for the file named. Note that the directory separator character
differs between operating systems; it is a colon (":") for Unix-like OSs and a semi-colon
(";") for MS Windows. If a given name is identical to the path-less filename in one of the
<dir> directories, that file is used as the referenced table. File type information is ignored
in this case, so the files must be one of the types which STILTS can autodetect, currently
FITS or VOTable (FITS is more efficient). By using this option, clients can be restricted
to using a fixed set of tables in a restricted part of the server's file system.

• locator:<class-name>: the <class-name> must be the name of a Java class on the
classpath which implements the interface uk.ac.starlink.ttools.task.TableLocator

and which has a no-arg constructor. An instance of this class will be used to resolve
names to tables.

The usage and functionality of this parameter is experimental, and may change significantly in
future releases.

[Default: file]

tasks = <task-name> ...

Gives a space-separated list of tasks which will be provided by the running server. If the value
is null then all tasks will be available. However, some tasks don't make a lot of sense to run
from the server, so the default value is a somewhat restricted list. If the server is being exposed
to external users, you might also want to reduce the list for security reasons.

[Default: calc cdsskymatch coneskymatch pixfoot pixsample plot2d plot3d plothist

regquery sqlclient sqlskymatch sqlupdate taplint tapquery tapresume tcat tcatn

tcopy tcube tjoin tloop tmatch1 tmatch2 tmatchn tmulti tmultin tpipe tskymatch2

votcopy votlint]

B.11.2 Examples

Here are some examples of running the server command:

stilts server

Starts a server on the default port until it is interrupted. Most tasks are available in server
mode. A message will be printed on standard output indicating the base URL at which it may
be accessed, for instance "http://localhost:2112/stilts/".

stilts server port=2100 basepath=tableserv

Starts a server running on port 2100 with a given URL. The URL at which, for instance, the
plot2d task can be executed will be "http:// host :2100/tableserv/task/plot2d"

SUN/256 146

stilts server tasks="plot2d plothist"

Starts a server with a restricted list of tasks available. Only the plotting tasks plot2d and
plothist will be available for execution by clients.

B.11.3 Client Examples

Here are some examples of URLs which can be retrieved from a server which is running at the base
URL http://localhost:2112/stilts/. All these use the HTTP GET form of request; the POST
form could be used instead with the same effect.

http://localhost:2112/stilts/

Returns an HTML page giving version information and some links to example usages of the
server.

http://localhost:2112/stilts/task/tpipe

Returns an HTML page giving usage instructions for the tpipe task.

http://localhost:2112/stilts/task/calc?expression=21%2b2

Invokes the calc task to return a document containing the text "23". Note that the plus ("+")
sign in the expression has to be encoded using the sequence "%2b" since "+" has a special
significance in query URLs - see for instance sec 2.2 of RFC 1738.

http://localhost:2112/stilts/task/plot2d?in=/data/table1.vot&xdata=RMAG&ydata=BMAG

Invokes the plot2d task to return a magnitude-magnitude diagram of the named local file as an
image (probably an image/png).

http://localhost:2112/stilts/task/tcopy?in=/data/cat.fits&ofmt=votable

Invokes the tcopy task to return a translation of the named local FITS file to VOTable format.

B.12 sqlclient: Executes SQL statements

sqlclient is a simple command-line client for use with SQL databases. One or more SQL
statements can be supplied using the sql parameter. The result of each statement may be one or
more update counts (for update-type statements) or tables (for query-type statements). Tables will
be written to standard output in a format given by the ofmt parameter. Update results and timing
information will be written to standard error.

In most cases, you will find life easier if you use either the database's own command-line or GUI
client, or, if you require STILTS-type format conversion or post-processing, a jdbc:-format URL
for the in parameter of the tpipe or tcopy commands (see Section 3.4 for more explanation of the
latter). However, this command enables you to submit multiple queries over the same JDBC
connection, including ones which do not generate a tabular result. It may be useful if a
command-line client is not available to you for the database you are using.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate permissions on it as well as the relevant drivers.

This command is experimental, and it may be enhanced, renamed or withdrawn in future releases.

SUN/256 147

B.12.1 Usage

The usage of sqlclient is

stilts <stilts-flags> sqlclient db=<jdbc-url> user=<value> password=<value>
sql=<sql> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

db = <jdbc-url>

URL which defines a connection to a database. This has the form
jdbc:<subprotocol>:<subname> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
jdbc.drivers system property as well for the connection to be made.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: text]

password = <value>

Password for logging in to SQL database.

sql = <sql>

Text of an SQL statement for execution. This parameter may be repeated, or statements may
be separated by semicolon (";") characters.

user = <value>

User name for logging in to SQL database. Defaults to the current username.

[Default: mbt]

B.12.2 Examples

Here are some examples of sqlclient:

stilts -classpath lib/drivers.jtds-1.1.jar \
-Djdbc.drivers=net.sourceforge.jtds.jdbc.Driver \
-Djava.net.preferIPv4Stack=true \
sqlclient \

db='jdbc:jtds:sqlserver://amenhotep:1433/twomass' \
user='guest1' \
ofmt=csv-nohead \
sql='SET SHOWPLAN_TEXT ON' \
sql='SELECT ra,dec FROM twomass_psc WHERE ra BETWEEN 21.7 AND 21.8 \

AND dec BETWEEN 9.1 AND 9.12'

This sends two commands to a SQL Server database; the first one (SET SHOWPLAN...) sets a
flag which causes the DB to return an execution plan rather than the result for subsequent
queries, and the second makes the query itself. Since the password is not provided on the
command line, a prompt for it will be issued before execution. The result is SQL Server's

SUN/256 148

execution plan for the SELECT statement expressed as a headerless comma-separated value
table sent to the terminal. CSV is chosen for the output format since it does not truncate wide
columns.

B.13 sqlskymatch: Crossmatches table on sky position against SQL table

sqlskymatch resembles coneskymatch (Appendix B.3), but instead of sending an HTTP query to a
remote cone search service for each match (i.e. each row of the input table), it executes an SQL
query directly. The query is a SELECT statement with a WHERE clause which makes restrictions
on Right Ascension and Declination columns; the names of these columns must be given as
parameters. The effect is that of a spatial join between a client-side table and a table stored in the
database.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate read permissions on it as well as the relevant drivers.

Note: this task was known as sqlcone in its experimental form in STILTS v1.3.

B.13.1 Usage

The usage of sqlskymatch is

stilts <stilts-flags> sqlskymatch ifmt=<in-format> istream=true|false
icmd=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args>
out=<out-table> ofmt=<out-format>
ra=<expr> dec=<expr> sr=<expr/deg>
find=best|all|each usefoot=true|false
footnside=<int-value>
copycols=<colid-list> scorecol=<col-name>
erract=abort|ignore |retry|retry<n>
ostream=true|false fixcols=none|dups|all
suffix0=<label> suffix1=<label>
db=<jdbc-url> user=<value>
password=<value> dbtable=<table-name>
dbra=<sql-col> dbdec=<sql-col>
dbunit=deg|rad
tiling=htm<level>|healpixnest<nside>|healpixring<nside>
dbtile=<sql-col> selectcols=<sql-cols>
where=<sql-condition>
preparesql=true|false
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

copycols = <colid-list>

List of columns from the input table which are to be copied to the output table. Each column
identified here will be prepended to the columns of the combined output table, and its value for
each row taken from the input table row which provided the parameters of the query which
produced it. See Section 6.3 for list syntax. The default setting is "*", which means that all
columns from the input table are included in the output.

[Default: *]

db = <jdbc-url>

URL which defines a connection to a database. This has the form

SUN/256 149

jdbc:<subprotocol>:<subname> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
jdbc.drivers system property as well for the connection to be made.

dbdec = <sql-col>

The name of a column in the SQL database table dbtable which gives the declination. Units
are given by dbunit.

dbra = <sql-col>

The name of a column in the SQL database table dbtable which gives the right ascension.
Units are given by dbunit.

dbtable = <table-name>

The name of the table in the SQL database which provides the remote data.

dbtile = <sql-col>

The name of a column in the SQL database table dbtable which contains a sky tiling pixel
index. The tiling scheme is given by the tiling parameter. Use of a tiling column is optional,
but if present (and if the column is indexed in the database table) it may serve to speed up
searches. Set to null if the database table contains no tiling column or if you do not wish to use
one.

dbunit = deg|rad

Units of the right ascension and declination columns identified in the database table. May be
either deg[rees] (the default) or rad[ians].

[Default: deg]

dec = <expr>

Declination in degrees in the coordinate system for the position of each row of the input table.
This may simply be a column name, or it may be an algebraic expression calculated from
columns as explained in Section 9. If left blank, an attempt is made to guess from UCDs,
column names and unit annotations what expression to use.

erract = abort|ignore |retry|retry<n>

Determines what will happen if any of the individual cone search requests fails. By default the
task aborts. That may be the best thing to do, but for unreliable or poorly implemented services
you may find that some searches fail and others succeed so it can be best to continue operation
in the face of a few failures. The options are:

• abort: failure of any query terminates the task
• ignore : failure of a query is treated the same as a query which returns no rows
• retry: failed queries are retried until they succeed; use with care - if the failure is for

some good, or at least reproducible reason this could prevent the task from ever
completing

• retry<n>: failed queries are retried at most a fixed number <n> of times If they still fail
the task terminates.

[Default: abort]

find = best|all|each

Determines which matches are retained.

• best: Only the matching query table row closest to the input table row will be output.
Input table rows with no matches will be omitted. (Note this corresponds to the best1

option in the pair matching commands, and best1 is a permitted alias).
• all: All query table rows which match the input table row will be output. Input table rows

with no matches will be omitted.
• each: There will be one output table row for each input table row. If matches are found,

the closest one from the query table will be output, and in the case of no matches, the

SUN/256 150

query table columns will be blank.

[Default: all]

fixcols = none|dups|all

Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

footnside = <int-value>

Determines the HEALPix Nside parameter for use with the MOC footprint service. This tuning
parameter determines the resolution of the footprint if available. Larger values give better
resolution, hence a better chance of avoiding unnecessary queries, but processing them takes
longer and retrieving and storing them is more expensive.

The value must be a power of 2, and at the time of writing, the MOC service will not supply
footprints at resolutions greater than nside=512, so it should be <=512.

Only used if usefoot=true.

icmd = <cmds>

Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

SUN/256 151

[Default: false]

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

ostream = true|false

If set true, this will cause the operation to stream on output, so that the output table is built up
as the results are obtained from the cone search service. The disadvantage of this is that some
output modes and formats need multiple passes through the data to work, so depending on the
output destination, the operation may fail if this is set. Use with care (or be prepared for the
operation to fail).

[Default: false]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the

SUN/256 152

special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

password = <value>

Password for logging in to SQL database.

preparesql = true|false

If true, the JDBC connection will use PreparedStatements for the SQL SELECTs otherwise it
will use simple Statements. This is a tuning parameter and affects only performance. On some
database/driver combinations it's a lot faster set false (the default); on others it may be faster,
who knows?

[Default: false]

ra = <expr>

Right ascension in degrees in the coordinate system for the position of each row of the input
table. This may simply be a column name, or it may be an algebraic expression calculated
from columns as explained in Section 9. If left blank, an attempt is made to guess from UCDs,
column names and unit annotations what expression to use.

scorecol = <col-name>

Gives the name of a column in the output table to contain the distance between the requested
central position and the actual position of the returned row. The distance returned is an angular
distance in degrees. If a null value is chosen, no distance column will appear in the output
table.

[Default: Separation]

selectcols = <sql-cols>

An SQL expression for the list of columns to be selected from the table in the database. A
value of "*" retrieves all columns.

[Default: *]

sr = <expr/deg>

Expression which evaluates to the search radius in degrees for the request at each row of the
input table. This will often be a constant numerical value, but may be the name or ID of a
column in the input table, or a function involving one.

suffix0 = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: _0]

suffix1 = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the cone result table.

[Default: _1]

tiling = htm<level>|healpixnest<nside>|healpixring<nside>

Describes the sky tiling scheme that is in use. One of the following values may be used:

• htm<level>: Hierarchical Triangular Mesh with a level value of level.
• healpixnest<nside>: HEALPix using the Nest scheme with an nside value of nside.
• healpixring<nside>: HEALPix using the Ring scheme with an nside value of nside.

usefoot = true|false

Determines whether an attempt will be made to restrict searches in accordance with available

SUN/256 153

footprint information. If this is set true, then before any of the per-row queries are performed,
an attempt may be made to acquire footprint information about the servce. If such information
can be obtained, then queries which fall outside the footprint, and hence which are known to
yield no results, are skipped. This can speed up the search considerably.

Currently, the only footprints available are those provided by the CDS MOC (Multi-Order
Coverage map) service, which covers VizieR and a few other cone search services.

[Default: true]

user = <value>

User name for logging in to SQL database. Defaults to the current username.

[Default: mbt]

where = <sql-condition>

An SQL expression further limiting the rows to be selected from the database. This will be
combined with the constraints on position implied by the cone search centres and radii. The
value of this parameter should just be a condition, it should not contain the WHERE keyword. A
null value indicates no additional criteria.

B.13.2 Examples

Here are some examples of sqlskymatch:

stilts -classpath lib/drivers/mysql-connector-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver
sqlskymatch in=messier.xml ra=RA dec=DEC sr=0.05 \

db='jdbc:mysql://localhost/ASTRO1' user=mbt \
dbtable=FIRST dbra=_RA2000 dbdec=_DE2000 \
out=matches.xml

This performs a series of SELECT statements on the table FIRST in the local MySQL database
ASTRO1 to identify database objects in the region of each object represented in the VOTable
messier.xml. The result, a join between the Messier and FIRST tables, is output as a VOTable
called matches.xml. In this case a password has not been supplied on the command line, so if
one is required it will be prompted for on the console.

B.14 sqlupdate: Updates values in an SQL table

sqlupdate updates values in an existing table in an SQL database. The rows to update are specified,
as a normal SELECT statement, using the select parameter. Each column to update, and the value
to write to it, are given using the assign parameter.

Why not just use the database's own UPDATE statement? In most cases, that would be a much
better idea. However, using sqlupdate you can write values using STILTS's expression language
(Section 9), and hence take advantage of its various functions, without having to embed them into
the database. SQL column names can be used as variables in these expressions, in the same way
that table column names are used as variables in other commands such as tpipe.

This command can only be used if you have access to an SQL database via JDBC. The details of
how to configure a JDBC connection to a database are discussed in Section 3.4 - obviously you will
need a database to connect to and appropriate write permissions on it as well as the relevant drivers.

This is a somewhat specialised command, and several (database/driver-specific) things can go
wrong with it. If you do not have a fairly good understanding of the database with which you are
using it then you may run into problems (but then you'd be unlikely to have the permissions to do

SUN/256 154

the updates in any case).

B.14.1 Usage

The usage of sqlupdate is

stilts <stilts-flags> sqlupdate db=<jdbc-url> user=<value> password=<value>
select=<select-stmt> assign=<col>=<expr>
progress=true|false

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

assign = <col>=<expr>

Assigns new values for a given column. The assignment is made in the form
<colname>=<expr> where <colname> is the name of a column in the SQL table and <expr> is
the text of an expression using STILTS's expression language, as described in Section 9. SQL
table column names or $ID identifiers may be used as variables in the usual way.

This parameter may be supplied more than once to effect multiple assignments, or multiple
assignments may be made by separating them with semicolons in the value of this parameter.

db = <jdbc-url>

URL which defines a connection to a database. This has the form
jdbc:<subprotocol>:<subname> - the details are database- and driver-dependent. Consult
Sun's JDBC documentation and that for the particular JDBC driver you are using for details.
Note that the relevant driver class will need to be on your classpath and referenced in the
jdbc.drivers system property as well for the connection to be made.

password = <value>

Password for logging in to SQL database.

progress = true|false

If true, a spinner will be drawn on standard error which shows how many rows have been
updated so far.

[Default: true]

select = <select-stmt>

Gives the full text (including "SELECT") of the SELECT statement to identify which rows
undergo updates.

user = <value>

User name for logging in to SQL database. Defaults to the current username.

[Default: mbt]

B.14.2 Examples

Here are some examples of sqlupdate:

stilts -classpath lib/drivers/mysql-connector-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver \
sqlupdate db='jdbc:mysql://localhost/RADIO' user=root
select='SELECT * from FIRST" \
assign='HTMID=htmIndex(20,POS_EQ_RA,POS_EQ_DEC)'

SUN/256 155

Fills in the HTMID column of a table called FIRST in the local MySQL database RADIO,
using HTM pixel indices based on the existing right ascension and declination columns in that
table. The HTMID column must exist prior to executing this command.

B.15 taplint: Tests TAP services

taplint runs a series of tests on a Table Access Protocol (TAP) service and reports the results.
Unlike most of the other tools in this package it is not likely to be of use to normal users; its
intended use is for people developing or operating TAP services to assess their services, perhaps
with a view to improving compliance.

Testing takes place in a number of stages; it is possible to choose which stages are run in by using
the stages parameter. At present output is line-based text to standard output, and each report line is
of the (fairly greppable) form:

T-SSS-MMMMxN aaaaa...

where the parts have the following meanings:

• T: Report type, one of E(rror), W(arning), I(nfo), S(ummary), F(ailure). See the documentation
of the report parameter for further description of what these mean. The report parameter can
be used to suppress some of these; only E indicates actual service compliance errors, but
including the others may make it easier to see what's going on.

• SSS: Stage abbreviation, as used in the stages parameter. The stages parameter can be used to
select which stages are run.

• MMMM: Message label, which is always the same for messages generated by the same test, is
usually different for messages generated by different tests, and may be somewhat mnemonic.

• x: Continuation indicator, either "-" or "+". In most cases it is "-", indicating the first line of a
message, but multi-line messages (rare) use "-" for the first line and "+" for any continuation
lines.

• N: Sequence number, which is 1 for the first time message T-SSS-MMMM is reported, and
increases by one for each subsequent appearance. After a certain maximum (determined by the
maxrepeat parameter) additional reports with the same code are no longer output individually,
but a summary of the number of reports so discarded is written at the end of the section with
the character "x" instead of the sequence number. This behaviour prevents the output being
swamped by multiple reports of the same issue. If the maxrepeat parameter is increased above
9, more than one digit will be used here (so e.g. for maxrepeat=999, the format would be NNN

not N).
• aaaaa...: Message text, a free text description of what is being reported.

TAP is a complicated beast, referencing many standards (including TAP, UWS, VODataService,
ADQL, VOResource, VOSI, TAPRegExt, ObsCore, VOTable, HTTP), and it is hard to write a
validator which is comprehensive, especially one which can provide useful output for services with
a range of compliance levels. This tool tries to make a wide range of tests, but does not claim to be
comprehensive. An idea of what tests it does perform can be gained from the stages listed in the
description of the stages parameter. It does make a fairly good job of checking that declared
metadata is consistent and matches the data actually returned from queries, and it tests job
submission in most of the various ways permitted by the TAP standard. Things it does not test
much include complex ADQL queries, coordinate/STC-related data types, queries in non-ADQL
languages, and service registration.

B.15.1 Usage

The usage of taplint is

SUN/256 156

stilts <stilts-flags> taplint
stages=TMV|TME|TMS|TMC|CPV|CAP|AVV|QGE|QPO|QAS|UWS|MDQ|OBS|UPL[...]
report=[EWISF]+ maxrepeat=<int-value>
truncate=<int-value> debug=true|false
[tapurl=]<url-value>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

debug = true|false

If true, debugging output including stack traces will be output along with the normal validation
messages.

[Default: false]

maxrepeat = <int-value>

Puts a limit on the number of times that a single message will be repeated. By setting this to
some reasonably small number, you can ensure that the output does not get cluttered up by
millions of repetitions of essentially the same error.

[Default: 9]

report = [EWISF]+

Letters indicating which message types should be listed. Each character of the string is one of
the letters , , , , with the following meanings:

• E: Error in operation or standard compliance of the service.
• W: Warning that service behaviour is questionable, or contravenes a standard

recommendation, but is not in actual violation of the standard.
• I: Information about progress, for instance details of queries made.
• S: Summary of previous successful/unsuccessful reports.
• F: Failure of the validator to perform some testing. The cause is either some error internal

to the validator, or some error or missing functionality in the service which has already
been reported.

[Default: EWISF]

stages = TMV|TME|TMS|TMC|CPV|CAP|AVV|QGE|QPO|QAS|UWS|MDQ|OBS|UPL[...]

Lists the validation stages which the validator will perform. Each stage is represented by a
short code, as follows:

• TMV: Validate table metadata against XML schema (on)
• TME: Check content of tables metadata from /tables (on)
• TMS: Check content of tables metadata from TAP_SCHEMA (on)
• TMC: Compare table metadata from /tables and TAP_SCHEMA (on)
• CPV: Validate capabilities against XML schema (on)
• CAP: Check content of TAPRegExt capabilities record (on)
• AVV: Validate availability against XML schema (on)
• QGE: Make ADQL queries in sync GET mode (on)
• QPO: Make ADQL queries in sync POST mode (on)
• QAS: Make ADQL queries in async mode (on)
• UWS: Test asynchronous UWS/TAP behaviour (on)
• MDQ: Check table query result columns against declared metadata (on)
• OBS: Test implementation of ObsCore Data Model (on)
• UPL: Make queries with table uploads (on)

You can specify a list of stage codes, separated by spaces. Order is not significant.

SUN/256 157

Note that removing some stages may affect the operation of others; for instance table metadata
is acquired from the metadata stages, and avoiding those will mean that later stages that use the
table metadata to pose queries will not be able to do so with knowledge of the database
schema.

[Default: TMV TME TMS TMC CPV CAP AVV QGE QPO QAS UWS MDQ OBS UPL]

tapurl = <url-value>

The base URL of a Table Access Protocol service. This is the bare URL without a trailing
"/[a]sync".

truncate = <int-value>

Limits the line length written to the output.

[Default: 640]

B.15.2 Examples

Here are some examples of taplint:

stilts taplint http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap

Performs a default validation run against the TAP service based at the given URL.

stilts taplint tapurl=http://example.com/tap
report=EW stages='TMS UWS' truncate=80 maxrepeat=4

A validation run is done against the named TAP service. Only Error and Warning type
messages are output, only two validation stages are performed, lines are truncated to a
maximum of 80 characters, and each message is repeated a maximum of 4 times. An
invocation like this may be suitable if you find the default operation too verbose.

The output of this invocation might look like this:

Section TMS: Check content of tables metadata from TAP_SCHEMA
E-TMS-CINT-1 Column principal in TAP_SCHEMA.columns has wrong type char not int
E-TMS-CINT-2 Column std in TAP_SCHEMA.columns has wrong type char not int
W-TMS-CLUN-1 Unused entry in TAP_SCHEMA.columns table: ivoa.obscore

Section UWS: Test asynchronous UWS/TAP behaviour
E-UWS-GMIM-1 Incorrect Content-Type text/xml != text/plain for http://exampl....
E-UWS-GMIM-2 Incorrect Content-Type text/xml != text/plain for http://exampl....
E-UWS-GMIM-3 Incorrect Content-Type text/xml != text/plain for http://exampl....
E-UWS-GMIM-4 Incorrect Content-Type text/xml != text/plain for http://exampl....
E-UWS-GMIM-x (3 more)

Totals: Errors: 9; Warnings: 1

B.16 tapquery: Queries a Table Access Protocol server

tapquery can query remote databases using the Table Access Protocol (TAP) services by
submitting Astronomical Data Query Language queries to them and retrieving the results. TAP and
ADQL are Virtual Observatory protocols.

Queries can be submitted in either synchronous or asynchronous mode, as determined by the sync

parameter. In asynchronous mode, if the query has not been deleted by the time the command exits
(see the delete parameter), the result can be picked up at a later stage using the tapresume

SUN/256 158

command. Table uploads are supported, so it is possible (if the service supports this functionality),
to upload a local table to the remote database, perform a query involving it, such as a join with a
remote table of some sort, and receive the result. This powerful facility gives you crossmatches
between local and remote tables.

This command does not provide any facility for querying the service for either table or capability
metadata, so you will need to know about the service capabilities and database structure from some
other source (possibly TOPCAT).

Note: this command has been introduced at STILTS version 2.3, at which time most available TAP
services are quite new and may not fully conform to the standards, and usage patterns are still
settling down. For this reason you may find that some TAP services do not behave quite as
expected; it is also possible that in future versions the command behaviour or parameters will
change in line with changing service profiles or in the light of user experience.

B.16.1 Usage

The usage of tapquery is

stilts <stilts-flags> tapquery nupload=<count> ufmtN=<in-format>
uploadN=<tableN> ucmdN=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args> out=<out-table>
ofmt=<out-format> upnameN=<label>
tapurl=<url-value> adql=<value>
parse=true|false sync=true|false
maxrec=<value> language=<value>
poll=<int-value> progress=true|false
delete=finished|never|always

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

adql = <value>

Astronomical Data Query Language string specifying the TAP query to execute. ADQL/S
resembles SQL, so this string will likely start with "SELECT".

delete = finished|never|always

Determines under what circumstances the UWS job is to be deleted from the server when its
data is no longer required. If it is not deleted, then the job is left on the TAP server and it can
be accessed via the normal UWS REST endpoints until it is destroyed by the server.

Possible values:

• finished: delete only if the job finished, successfully or not
• never: do not delete
• always: delete in any case

[Default: finished]

language = <value>

Language to use for the ADQL-like query. This will usually be "ADQL" (the default), but may
be set to some other value supported by the service, for instance a variant indicating a different
ADQL version. Note that at present, setting it to "PQL" is not sufficient to submit a PQL
query.

[Default: ADQL]

maxrec = <value>

SUN/256 159

Sets the requested maximum row count for the result of the query. The service is not obliged to
respect this, but in the case that it has a default maximum record count, setting this value may
raise the limit. If no value is set, the service's default policy will be used.

nupload = <count>

The number of upload tables for this task. For each of the upload tables N there will be
associated parameters ufmtN, uploadN and ucmdN.

[Default: 0]

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

SUN/256 160

This parameter must only be given if omode has its default value of "out".

[Default: -]

parse = true|false

Determines whether an attempt will be made to check the syntax of the ADQL prior to
submitting the query. If this is set true, and if a syntax error is found, the task will fail with an
error before any attempt is made to submit the query.

[Default: false]

poll = <int-value>

Interval to wait between polling attempts, in milliseconds. Asynchronous TAP queries can
only find out when they are complete by repeatedly polling the server to find out the job's
status. This parameter allows you to set how often that happens. Attempts to set it too low
(<50) will be rejected on the assumption that you're thinking in seconds.

[Default: 5000]

progress = true|false

If this parameter is set true, progress of the job is reported to standard output as it happens.

[Default: true]

sync = true|false

Determines whether the TAP query is submitted in synchronous or asynchronous mode.
Synchronous (true) means that the result is retrieved over the same HTTP connection that the
query is submitted from. This is uncomplicated, but means if the query takes a long time it
may time out and the results will be lost. Asynchronous (false) means that the job is queued
and results may be retrieved later. Normally this command does the necessary waiting around
and recovery of the result, though with appropriate settings you can get tapresume to pick it up
for you later instead. In most cases false (the default) is preferred.

[Default: false]

tapurl = <url-value>

The base URL of a Table Access Protocol service. This is the bare URL without a trailing
"/[a]sync".

ucmdN = <cmds>

Commands to operate on upload table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ufmtN = <in-format>

Specifies the format of upload table #N (one of the known formats listed in Section 5.2.1).
This flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

uploadN = <tableN>

The location of upload table #N. This is usually a filename or URL, and may point to a file

SUN/256 161

compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ufmtN parameter.

upnameN = <label>

Identifier to use in server-side expressions for uploaded table #N. In ADQL expressions, the
table should be referred to as "TAP_UPLOAD.<label>".

[Default: upN]

B.16.2 Examples

Here are some examples of tapquery:

stilts tapquery tapurl='http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap'
adql='SELECT TOP 1000 * FROM ppmxl.main'
out=ppmxl.fits

Executes the given ADQL query on the service referenced by the URL and writes the result to
a FITS file.

stilts tapquery
tapurl='http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap'
adql="SELECT *

FROM twomass.data AS t
JOIN TAP_UPLOAD.up1 AS s
ON 1=CONTAINS(POINT('ICRS', t.RAJ2000, t.DEJ2000),

CIRCLE('ICRS', s.ra2000, s.dec2000, 5./3600.))"
nupload=1 upload1=6dfgs_E7.fits ucmd1='select BMAG-RMAG<0'
maxrec=20000
ocmd='tablename 2mass_x_6df' omode=topcat

The local table 6dfgs_E7 is filtered to contain only rather blue objects, and the resulting
selection is uploaded to the TAP server. A positional crossmatch with 5 arcsec tolerance is
then performed on the server between this uploaded table and the twomass.data table held by
the service. The adjusted maxrec parameter ensures that the result will not be artificially
truncated to shorter than 20000 rows (assuming the service limits permit this). When the result
is received, it is loaded directly into TOPCAT with the name "2mass_x_6df".

B.17 tapresume: Resumes a previous query to a Table Access Protocol server

tapresume can resume monitoring and data retrieval from an asynchronous Table Access Protocol
query which has already been submitted. TAP is a Virtual Observatory protocol. Such a
pre-existing query may have been submitted by the tapquery command or by some completely
different mechanism. It essentially does the same job as tapquery but without the job submission
stage. It waits until the query has completed, and then retrieves the table result and processes it in
accordance with the supplied parameters. The query may or may not be deleted from the server as
part of the operation.

B.17.1 Usage

The usage of tapresume is

stilts <stilts-flags> tapresume joburl=<url-value> poll=<int-value>
progress=true|false
delete=finished|never|always ocmd=<cmds>
omode=<out-mode> <mode-args>
out=<out-table> ofmt=<out-format>

SUN/256 162

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

delete = finished|never|always

Determines under what circumstances the UWS job is to be deleted from the server when its
data is no longer required. If it is not deleted, then the job is left on the TAP server and it can
be accessed via the normal UWS REST endpoints until it is destroyed by the server.

Possible values:

• finished: delete only if the job finished, successfully or not
• never: do not delete
• always: delete in any case

[Default: finished]

joburl = <url-value>

The URL of a job created by submission of a TAP query which was created earlier and has not
yet been deleted (by the client) or destroyed (by the server). This will usually be of the form
<tap-url>/async/<job-id>. You can also find out, and possibly retrieve results from the job
by pointing a web browser at this URL.

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

SUN/256 163

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

poll = <int-value>

Interval to wait between polling attempts, in milliseconds. Asynchronous TAP queries can
only find out when they are complete by repeatedly polling the server to find out the job's
status. This parameter allows you to set how often that happens. Attempts to set it too low
(<50) will be rejected on the assumption that you're thinking in seconds.

[Default: 5000]

progress = true|false

If this parameter is set true, progress of the job is reported to standard output as it happens.

[Default: true]

B.17.2 Examples

Here are some examples of tapresume:

stilts tapresume joburl='http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap/async/d4ENGR'
out=result.csv ofmt=csv

Resumes waiting for the output of a query on a job with ID d4ENGR which was previously
started on the GAVO TAP server. When it has completed the output table will be written as a
comma-separated value file.

B.18 tcat: Concatenates multiple similar tables

tcat is a tool for concatenating any number of similar tables one after the other. The tables must be
of similar form to each other (same number and types of columns). Preprocessing of the tables may
be done using the icmd parameter, which will operate in the same way on all the input tables. Table
parameters of the output table will be taken from the first of the input tables.

Subject to some constraints on the details of the input and output formats and processing, tcat is
capable of joining an unlimited number of tables together to produce an output table of unlimited
length, without large memory requirements.

If you have heterogeneous tables, in different formats or requiring different preprocessing steps

SUN/256 164

from each other before they can be concatenated, use tcatn instead.

B.18.1 Usage

The usage of tcat is

stilts <stilts-flags> tcat in=<table> [<table> ...] ifmt=<in-format>
multi=true|false istream=true|false icmd=<cmds>
ocmd=<cmds> omode=<out-mode> <mode-args>
out=<out-table> ofmt=<out-format>
seqcol=<colname> loccol=<colname>
uloccol=<colname> lazy=true|false
countrows=true|false

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

countrows = true|false

Whether to count the rows in the table before starting the output. This is essentially a tuning
parameter - if writing to an output format which requires the number of rows up front (such as
normal FITS) it may result in skipping the number of passes through the input files required
for processing. Unless you have a good understanding of the internals of the software, your
best bet for working out whether to set this true or false is to try it both ways

[Default: false]

icmd = <cmds>

Commands which will operate on each of the input tables, before any other processing takes
place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

The same format parameter applies to all the tables specified by in.

[Default: (auto)]

in = <table> [<table> ...]

Locations of the input tables. Either specify the parameter multiple times, or supply the input
tables as a space-separated list within a single use. Each table location may be a filename or
URL, and may point to data compressed in one of the supported compression formats (Unix
compress, gzip or bzip2).

SUN/256 165

A list of input table locations may be given in an external file by using the indirction character
'@'. Thus "in=@filename" causes the file filename to be read for a list of input table locations.
The locations in the file should each be on a separate line.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

The same streaming flag applies to all the tables specified by in.

[Default: false]

lazy = true|false

Whether to perform table resolution lazily. If true, each table is only accessed when the time
comes to add its rows to the output; if false, then all the tables are accessed up front. This is
mostly a tuning parameter, and on the whole it doesn't matter much how it is set, but for
joining an enormous number of tables setting it true may avoid running out of resources.

[Default: false]

loccol = <colname>

Name of a column to be added to the output table which will contain the location (as specified
in the input parameter(s)) of the input table from which each row originated.

multi = true|false

Determines whether all tables, or just the first one, from input table files will be used. If set
false, then just the first table from each file named by in will be used. If true, then all tables
present in those input files will be used. This only has an effect for file formats which are
capable of containing more than one table, which effectively means FITS and VOTable and
their variants.

[Default: false]

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

SUN/256 166

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

seqcol = <colname>

Name of a column to be added to the output table which will contain the sequence number of
the input table from which each row originated. This column will contain 1 for the rows from
the first concatenated table, 2 for the second, and so on.

uloccol = <colname>

Name of a column to be added to the output table which will contain the unique part of the
location (as specified in the input parameter(s)) of the input table from which each row
originated. If not null, parameters will also be added to the output table giving the pre- and
post-fix string common to all the locations. For example, if the input tables are
"/data/cat_a1.fits" and "/data/cat_b2.fits" then the output table will contain a new column
<colname> which takes the value "a1" for rows from the first table and "b2" for rows from the
second, and new parameters "<colname>_prefix" and "<colname>_postfix" with the values
"/data/cat_" and ".fits" respectively.

B.18.2 Examples

Here are some examples of tcat:

stilts tcat ifmt=ascii in=t1.txt in=t2.txt in=t3.txt out=table.txt

Concatenates the three named ASCII format tables to produce an output table. All three must
have compatible numbers and types of columns.

stilts tcat ifmt=ascii in="t1.txt t2.txt t3.txt" out=table.txt

Has exactly the same effect as the previous example.

SUN/256 167

stilts tcat ifmt=ascii in=@inlist.lis out=table.txt

This will have the same effect as the previous two examples if a file name "inlist.lis" in the
current directory contains three lines, "t1.txt", "t2.txt" and "t3.txt".

stilts tcat in=r368776.fits#1 in=r368776#2 in=r368776.fits#3 in=r368776.fits#4
out=r368776_all.fits

Concatenates the contents of four tables (the first four extension HDUs) from a
multi-extension FITS file to produce a single FITS table. Many Unix shells (csh, bash) will
allow you to list the input files using the following shorthand: "in=r368776.fits#{1,2,3,4}".

stilts tcat in=r368776.fits multi=true out=r368776_all.fits

Concatenates all the tables in the named file together. Setting multi=true means that instead
of picking the first table from each named in table, all tables will be selected. So, if the input
FITS file in this example has just four table HDUs, then this example does exactly the same as
the previous one, but with less typing. The same thing works with multi-TABLE VOTable
documents, but most other file formats (CSV etc) do not have the facility for storing multiple
tables in a single file.

stilts tcat in=r368776.fits multi=true out=r368776_all.fits
icmd=progress seqcol=ID

Does the same as the previous example with a couple of additions. Firstly, progress through
each of the input files will be reported to the console. Secondly, an additional column "ID" will
be appended to the output which contains 1 for all the rows from the first input table, 2 for the
rows from the second one and so on.

stilts tcat in='rA.csv rB.csv rC.csv' ifmt=csv \
icmd='keepcols "RA DEC FLUX"' icmd='sorthead 10 FLUX' \
ocmd='sort FLUX'

Takes the 10 rows with highest FLUX values from each of three input tables (in
comma-separated value format) and joins them together to produce a 30-row output table. This
is then sorted in FLUX order, and the resulting table is output to the console in text format.
Only the columns RA, DEC and FLUX are output; any other columns are discarded. The input
tables don't need to have identical forms to each other, but each must have at least an RA, DEC
and FLUX column.

stilts tcat in=vizier.xml multi=true
icmd='keepcols "ucd$RECORD ucd$POS_EQ_RA_MAIN ucd$POS_EQ_DEC_MAIN"'
uloccol=TID out=all.csv

This processes a VOTable file which may have multiple TABLEs in it, but for which each of
the tables is known to have columns with the UCDs RECORD, POS_EQ_RA_MAIN and
POS_EQ_DEC_MAIN (this is typical of VOTables retrieved from CDS's VizieR service). It
retains only those columns from each table and writes the result as a single concatenated table
to a CSV file.

B.19 tcatn: Concatenates multiple tables

tcatn is a tool for concatenating a number of tables one after the other. Each table can be
manipulated separately prior to the concatenatation. If you have two tables T1 and T2 which
contain similar columns, and you want to treat them as a single table, you can use tcatn to produce
a new table whose metadata (row headings etc) comes from T1 and whose data consists of all the
rows of T1 followed by all the rows of T2.

SUN/256 168

For this concatenation to make sense, each column of T1 must be compatible with the
corresponding column of T2 - they must have compatible types and, presumably, meanings. If this
is not the case for the tables that you wish to concatenate, for instance the columns are in different
orders, or the units differ between a column in T1 and its opposite number in T2, you can use the
icmd1 and/or icmd2 parameters to manipulate the input tables so that the column sequences are
compatible. See Appendix B.19.2 for some examples.

If the tables are similar to each other (same format, same columns, same preprocessing stages
required if any), you may find it easier to use tcat instead.

B.19.1 Usage

The usage of tcatn is

stilts <stilts-flags> tcatn nin=<count> ifmtN=<in-format> inN=<tableN>
icmdN=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args> out=<out-table>
ofmt=<out-format> seqcol=<colname>
loccol=<colname> uloccol=<colname>
countrows=true|false

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

countrows = true|false

Whether to count the rows in the table before starting the output. This is essentially a tuning
parameter - if writing to an output format which requires the number of rows up front (such as
normal FITS) it may result in skipping the number of passes through the input files required
for processing. Unless you have a good understanding of the internals of the software, your
best bet for working out whether to set this true or false is to try it both ways

[Default: false]

icmdN = <cmds>

Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format>

Specifies the format of input table #N (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

inN = <tableN>

SUN/256 169

The location of input table #N. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmtN parameter.

loccol = <colname>

Name of a column to be added to the output table which will contain the location (as specified
in the input parameter(s)) of the input table from which each row originated.

nin = <count>

The number of input tables for this task. For each of the input tables N there will be associated
parameters ifmtN, inN and icmdN.

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

SUN/256 170

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

seqcol = <colname>

Name of a column to be added to the output table which will contain the sequence number of
the input table from which each row originated. This column will contain 1 for the rows from
the first concatenated table, 2 for the second, and so on.

uloccol = <colname>

Name of a column to be added to the output table which will contain the unique part of the
location (as specified in the input parameter(s)) of the input table from which each row
originated. If not null, parameters will also be added to the output table giving the pre- and
post-fix string common to all the locations. For example, if the input tables are
"/data/cat_a1.fits" and "/data/cat_b2.fits" then the output table will contain a new column
<colname> which takes the value "a1" for rows from the first table and "b2" for rows from the
second, and new parameters "<colname>_prefix" and "<colname>_postfix" with the values
"/data/cat_" and ".fits" respectively.

B.19.2 Examples

Here are some examples of tcatn:

stilts tcatn nin=2 in1=obs1.fits in2=obs2.fits out=combined.fits

Concatenates two similar observation catalogues to form a combined one. In this case, both
input and output tables are FITS files.

stilts tcatn nin=3 omode=stats in1=obs1.txt ifmt1=ascii
in2=obs2.xml ifmt2=votable
in3=obs3.fit ifmt3=fits

Three catalogues with similar forms but in different data formats are joined. Instead of writing
the result to an output file, the resulting joined catalogue is examined to calculate its statistics,
which are written to standard output.

stilts tcatn nin=2 in1=survey.vot.gz ifmt2=csv in2=more_data.csv
icmd1='addskycoords fk5 galactic RA2000 DEC2000 GLON GLAT' \
icmd1='keepcols "OBJ_ID GLON GLAT"' \
icmd2='keepcols "ident gal_long gal_lat"' \
loccol=FILENAME
omode=topcat

In this case we are trying to concatenate results from two tables which are quite dissimilar to
each other. In the first place, one is a VOTable (no ifmt1 parameter is required since
VOTables can be detected automatically), and the other is a comma-separated-values file (for
which the ifmt2=csv parameter must be given). In the second place, the column structure of
the two tables may be quite different. By pre-processing the two tables using the icmd1 &
icmd2 parameters, we produce in each case an input table which consists of three columns of
compatible types and meanings: an integer identifier and floating point galactic longitude and
latitude coordinates. The second table contains such columns to start with, but the first table
requires an initial step to convert FK5 J2000.0 coordinates to galactic ones. tcatn joins the
two doctored tables together, to produce a table which contains only these three columns, with
all the rows from both input tables, and sends the result directly to a new or running instance of
TOPCAT. An additional column named FILENAME is appended to the table before sending

SUN/256 171

it; this contains "survey.vot.gz" for all the columns from the first table and "more_data.csv" for
all the columns from the second one.

B.20 tcopy: Converts between table formats

tcopy is a table copying tool. It simply copies a table from one place to another, but since you can
specify the input and output formats as desired, it works as a converter from any of the supported
input formats (Section 5.2.1) to any of the supported output formats (Section 5.2.2).

tcopy is just a stripped-down version of tpipe - it doesn't do anything that tpipe can't, but the
usage is slightly simplified. It is provided as a drop-in replacement for the old tablecopy

(uk.ac.starlink.table.TableCopy) tool which was supplied with earlier versions of STIL and
TOPCAT - it has the same arguments and behaviour as tablecopy, but is implemented somewhat
differently and will in some cases be more efficient.

B.20.1 Usage

The usage of tcopy is

stilts <stilts-flags> tcopy ifmt=<in-format> ofmt=<out-format>
[in=]<table> [out=]<out-table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (auto)]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

[Default: -]

SUN/256 172

B.20.2 Examples

Here are some examples of tcopy in use:

stilts tcopy stars.fits stars.xml

Copies a FITS table to a VOTable. Since no input format is specified, the format is
automatically detected (FITS is one of the formats for which this is possible). Since no output
format is specified, the stars.xml filename is examined to make a guess at the kind of output
to write: the .xml ending is taken to mean a TABLEDATA-encoded VOTable.

stilts tcopy stars.fits stars.xml ifmt=fits ofmt=votable

Does the same as the previous example, but the input and output formats have been specified
explicitly.

stilts tcopy ofmt=text http://remote.host/data/vizer.xml.gz#4 -

Prints the contents of a remote, compressed VOTable to the terminal in a human-readable
form. The #4 at the end of the URL indicates that the data from the fifth TABLE element in the
remote document are to be used. The gzip compression of the table is taken care of
automatically.

stilts tcopy ifmt=csv ofmt=latex spec.csv

Converts a comma-separated values file to a LaTeX table environment, writing the result to
standard output.

stilts -classpath /usr/local/jars/pg73jdbc3.jar \
-Djdbc.drivers=org.postgresql.Driver \
tcopy in="jdbc:postgresql://localhost/imsim#SELECT ra, dec, Imag FROM dqc" \

ofmt=fits wfslist.cat

Makes an SQL query on a PostgreSQL database and writes the results to a FITS file. The
whole command is shown here, to show that the classpath is augmented to include the
PostgreSQL driver class, and the driver class is named using the jdbc.drivers system
property. As you can see, using SQL from Java is a bit fiddly, and there are other ways to
perform this setup than on the command line - see Section 3.4 and tpipe's omode=tosql output
mode.

B.21 tcube: Calculates N-dimensional histograms

tcube constructs an N-dimensional histogram, or density map, from N columns of an input table,
and writes it out as an N-dimensional data cube. The parameters you supply define which N
numeric columns of the input table you want to use and the dimensions (bounds and pixel sizes) of
the output grid. Each table row then defines a point in N-dimensional space. The program goes
through each row, and if the point that row defines falls within the bounds of the output grid you
have defined, increments the value associated with the corresponding pixel. The resulting
N-dimensional array, whose pixel values represent a count of the rows associated with that region
of the N-dimensional space, is then written out as a FITS file. In one dimension, this gives you a
normal histogram of a given variable. In two dimensions it might typically be used to plot the
density on the sky of objects from a catalogue.

As with some of the other generic table commands, you can perform extensive pre-processing on

SUN/256 173

the input table by use of the icmd parameter before the actual cube counts are calculated.

B.21.1 Usage

The usage of tcube is

stilts <stilts-flags> tcube cols=<col-id> ... ifmt=<in-format>
istream=true|false icmd=<cmds>
bounds=[<lo>]:[<hi>] ... binsizes=<size> ...
nbins=<num> ... out=<out-file>
otype=byte|short|int|long|float|double
scale=<col-id>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

binsizes = <size> ...

Gives the extent of of the data bins (cube pixels) in each dimension in data coordinates. The
form of the value is a space-separated list of values, giving a list of extents for the first, second,
... dimension. Either this parameter or the nbins parameter must be supplied.

bounds = [<lo>]:[<hi>] ...

Gives the bounds for each dimension of the cube in data coordinates. The form of the value is
a space-separated list of words, each giving an optional lower bound, then a colon, then an
optional upper bound, for instance "1:100 0:20" to represent a range for two-dimensional
output between 1 and 100 of the first coordinate (table column) and between 0 and 20 for the
second. Either or both numbers may be omitted to indicate that the bounds should be
determined automatically by assessing the range of the data in the table. A null value for the
parameter indicates that all bounds should be determined automatically for all the dimensions.

If any of the bounds need to be determined automatically in this way, two passes through the
data will be required, the first to determine bounds and the second to populate the cube.

cols = <col-id> ...

Columns to use for this task. One or more <col-id> elements, separated by spaces, should be
given. Each one represents a column in the table, using either its name or index.

The number of columns listed in the value of this parameter defines the dimensionality of the
output data cube.

icmd = <cmds>

Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value

SUN/256 174

(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

[Default: false]

nbins = <num> ...

Gives the number of bins (cube pixels) in each dimension. The form of the value is a
space-separated list of integers, giving the number of pixels for the output cube in the first,
second, ... dimension. Either this parameter or the binsizes parameter must be supplied.

otype = byte|short|int|long|float|double

The type of numeric value which will fill the output array. If no selection is made, the output
type will be determined automatically as the shortest type required to hold all the values in the
array. Currently, integers are always signed (no BSCALE/BZERO), so for instance the largest
value that can be recorded in 8 bits is 127.

out = <out-file>

The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

The output cube is currently written as a single-HDU FITS file.

[Default: -]

scale = <col-id>

Optionally gives a value by which the count in each bin is scaled. If this value is null (the
default) then for each row that falls within the bounds of a pixel, the pixel value will be
incremented by 1. If a column ID is given, then instead of 1 being added, the value of that
column for the row in question is added. The effect of this is that the output image contains the
mean of the given column for the rows corresponding to each pixel rather than just a count of
them.

B.21.2 Examples

stilts tcube in=2QZ_6QZ_pubcat.fits out=ccm.fits \
cols='Bj_R U_Bj Bj' binsizes='0.05 0.05 0.5' bounds='-2:1 -3:2 :'

Calculates a 3-dimensional colour-colour-magnitude grid from three existing columns in a
table. The bin (pixel) sizes are specified. The data bounds are specified explicitly for the (first
two) colour dimensions, but for the (third) magnitude dimension it is determined from the
minimum and maximum values the data in that column of the table. The output is a
three-dimensional FITS cube.

SUN/256 175

stilts tcube in=iras_psc.vot out=iras_psc_map.fits \
icmd='addskycoords fk5 galactic ra dec glat glon' \
cols='glat glon' nbins='400 200'

Calculates a map of object densities in galactic coordinates from a catalogue of IRAS point
sources. The output is a two-dimensional FITS image representing the sky in galactic
coordinates. Bounds are determined automatically from the data, and the number of pixels in
each dimension (400 in latitude and 200 in longitude) are specified, which means that the pixel
sizes don't have to be. Since the input table contains sky positions in equatorial coordinates
rather than galactic ones, the addskycoords filter is used to preprocess the data before the cube
generation step (see Section 6.1).

B.22 tloop: Generates a single-column table from a loop variable

tloop generates a one-column table where the values in the column are effectively populated from a
for loop (start, end, step). This may be useful as it is, or it can be postprocessed with ocmd

parameters to add more columns etc.

B.22.1 Usage

The usage of tloop is

stilts <stilts-flags> tloop ocmd=<cmds> omode=<out-mode> <mode-args>
out=<out-table> ofmt=<out-format>
forcefloat=true|false
[colname=]<value> [start=]<float-value>
[end=]<float-value> [step=]<float-value>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

colname = <value>

Gives the name of the single column produced by this command.

[Default: i]

end = <float-value>

Gives the value which the loop variable will not exceed. Exceeding is in the positive or
negative sense according to the sense of the step parameter, as usual for a for-type loop.

forcefloat = true|false

Affects the data type of the loop variable column. If true, the column is always floating point.
If false, and if the other parameters are all of integer type, the column will be an integer
column.

[Default: false]

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

SUN/256 176

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

start = <float-value>

Gives the starting value of the loop variable. This will the the value in the first row of the table.

[Default: 0]

step = <float-value>

Amount by which the loop variable will be incremented at each iteration, i.e. each table row.

[Default: 1]

B.22.2 Examples

SUN/256 177

stilts tloop COUNTER 0 1000

Generates a table with a single column, named COUNTER, and a thousand rows. The value in the
first row is 0 and in the last row is 999. The table is written to standard output.

stilts tloop time 0 10 0.25 out=times.csv

Generates a table with one column time counting from 0 to 9.75 in steps of 0.25. Output is to a
CSV file. The parameters here are specified in order, but could equivalently be given by name:
"stilts tloop var=time start=0 end=10 step=0.26".

stilts tloop x start=1 end=11 ocmd='addcol x2 x*x' ocmd='addcol x3 x*x*x'
ocmd='stats name sum'

Generates a table with a column x running from 1 to 10 inclusive. The addcol filters then
append two further columns, giving the squares and cubes of these values respectively, giving
a table of 10 rows and 3 columns. Finally this table is piped through a stats filter to calculate
the sums of the values, squares and cubes in this range.

B.23 tjoin: Joins multiple tables side-to-side

tjoin performs a trivial side-by-side join of multiple tables. The N'th row of the output table
consists of the N'th row of the first input table, followed by the N'th row of the second input table,
... and so on. It is suitable if you want to amalgamate two or more tables whose row orderings
correspond exactly to each other.

For the (more usual) case in which the rows of the tables to be joined are not already in the right
order, use one of the crossmatching commands (Section 7).

B.23.1 Usage

The usage of tjoin is

stilts <stilts-flags> tjoin nin=<count> ifmtN=<in-format> inN=<tableN>
icmdN=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args> out=<out-table>
ofmt=<out-format> fixcols=none|dups|all
suffixN=<label>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

fixcols = none|dups|all

Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmdN = <cmds>

SUN/256 178

Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format>

Specifies the format of input table #N (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

inN = <tableN>

The location of input table #N. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmtN parameter.

nin = <count>

The number of input tables for this task. For each of the input tables N there will be associated
parameters ifmtN, inN and icmdN.

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or

SUN/256 179

populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

suffixN = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from table N.

[Default: _N]

B.23.2 Examples

Here are some examples of using tjoin

stilts tjoin nin=2 in1=positions.fit in2=fluxes.fits out=combined.fits

Takes two input FITS files and sticks them together side by side, writing the result as a third
FITS file. The output will have the same number of rows as each of the input catalogues, and a
number of columns equal to the sum of those in the two input catalogues.

stilts tjoin nin=3 fixcols=all \
ifmt1=ascii in1=t1.txt suffix1=_T1 \
ifmt2=ascii in2=t2.txt suffix2=_T2 \
ifmt3=ascii in3=t3.txt suffix3=_T3 \
ocmd='select FLAG_T1==0' \
omode=stats

This joins three ascii tables together. Each column of the output table is renamed by appending
a string to it ("_T1" for the first table, "_T2" for the second...). Only those rows of the output
for which the FLAG column in the first input table, and hence the FLAG_T1 column in the
output table, have the value zero are selected. Statistics are calculated for all the columns of
these selected rows, and written to the output.

B.24 tmatch1: Performs a crossmatch internal to a single table

SUN/256 180

tmatch1 performs efficient and flexible crossmatching between the rows of a single table. It can
match rows on the basis of their relative position in the sky, or alternatively using many other
criteria such as separation in in some isotropic or anisotropic Cartesian space, identity of a key
value, or some combination of these; the full range of match criteria is dicussed in Section 7.1.

The basic task performed by the intra-table matcher is to identify groups of rows within the table
which match each other. See Section 7.2 for an explanation of exactly what consitutes a match
group. The result of identifying these groups is expressed as an output table in one of a variety of
ways, specified by the action parameter. These options include marking group membership in
added columns and eliminating some or all rows which form part of a match group.

B.24.1 Usage

The usage of tmatch1 is

stilts <stilts-flags> tmatch1 matcher=<matcher-name> params=<match-params>
tuning=<tuning-params> values=<expr-list>
action=identify|keep0|keep1|wide2|wideN
progress=none|log|profile ifmt=<in-format>
istream=true|false icmd=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args> out=<out-table>
ofmt=<out-format>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

action = identify|keep0|keep1|wide2|wideN

Determines the form of the table which will be output as a result of the internal match.

• identify: The output table is the same as the input table except that it contains two
additional columns, GroupID and GroupSize, following the input columns. Each group of
rows which matched is assigned a unique integer, recorded in the GroupID column, and
the size of each group is recorded in the GroupSize column. Rows which don't match any
others (singles) have null values in both these columns.

• keep0: The result is a new table containing only "single" rows, that is ones which don't
match any other rows in the table. Any other rows are thrown out.

• keep1: The result is a new table in which only one row (the first in the input table order)
from each group of matching ones is retained. A subsequent intra-table match with the
same criteria would therefore show no matches.

• wideN: The result is a new "wide" table consisting of matched rows in the input table
stacked next to each other. Only groups of exactly N rows in the input table are used to
form the output table; each row of the output table consists of the columns of the first
group member, followed by the columns of the second group member and so on. The
output table therefore has N times as many columns as the input table. The column names
in the new table have _1, _2, ... appended to them to avoid duplication.

[Default: identify]

icmd = <cmds>

Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is

SUN/256 181

performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

[Default: false]

matcher = <matcher-name>

Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the params, values* and tuning parameter(s).

[Default: sky]

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

SUN/256 182

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

params = <match-params>

Determines the parameters of this match. This is typically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the matcher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted' or "quoted".

progress = none|log|profile

Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can also be useful as a performance diagnostic.

The options are:

• none: no progress is shown
• log: progress information is shown
• profile: progress information and limited time/memory profiling information are shown

[Default: log]

tuning = <tuning-params>

Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the matcher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted". If this optional parameter is not supplied, sensible defaults will be
chosen.

SUN/256 183

values = <expr-list>

Defines the values from the input table which are used to determine whether a match has
occurred. These will typically be coordinate values such as RA and Dec and perhaps some
per-row error values as well, though exactly what values are required is determined by the kind
of match as determined by matcher. Depending on the kind of match, the number and type of
the values required will be different. Multiple values should be separated by whitespace; if
whitespace occurs within a single value it must be 'quoted' or "quoted". Elements of the
expression list are commonly just column names, but may be algebraic expressions calculated
from zero or more columns as explained in Section 9.

B.24.2 Examples

Here are some examples of using tmatch1

stilts tmatch1 matcher=sky values="RA2000 DE2000" params=20 \
action=keep0 in=crowded.vot out=sparse.vot

Copies an input catalogue "crowded.vot" to an output catalogue "sparse.vot", but omitting any
objects (rows) which are within 20 arcsec of other objects. The output catalogue will contain
no near neighbours.

stilts tmatch1 matcher=skyerr values="RA2000 DE2000 RADIUS*4" params=40 \
action=keep0 in=crowded.vot out=sparse.vot

This is similar to the previous example, but uses the skyerr matcher which determines the
proximity threshold on a row-by-row basis from values in the table - in this case 4 times the
value of the RADIUS column (this value must be in arc seconds). The params=40 value does
not affect the result, but it gives the algorithm an idea of the rough scale of object separation.

stilts tmatch1 matcher=3d values="XPIX YPIX ZPIX" params=10 action=identify \
in=state.fit ocmd='select GroupSize>3' out=groups3+.fit

Uses the "3d" matcher to identify groups of objects in terms of their proximity in a
3-dimensional Cartesian space, with positions given by the XPIX, YPIX and ZPIX columns in
the input table. The action=identify parameter means that the input table is written out with
the same rows, but with additional columns indicating which rows are associated with each
other. One of these columns, "GroupSize" gives the number of objects in each group. The
postprocessing filter ocmd='select GroupSize>3' selects only those rows which are part of
groups of three objects or larger; singletons and pairs are discarded before writing the output
file.

stilts tmatch1 matcher=sky values="ra dec" params=3 action=wide2 \
ocmd='keepcols "id_1 ra_1 dec_1 id_2 ra_2 dec_2"'
in=galaxy.fits out=binaries.txt ofmt=ascii

Identifies pairs of objects within 3 arcsec of each other from an input catalogue. Singles, and
groups of three or more, will be discarded. The output table generated is a double-width
version of the input table with pairs of objects next to each other on the same row. Here, the
ocmd post-processing filter discards all of the columns except the identifiers and sky positions
for each object. The output is to a text file.

B.25 tmatch2: Crossmatches 2 tables using flexible criteria

tmatch2 is an efficient and highly configurable tool for crossmatching pairs of tables. It can match
rows between tables on the basis of their relative position in the sky, or alternatively using many

SUN/256 184

other criteria such as separation in some isotropic or anisotropic Cartesian space, identity of a key
value, or some combination of these; the full range of match criteria is discussed in Section 7.1.
You can choose whether you want to identify all the matches or only the closest, and what form the
output table takes, for instance matched rows only, or all rows from one or both tables, or only the
unmatched rows.

If you simply want to match two tables based on sky position with a fixed maximum separation,
you may find the tskymatch2 command easier to use.

Note: the duptag1 and duptag2 parameters have been replaced at version 1.4 by suffix1 and
suffix2 for consistency with other table join tasks.

B.25.1 Usage

The usage of tmatch2 is

stilts <stilts-flags> tmatch2 ifmt1=<in-format> ifmt2=<in-format>
icmd1=<cmds> icmd2=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args> out=<out-table>
ofmt=<out-format> matcher=<matcher-name>
values1=<expr-list> values2=<expr-list>
params=<match-params> tuning=<tuning-params>
join=1and2|1or2|all1|all2|1not2|2not1|1xor2
find=all|best|best1|best2
fixcols=none|dups|all suffix1=<label>
suffix2=<label> scorecol=<col-name>
progress=none|log|profile
[in1=]<table1> [in2=]<table2>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

find = all|best|best1|best2

Determines what happens when a row in one table can be matched by more than one row in
the other table. The options are:

• all: All matches. Every match between the two tables is included in the result. Rows
from both of the input tables may appear multiple times in the result.

• best: Best match, symmetric. The best pairs are selected in a way which treats the two
tables symmetrically. Any input row which appears in one result pair is disqualified from
appearing in any other result pair, so each row from both input tables will appear in at
most one row in the result.

• best1: Best match for each Table 1 row. For each row in table 1, only the best match
from table 2 will appear in the result. Each row from table 1 will appear a maximum of
once in the result, but rows from table 2 may appear multiple times.

• best2: Best match for each Table 2 row. For each row in table 2, only the best match
from table 1 will appear in the result. Each row from table 2 will appear a maximum of
once in the result, but rows from table 1 may appear multiple times.

The differences between best, best1 and best2 are a bit subtle. In cases where it's obvious
which object in each table is the best match for which object in the other, choosing betwen
these options will not affect the result. However, in crowded fields (where the distance
between objects within one or both tables is typically similar to or smaller than the specified
match radius) it will make a difference. In this case one of the asymmetric options (best1 or
best2) is usually more appropriate than best, but you'll have to think about which of them
suits your requirements. The performance (time and memory usage) of the match may also
differ between these options, especially if one table is much bigger than the other.

SUN/256 185

[Default: best]

fixcols = none|dups|all

Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmd1 = <cmds>

Commands to operate on the first input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

icmd2 = <cmds>

Commands to operate on the second input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt1 = <in-format>

Specifies the format of the first input table (one of the known formats listed in Section 5.2.1).
This flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

ifmt2 = <in-format>

Specifies the format of the second input table (one of the known formats listed in Section
5.2.1). This flag can be used if you know what format your input table is in. If it has the special
value (auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in1 = <table1>

The location of the first input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it

SUN/256 186

is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt1 parameter.

in2 = <table2>

The location of the second input table. This is usually a filename or URL, and may point to a
file compressed in one of the supported compression formats (Unix compress, gzip or bzip2).
If it is omitted, or equal to the special value "-", the input table will be read from standard
input. In this case the input format must be given explicitly using the ifmt2 parameter.

join = 1and2|1or2|all1|all2|1not2|2not1|1xor2

Determines which rows are included in the output table. The matching algorithm determines
which of the rows from the first table correspond to which rows from the second. This
parameter determines what to do with that information. Perhaps the most obvious thing is to
write out a table containing only rows which correspond to a row in both of the two input
tables. However, you may also want to see the unmatched rows from one or both input tables,
or rows present in one table but unmatched in the other, or other possibilities. The options are:

• 1and2: An output row for each row represented in both input tables (INNER JOIN)
• 1or2: An output row for each row represented in either or both of the input tables (FULL

OUTER JOIN)
• all1: An output row for each matched or unmatched row in table 1 (LEFT OUTER

JOIN)
• all2: An output row for each matched or unmatched row in table 2 (RIGHT OUTER

JOIN)
• 1not2: An output row only for rows which appear in the first table but are not matched in

the second table
• 2not1: An output row only for rows which appear in the second table but are not matched

in the first table
• 1xor2: An output row only for rows represented in one of the input tables but not the

other one

[Default: 1and2]

matcher = <matcher-name>

Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the params, values* and tuning parameter(s).

[Default: sky]

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what

SUN/256 187

sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

params = <match-params>

Determines the parameters of this match. This is typically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the matcher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted' or "quoted".

progress = none|log|profile

Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can also be useful as a performance diagnostic.

The options are:

• none: no progress is shown
• log: progress information is shown
• profile: progress information and limited time/memory profiling information are shown

[Default: log]

scorecol = <col-name>

Gives the name of a column in the output table to contain the "match score" for each pairwise
match. The meaning of this column is dependent on the chosen matcher, but it typically
represents a distance of some kind between the two matching points. If a null value is chosen,

SUN/256 188

no score column will be inserted in the output table. The default value of this parameter
depends on matcher.

[Default: Score]

suffix1 = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from table 1.

[Default: _1]

suffix2 = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from table 2.

[Default: _2]

tuning = <tuning-params>

Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the matcher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted". If this optional parameter is not supplied, sensible defaults will be
chosen.

values1 = <expr-list>

Defines the values from table 1 which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by matcher. Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within a single value it must be 'quoted' or "quoted". Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 9.

values2 = <expr-list>

Defines the values from table 2 which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by matcher. Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within a single value it must be 'quoted' or "quoted". Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 9.

B.25.2 Examples

Here are some examples of using tmatch2

stilts tmatch2 in1=obs_v.xml in2=obs_i.xml out=obs_iv.xml \
matcher=sky values1="ra dec" values2="ra dec" params="2"

Takes two input catalogues (VOTables), one with observations in the V band and the other in
the I band, and performs a match to find objects within 2 arcseconds of each other. The result
is a new table containing only rows where a match was found.

stilts tmatch2 survey.fits ifmt2=csv mycat.csv \
icmd1='addskycoords fk4 fk5 RA1950 DEC1950 RA2000 DEC2000' \

SUN/256 189

matcher=skyerr \
params=10 values1="RA2000 DEC2000 POS_ERR" values2="RA DEC 0" \
join=2not1 omode=count

Here a comma-separated-values file is being compared with a FITS catalogue representing
some survey results. Positions in the survey catalogue use the FK4 B1950.0 system, and so a
preprocessing step is inserted to create new position columns in the first input table using the
FK5 J2000.0 system, which is what the other input table uses. The survey catalogue contains a
POS_ERR column which gives the positional uncertainty of its entries, so the skyerr matcher
is used, which takes account of this; the third entry in the values1 parameter is the POS_ERR
column (in arcsec). Since the second input table has no positional uncertainty information, 0 is
used as the third entry in values2. The params gives a rough idea of the scale of the object
separations, but its value does not affect the result. The join type is 2not1, which means the
output table will only contain those entries which are in the second input table but not in the
first one. The output table is not stored, but the number of rows it contains (the number of
objects represented in the CSV file but not the survey) is written to the screen.

stilts tmatch2 ifmt1=ascii ifmt2=ascii in1=cat-a.txt in2=cat-b.txt \
matcher=2d values1='X Y' values2='X Y' params=5 join=1and2 \
suffix1=_a suffix2=_b \
ocmd='addcol XDIFF X_a-X_b; addcol YDIFF Y_a-Y_b' \
ocmd'keepcols "XDIFF YDIFF"' omode=stats

Two ASCII-format catalogues are matched, where rows are considered to match if their X,Y
positions are within 5 units of each other in some Cartesian space. The result of the matching
operation is a table of all the matched rows, containing columns named X_a, Y_a, X_b and
Y_b (along with any others in the input tables) - the suffix* parameters describe how the
input X and Y columns are to be renamed to avoid duplicate column names in the output table.
To this result are added two new columns, representing the X and Y positional difference
between the rows from one input table and those from the other. The keepcols filter then
throws all the other columns away, retaining only these difference columns. The final
two-column table is not stored anywhere, but (omode=stats) statistics including mean and
standard deviation are calculated on its columns and displayed to the screen. Having done all
this, you can examine the average X and Y differences between the two input tables for
matched rows, and if they differ significantly from zero, you can conclude that there is a
systematic error between the positions in the two input files.

stilts tmatch2 in1=mgc.fits in2=6dfgs.xml join=1and2 find=all \
matcher=sky+1d params='3 0.5' \
values1='ra dec bmag' values2='RA2000 DEC2000 B_MAG" \
out=pairs.fits

This performs a match with a matcher that combines sky and 1d match criteria. This means
that the only rows which match are those which are both within 3 arcsec of each other on the
sky and and within 0.5 blue magnitudes. Note that for both the params and the values1 and
values2 parameters, the items for the sky matcher (RA and DEC) are listed first, followed by
those for the 1d matcher (in this case, blue magnitude).

B.26 tmatchn: Crossmatches multiple tables using flexible criteria

tmatchn performs efficient and flexible crossmatching between multiple tables. It can match rows
on the basis of their relative position in the sky, or alternatively using many other criteria such as
separation in in some isotropic or anisotropic Cartesian space, identity of a key value, or some
combination of these; the full range of match criteria is dicussed in Section 7.1.

Since the match criteria define what counts as a match between two objects, it is not immediately
obvious what is meant by a multi-table match. In fact the command can work in one of two distinct
modes, controlled by the multimode parameter. In pairs mode, one table (by default the first input

SUN/256 190

table) is designated the reference table, and pair matches between each of the other tables and that
one are identified. In group mode groups of objects from all the input tables are identified, as
discussed in Section 7.2. Currently, in both cases an output matched row cannot contain more than
one object from each input table. Options for output of multiple rows per input table per match may
be forthcoming in future releases if there is demand.

tmatchn is intended for use with more than two input tables - see tmatch1 and tmatch2 for 1- and
2-table crossmatching respectively.

B.26.1 Usage

The usage of tmatchn is

stilts <stilts-flags> tmatchn nin=<count> ifmtN=<in-format> inN=<tableN>
icmdN=<cmds> ocmd=<cmds>
omode=<out-mode> <mode-args> out=<out-table>
ofmt=<out-format> multimode=pairs|group
iref=<table-index> matcher=<matcher-name>
params=<match-params> tuning=<tuning-params>
valuesN=<expr-list>
joinN=default|match|nomatch|always
fixcols=none|dups|all suffixN=<label>
progress=none|log|profile

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

fixcols = none|dups|all

Determines how input columns are renamed before use in the output table. The choices are:

• none: columns are not renamed
• dups: columns which would otherwise have duplicate names in the output will be

renamed to indicate which table they came from
• all: all columns will be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suffix* parameters.

[Default: dups]

icmdN = <cmds>

Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format>

Specifies the format of input table #N (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

SUN/256 191

[Default: (auto)]

inN = <tableN>

The location of input table #N. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmtN parameter.

iref = <table-index>

If multimode=pairs this parameter gives the index of the table in the input table list which is
to serve as the reference table (the one which must be matched by other tables). Ignored in
other modes.

Row ordering in the output table is usually tidiest if the default setting of 1 is used (i.e. if the
first input table is used as the reference table).

[Default: 1]

joinN = default|match|nomatch|always

Determines which rows from input table N are included in the output table. The matching
algorithm determines which of the rows in each of the input tables correspond to which rows
in the other input tables, and this parameter determines what to do with that information.

The default behaviour is that a row will appear in the output table if it represents a match of
rows from two or more of the input tables. This can be altered on a per-input-table basis
however by choosing one of the non-default options below:

• match: Rows are included only if they contain an entry from input table N.
• nomatch: Rows are included only if they do not contain an entry from input table N.
• always: Rows are included if they contain an entry from input table N (overrides any

match and nomatch settings of other tables).
• default: Input table N has no special effect on whether rows are included.

[Default: default]

matcher = <matcher-name>

Defines the nature of the matching that will be performed. Depending on the name supplied,
this may be positional matching using celestial or Cartesian coordinates, exact matching on the
value of a string column, or other things. A list and explanation of the available matching
algorithms is given in Section 7.1. The value supplied for this parameter determines the
meanings of the values required by the params, values* and tuning parameter(s).

[Default: sky]

multimode = pairs|group

Defines what is meant by a multi-table match. There are two possibilities:

• pairs: Each output row corresponds to a single row of the reference table (see parameter
iref) and contains entries from other tables which are pair matches to that. If a reference
table row matches multiple rows from one of the other tables, only the best one is
included.

• group: Each output row corresponds to a group of entries from the input tables which are
mutually linked by pair matches between them. This means that although you can get
from any entry to any other entry via one or more pair matches, there is no guarantee that
any entry is a pair match with any other entry. No table has privileged status in this case.
If there are multiple entries from a given table in the match group, an arbitrary one is
chosen for inclusion (there is no unique way to select the best). See Section 7.2 for more
discussion.

In the case of well-separated objects these modes will give the same results. For crowded
fields however it will make a difference which is chosen.

SUN/256 192

Note that which rows actually appear in the output is also influenced by the joinN parameter.

[Default: pairs]

nin = <count>

The number of input tables for this task. For each of the input tables N there will be associated
parameters ifmtN, inN and icmdN.

ocmd = <cmds>

Commands to operate on the output table, after all other processing has taken place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

SUN/256 193

[Default: -]

params = <match-params>

Determines the parameters of this match. This is typically one or more tolerances such as error
radii. It may contain zero or more values; the values that are required depend on the match
type selected by the matcher parameter. If it contains multiple values, they must be separated
by spaces; values which contain a space can be 'quoted' or "quoted".

progress = none|log|profile

Determines whether information on progress of the match should be output to the standard
error stream as it progresses. For lengthy matches this is a useful reassurance and can give
guidance about how much longer it will take. It can also be useful as a performance diagnostic.

The options are:

• none: no progress is shown
• log: progress information is shown
• profile: progress information and limited time/memory profiling information are shown

[Default: log]

suffixN = <label>

If the fixcols parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from table N.

[Default: _N]

tuning = <tuning-params>

Tuning values for the matching process, if appropriate. It may contain zero or more values; the
values that are permitted depend on the match type selected by the matcher parameter. If it
contains multiple values, they must be separated by spaces; values which contain a space can
be 'quoted' or "quoted". If this optional parameter is not supplied, sensible defaults will be
chosen.

valuesN = <expr-list>

Defines the values from table N which are used to determine whether a match has occurred.
These will typically be coordinate values such as RA and Dec and perhaps some per-row error
values as well, though exactly what values are required is determined by the kind of match as
determined by matcher. Depending on the kind of match, the number and type of the values
required will be different. Multiple values should be separated by whitespace; if whitespace
occurs within a single value it must be 'quoted' or "quoted". Elements of the expression list are
commonly just column names, but may be algebraic expressions calculated from zero or more
columns as explained in Section 9.

B.26.2 Examples

Here are some examples of using tmatchn

stilts tmatchn multimode=pairs nin=4 matcher=sky params=5 \
in1=transients.txt ifmt1=ascii values1='alpha delta' \
in2=2mass_virgo.fits values2='ra2000 dec2000' \
in3=sdss_virgo.fits values3='ra dec' \
in4=first_virgo.fits values4='pos_eq_ra pos_eq_dec' \
out=matches.xml ofmt=votable-binary

Compares a text-format table "transients.txt" against each of three other catalogues covering
the same region of sky, and outputs a table which contains a row for each row of
"transients.txt" which matches (is within 5 arcsec) of an object in any of the other tables.

SUN/256 194

stilts tmatchn multimode=pairs nin=4 matcher=sky params=5 \
in1=transients.txt ifmt1=ascii suffix1='_t' values1='alpha delta' \
in2=2mass_virgo.fits suffix2='_2mass' values2='ra2000 dec2000' \
in3=sdss_virgo.fits suffix3='_sdss' values3='ra dec' \
in4=first_virgo.fits suffix4='_first' values4='pos_eq_ra pos_eq_dec' \
fixcols=all join1=all \
ocmd='keepcols "*_t designation_2mass SDSSName_sdss id_field_first"' \
out=matches.xml ofmt=votable-binary

Similar to the previous example but with some doctoring of what the output table will look
like. The fixcols=all and suffixN assignments mean that all the columns from the input
tables will be renamed for output by adding the given suffixes. The keepcols filter applied to
the output table throws out all the columns except the ones from the reference table (*_t) and
one column from each of the other table giving object identifiers. This output table will
probably be easier to read (though contain less information) than that from the previous
example). Additionally, the join1=all assignment means that the output table will have one
row for each row of the reference table (transients.txt), even if no matches are found for it.

stilts tmatchn multimode=group nin=3 matcher=skyerr params=8 \
in1=Hband.fits values='RA DEC SEEING*2' \
in2=Jband.fits values='RA DEC SEEING*2' \
in3=Kband.fits values='RA DEC SEEING*2' \
omode=topcat

Performs a group-mode match. There is no reference table, so that an output row will result for
each object which is represented in any two of the input catalogues. The match takes account
of per-object errors equivalent to twice the recorded seeing, which is in the region of 8 arcsec.
Note that this may not operate as expected if the catalogues contain multiple distinct objects
too close (in comparison to the declared separation) to each other. The resulting matched table
is sent directly to TOPCAT (if available).

B.27 tmulti: Writes multiple tables to a single container file

tmulti takes multiple input tables and writes them as separate tables to a single output container
file. The container file must be of some format which can contain more than one table, for instance
a FITS file (which can contain multiple extensions) or a VOTable document (which can contain
multiple TABLE elements). Filtering may be performed on the tables prior to writing them. It is not
necessary that all the tables are similar (e.g. that they all have the same type and number of
columns), but the same processing commands will be applied to all of them. For more individual
control, use the tmultin task.

B.27.1 Usage

The usage of tmulti is

stilts <stilts-flags> tmulti in=<table> [<table> ...] ifmt=<in-format>
multi=true|false istream=true|false
icmd=<cmds> out=<out-file> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

icmd = <cmds>

Commands which will operate on each of the input tables, before any other processing takes
place.

SUN/256 195

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

The same format parameter applies to all the tables specified by in.

[Default: (auto)]

in = <table> [<table> ...]

Locations of the input tables. Either specify the parameter multiple times, or supply the input
tables as a space-separated list within a single use. Each table location may be a filename or
URL, and may point to data compressed in one of the supported compression formats (Unix
compress, gzip or bzip2).

A list of input table locations may be given in an external file by using the indirction character
'@'. Thus "in=@filename" causes the file filename to be read for a list of input table locations.
The locations in the file should each be on a separate line.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

The same streaming flag applies to all the tables specified by in.

[Default: false]

multi = true|false

Determines whether all tables, or just the first one, from input table files will be used. If set
false, then just the first table from each file named by in will be used. If true, then all tables
present in those input files will be used. This only has an effect for file formats which are
capable of containing more than one table, which effectively means FITS and VOTable and
their variants.

[Default: false]

ofmt = <out-format>

Specifies the format in which the output tables will be written (one of the ones in Section 5.2.2
- matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

Not all output formats are capable of writing multiple tables; if you choose one that is not, an
error will result.

SUN/256 196

[Default: (auto)]

out = <out-file>

The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

[Default: -]

B.27.2 Examples

Here are some examples of using tmulti:

stilts tmulti ifmt=ascii in=t1.txt in=t2.txt in=t3.txt
ofmt=fits out=tables.fits

Takes the three named ASCII format tables and writes them into a multi-extension FITS file,
as three separate BINTABLE HDUs. These tables do not need to be of the same shape or
otherwise similar.

stilts tmulti ifmt=ascii in="t1.txt t2.txt t3.txt"
ofmt=fits out=tables.fits

Does exactly the same as the previous example.

stilts tmulti ifmt=ascii in=@inlist.lis
ofmt=fits out=tables.fits

This will have the same effect as the previous two examples if a file name "inlist.lis" in the
current directory contains three lines, "t1.txt", "t2.txt" and "t3.txt".

stilts tmulti in=extract.fits multi=true out=extract.vot

This takes the table extensions from a multi-extension FITS file and writes them out as a
multi-TABLE VOTable document. The multi=true setting is required, since this means that
all the tables from the input file are used as input; if it was set false, only the first table HDU
from the input file would be used.

stilts tmulti in=extract.fits multi=true out=extract.vot
icmd='badval -999 *MAG'

Does the same as the previous example, but additionally replaces with a blank value
occurrences of the value "-999" in columns whose name ends with "MAG" in any of the input
tables before copying them.

B.28 tmultin: Writes multiple processed tables to single container file

tmultin takes multiple input tables and writes them to a single output container file. The container
file must be of some format which can contain more than one table, for instance a FITS file (which
can contain multiple extensions) or a VOTable document (which can contain multiple TABLE
elements). Individual filtering may be performed on the tables prior to writing them, and their
formats may be specified individually. If you want to apply the same pre-processing to all the input
tables, you may find the tmulti command more convenient.

B.28.1 Usage

The usage of tmultin is

SUN/256 197

stilts <stilts-flags> tmultin nin=<count> ifmtN=<in-format> inN=<tableN>
icmdN=<cmds> out=<out-file> ofmt=<out-format>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

icmdN = <cmds>

Commands to operate on input table #N, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format>

Specifies the format of input table #N (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

inN = <tableN>

The location of input table #N. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmtN parameter.

nin = <count>

The number of input tables for this task. For each of the input tables N there will be associated
parameters ifmtN, inN and icmdN.

ofmt = <out-format>

Specifies the format in which the output tables will be written (one of the ones in Section 5.2.2
- matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

Not all output formats are capable of writing multiple tables; if you choose one that is not, an
error will result.

[Default: (auto)]

out = <out-file>

The location of the output file. This is usually a filename to write to. If it is equal to the special
value "-" the output will be written to standard output.

[Default: -]

SUN/256 198

B.28.2 Examples

Here are some examples of using tmultin:

stilts tmultin nin=3 in1=t1.xml ifmt1=votable
in2=t2.fit ifmt2=fits
in3=t3.txt ifmt3=ascii
out=tables.fits

Takes three input tables in different formats, and writes them out as a single multi-extension
FITS file.

stilts tmultin nin=3 in1=data.fits icmd1='every 10; head 100'
in2=data.fits icmd2='every 100; head 100'
in3=data.fits icmd3='every 1000; head 100'
out=samples.xml ofmt=votable

Writes three hundred-row tables as separate TABLE elements in a single output VOTable
document. Each of the output tables is a sample from the same input table, but sampled
differently; the first is every tenth row, the second every hundredth, and the third every
thousandth.

B.29 tpipe: Performs pipeline processing on a table

tpipe performs all kinds of general purpose manipulations which take one table as input. It is
extremely flexible, and can do the following things amongst others:

• calculate statistics
• display metadata
• select rows in various ways, including algebraically
• define new columns as algebraic functions of old ones
• delete or rearrange columns
• sort rows
• convert between table formats

and combine these operations. You can think of it as a supercharged table copying tool.

The basic operation of tpipe is that it reads an input table, performs zero or more processing steps
on it, and then does something with the output. There are therefore three classes of things you need
to tell it when it runs:

Input table location
Specified by the in, ifmt and istream parameters.

Processing steps
Either provide a string giving steps as the value of one or more cmd parameters, or the name of
a file containing the steps using the script parameter. The steps that you can perform are
described in Section 6.1.

Output table destination
What happens to the output table is determined by the value of the omode parameter. By
default, omode=out, in which case the table is written to a new table file in a format determined
by ofmt. However, you can do other things with the result such as calculate the per-column
statistics (omode=stats), view only the table and column metadata (omode=meta), display it
directly in TOPCAT (omode=topcat) etc.

See Section 6 for a more detailed explanation of these ideas.

SUN/256 199

The parameters mentioned above are listed in detail in the next section.

B.29.1 Usage

The usage of tpipe is

stilts <stilts-flags> tpipe ifmt=<in-format> istream=true|false cmd=<cmds>
omode=<out-mode> <mode-args> out=<out-table>
ofmt=<out-format>
[in=]<table>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

cmd = <cmds>

Commands to operate on the input table, before any other processing takes place.

The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (";"). This parameter
can be repeated multiple times on the same command line to build up a list of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@filename" causes the file filename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmt = <in-format>

Specifies the format of the input table (one of the known formats listed in Section 5.2.1). This
flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in = <table>

The location of the input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt parameter.

istream = true|false

If set true, the in table will be read as a stream. It is necessary to give the ifmt parameter in
this case. Depending on the required operations and processing mode, this may cause the read
to fail (sometimes it is necessary to read the input table more than once). It is not normally
necessary to set this flag; in most cases the data will be streamed automatically if that is the
best thing to do. However it can sometimes result in less resource usage when processing large
files in certain formats (such as VOTable).

[Default: false]

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what

SUN/256 200

sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

B.29.2 Examples

Here are some examples of tpipe in use with explanations of what's going on. For simplicity these
examples assume that you have the stilts script installed and are using a Unix-like shell; see
Section 3 for an explanation of how to invoke the command if you just have the Java classes.

stilts tpipe cat.fits

Writes a FITS table to standard output in human-readable form. Since no mode specifier is
given, omode=out is assumed, and output is to standard output in text format.

stilts tpipe cmd='head 5' cat.fits.gz

Does the same as the last example, but with one processing step: only the first five rows of the
table are output. In this case, the input file is compressed using gzip - this is automatically
detected.

stilts tpipe ifmt=csv xxx.csv \
cmd='keepcols "index ra dec"' \

SUN/256 201

omode=out ofmt=fits xxx.fits

Reads from a comma-separated values file, writes to a FITS file, and discards all columns in
the input table apart from INDEX, RA and DEC. Note the quoting in the cmd argument: the
outer quotes are so that the argument of the cmd parameter itself (keepcols "index ra dec")
is not split up by spaces (to protect it from the shell), and the inner quotes are to keep the
colid-list argument of the keepcols command together.

stilts tpipe ifmt=votable \
cmd='addcol IV_SUM "(IMAG+VMAG)"' \
cmd='addcol IV_DIFF "(IMAG-VMAG)"' \
cmd='delcols "IMAG VMAG"' \
omode=out ofmt=votable \

< tab1.vot \
> tab2.vot

Replaces two columns by their sum and difference in a VOTable. Since neither the in nor out
parameters have been specified, the input and output are actually byte streams on standard
input and standard output of the tpipe command in this case. The processing steps first add a
column representing the sum, then add a column representing the difference, then delete the
original columns.

stilts tpipe cmd='addskycoords -inunit sex fk5 gal \
RA2000 DEC2000 GAL_LONG GAL_LAT' \

6dfgs.fits 6dfgs+gal.fits

Adds columns giving galactic coordinates to a table. Both input and output tables are FITS
files. The galactic coordinates, stored in new columns named GAL_LONG and GAL_LAT,
are calculated from FK5 J2000.0 coordinates given in the existing columns named RA2000
and DEC2000. The input (FK5) coordinates are represented as sexagesimal strings (hh:mm:ss,
dd:mm:ss), and the output ones are numeric degrees.

stilts -disk tpipe 2dfgrs_ngp.fits \
cmd='keepcols "SEQNUM AREA ECCENT"' \
cmd='sort -down AREA' \
cmd='head 20'

Displays selected columns for the 20 rows with largest values in the AREA column of a FITS
table. First the columns of interest are selected, then the rows are sorted into descending order
by the value of the AREA column, then the first 20 rows of the resulting table are selected, and
the result is written to standard output. Since a sort is being performed here, it's not possible to
do all the processing a row at a time, since all the AREA values must be available for
comparison during the sort. Two things are done here to accommodate this fact: first the
column selection is done before the sort, so that it's only a 3-column table which needs to be
available for random access, reducing the temporary storage required. Secondly the -disk flag
is supplied, which means that temporary disk files rather than memory will be used for caching
table data.

stilts tpipe 2dfgrs_ngp.fits \
cmd='keepcols "SEQNUM AREA ECCENT"' \
cmd='sorthead -down 20 AREA'

Has exactly the same effect as the previous example. However, the algorithm used by the
sorthead filter is in most cases faster and cheaper on memory (only 20 rows ever have to be
stored in this case), so this is generally a better approach than combining the sort and head

filters.

stilts tpipe omode=meta cmd=@commands.lis http://archive.org/data/survey.vot.Z

Outputs column and table metadata about a table. In this case the table is a compressed
VOTable at the end of a URL. Processing is performed according to the commands contained

SUN/256 202

in a file named "commands.lis" in the current directory.

stilts tpipe in=survey.fits
cmd='select "skyDistanceDegrees(hmsToDegrees(RA),dmsToDegrees(DEC), \

hmsToDegrees(2,28,11),dmsToDegrees(-6,49,45) \
< 5./60."' \

omode=count

Counts the number of rows within a given 5 arcmin cone of sky in a FITS table. The
skyDistanceDegrees function is an expression which calculates the distance between the
position specified in a row (as given by its RA and DEC columns) and a given point on the sky
(here, 02:28:11,-06:49:45). Since skyDistanceDegrees's arguments and return value are in
decimal degrees, some conversions are required: the RA and DEC columns are sexagesimal
strings which are converted using the hmsToDegrees and dmsToDegrees functions respectively.
Different versions of these functions (ones which take numeric arguments) are used to convert
the coordinates of the fixed point to degrees. The result is compared to a constant expression
representing 5 arcminutes in degrees. Any rows of the input table for which this comparison is
true are included in the output. An alternative function, skyDistanceRadians which works in
radians, is also available. These functions and constants used here are described in detail in
Section 9.5.15 and Section 9.5.13.

stilts tpipe ifmt=ascii survey.txt \
cmd='select "OBJTYPE == 3 && Z > 0.15"' \
cmd='keepcols "IMAG JMAG KMAG"' \
omode=stats

Calculate statistics on the I, J and K magnitudes of selected objects from a catalogue. Only
those rows with the given OBJTYPE and in the given Z range are included. The minimum,
maximum, mean, standard deviation etc of the IMAG, JMAG and KMAG columns will be
written to standard output.

stilts -classpath lib/drivers/mysql-connector-java.jar \
-Djdbc.drivers=com.mysql.jdbc.Driver \
tpipe in=x.fits cmd="explodeall" omode=tosql \

protocol=mysql host=localhost db=ASTRO1 dbtable=TABLEX \
write=dropcreate user=mbt

Writes a FITS table to an SQL table, converting array-valued columns to scalar ones. To make
the SQL connection work properly, the classpath is augmented to include the path of the
MySQL JDBC driver and the jdbc.drivers system property is set to the JDBC driver class
name. The output will be written as a new table named TABLEX in the MySQL database
named ASTRO1 on a MySQL server on the local host. The password, if required, will be
prompted for, as would any of the other required parameters if they had not been given on the
command line. Any existing table in ASTRO1 with the name TABLEX is overwritten. The
only processing done here is by the explodeall command, which takes any columns which
have fixed-size array values and replaces them in the output with multiple scalar columns.

java -classpath stilts.jar:lib/drivers/mysql-connector-java.jar
-Djdbc.drivers=com.mysql.jdbc.Driver \
uk.ac.starlink.ttools.Stilts \
tpipe in=x.fits \

cmd=explodeall \
omode=out \
out="jdbc:mysql://localhost/ASTRO1?user=mbt#TABLEX"

This does exactly the same as the previous example, but achieves it in a slightly different way.
In the first place, java is invoked directly with the necessary flags rather than getting the
stilts script to do it. Note that you cannot use java's -jar flag in this case, because doing it
like that would not permit access to the additional classes that contain the JDBC driver. In the
second place we use omode=out rather than omode=tosql. For this we need to supply an out

value which encodes the information about the SQL connection and table in a special

SUN/256 203

URL-like format. As you can see, this is a bit arcane, which is why the omode=tosql mode can
be a help.

stilts tpipe USNOB.FITS cmd='every 1000000' omode=stats

Calculates statistics on a selection of the rows in a catalogue, and writes the result to the
terminal. In this example, every millionth row is sampled.

B.30 tskymatch2: Crossmatches 2 tables on sky position

tskymatch2 performs a crossmatch of two tables based on the proximity of sky positions. You
specify the columns or expressions giving right ascension and declination in degrees for each input
table, and a maximum permissible separation in arcseconds, and the resulting joined table is output.

If you omit expressions for the RA and Dec, an attempt is made to identify the columns to use using
column Unified Content Descriptors (UCDs) or names. First columns bearing appropriate UCD1 or
UCD1+ values (POS_EQ_RA, POS_EQ_RA_MAIN, pos.eq.ra or pos.eq.ra;meta.main and their
equivalents for declination) are sought. If these cannot be found, columns named something like
"RA" or "RA2000" are sought. If either is found, the column units are consulted and radian->degree
conversions are performed if necessary (degrees are assumed if no unit value is given). If nothing
likely can be found, then the command will fail with an error message. This search logic is intended
as a convenience only; it is somewhat ad hoc and subject to change. To make sure that the correct
angle values are being used, specify the ra and dec position parameters explicitly.

tskymatch2 is simply a cut-down version, provided for convenience, of the more general matching
task tmatch2. If you want more match options or otherwise more configurability, you can probably
find it by using tmatch2.

B.30.1 Usage

The usage of tskymatch2 is

stilts <stilts-flags> tskymatch2 ifmt1=<in-format> ifmt2=<in-format>
omode=<out-mode> <mode-args>
out=<out-table> ofmt=<out-format>
ra1=<expr> dec1=<expr> ra2=<expr>
dec2=<expr> error=<value/arcsec>
tuning=<healpix-k>
join=1and2|1or2|all1|all2|1not2|2not1|1xor2
find=all|best|best1|best2
[in1=]<table1> [in2=]<table2>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

dec1 = <expr>

Declination in degrees for the position of each row of table 1. This may simply be a column
name, or it may be an algebraic expression calculated from columns as explained in Section 9.
If left blank, an attempt is made to guess from UCDs, column names and unit annotations what
expression to use.

dec2 = <expr>

Declination in degrees for the position of each row of table 2. This may simply be a column
name, or it may be an algebraic expression calculated from columns as explained in Section 9.

SUN/256 204

If left blank, an attempt is made to guess from UCDs, column names and unit annotations what
expression to use.

error = <value/arcsec>

The maximum separation permitted between two objects for them to count as a match. Units
are arc seconds.

find = all|best|best1|best2

Determines what happens when a row in one table can be matched by more than one row in
the other table. The options are:

• all: All matches. Every match between the two tables is included in the result. Rows
from both of the input tables may appear multiple times in the result.

• best: Best match, symmetric. The best pairs are selected in a way which treats the two
tables symmetrically. Any input row which appears in one result pair is disqualified from
appearing in any other result pair, so each row from both input tables will appear in at
most one row in the result.

• best1: Best match for each Table 1 row. For each row in table 1, only the best match
from table 2 will appear in the result. Each row from table 1 will appear a maximum of
once in the result, but rows from table 2 may appear multiple times.

• best2: Best match for each Table 2 row. For each row in table 2, only the best match
from table 1 will appear in the result. Each row from table 2 will appear a maximum of
once in the result, but rows from table 1 may appear multiple times.

The differences between best, best1 and best2 are a bit subtle. In cases where it's obvious
which object in each table is the best match for which object in the other, choosing betwen
these options will not affect the result. However, in crowded fields (where the distance
between objects within one or both tables is typically similar to or smaller than the specified
match radius) it will make a difference. In this case one of the asymmetric options (best1 or
best2) is usually more appropriate than best, but you'll have to think about which of them
suits your requirements. The performance (time and memory usage) of the match may also
differ between these options, especially if one table is much bigger than the other.

[Default: best]

ifmt1 = <in-format>

Specifies the format of the first input table (one of the known formats listed in Section 5.2.1).
This flag can be used if you know what format your input table is in. If it has the special value
(auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

ifmt2 = <in-format>

Specifies the format of the second input table (one of the known formats listed in Section
5.2.1). This flag can be used if you know what format your input table is in. If it has the special
value (auto) (the default), then an attempt will be made to detect the format of the table
automatically. This cannot always be done correctly however, in which case the program will
exit with an error explaining which formats were attempted.

[Default: (auto)]

in1 = <table1>

The location of the first input table. This is usually a filename or URL, and may point to a file
compressed in one of the supported compression formats (Unix compress, gzip or bzip2). If it
is omitted, or equal to the special value "-", the input table will be read from standard input. In
this case the input format must be given explicitly using the ifmt1 parameter.

in2 = <table2>

The location of the second input table. This is usually a filename or URL, and may point to a

SUN/256 205

file compressed in one of the supported compression formats (Unix compress, gzip or bzip2).
If it is omitted, or equal to the special value "-", the input table will be read from standard
input. In this case the input format must be given explicitly using the ifmt2 parameter.

join = 1and2|1or2|all1|all2|1not2|2not1|1xor2

Determines which rows are included in the output table. The matching algorithm determines
which of the rows from the first table correspond to which rows from the second. This
parameter determines what to do with that information. Perhaps the most obvious thing is to
write out a table containing only rows which correspond to a row in both of the two input
tables. However, you may also want to see the unmatched rows from one or both input tables,
or rows present in one table but unmatched in the other, or other possibilities. The options are:

• 1and2: An output row for each row represented in both input tables (INNER JOIN)
• 1or2: An output row for each row represented in either or both of the input tables (FULL

OUTER JOIN)
• all1: An output row for each matched or unmatched row in table 1 (LEFT OUTER

JOIN)
• all2: An output row for each matched or unmatched row in table 2 (RIGHT OUTER

JOIN)
• 1not2: An output row only for rows which appear in the first table but are not matched in

the second table
• 2not1: An output row only for rows which appear in the second table but are not matched

in the first table
• 1xor2: An output row only for rows represented in one of the input tables but not the

other one

[Default: 1and2]

ofmt = <out-format>

Specifies the format in which the output table will be written (one of the ones in Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(auto)" (the default), then the output filename will be examined to try to guess what
sort of file is required usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if omode has its default value of "out".

[Default: (auto)]

omode = <out-mode> <mode-args>

The mode in which the result table will be output. The default mode is out, which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
ofmt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode-args>) are required to determine the exact behaviour.

Possible values are

• out

• meta

• stats

• count

• cgi

• discard

• topcat

• samp

• plastic

• tosql

SUN/256 206

Use the help=omode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table>

The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if omode has its default value of "out".

[Default: -]

ra1 = <expr>

Right ascension in degrees for the position of each row of table 1. This may simply be a
column name, or it may be an algebraic expression calculated from columns as explained in
Section 9. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

ra2 = <expr>

Right ascension in degrees for the position of each row of table 2. This may simply be a
column name, or it may be an algebraic expression calculated from columns as explained in
Section 9. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

tuning = <healpix-k>

Tuning parameter that controls the pixel size used when binning the rows. The legal range is
from 0 (corresponding to pixel size of about 60 degrees) to 20 (about 0.2 arcsec). The value of
this parameter will not affect the result but may affect the performance in terms of CPU and
memory resources required. A default value will be chosen based on the size of the error

parameter, but it may be possible to improve performance by adjusting the default value. The
value used can be seen by examining the progress output. If your match is taking a long time
or is failing from lack of memory it may be worth trying different values for this parameter.

B.30.2 Examples

Here are some examples of using tmatch2

stilts tskymatch2 in1=obs_v.xml in2=obs_i.xml out=obs_iv.xml \
ra1=OBS_RA dec1=OBS_DEC ra2=OBS_RA dec2=OBS_DEC error=2

Takes two input catalogues (VOTables), one with observations in the V band and the other in
the I band, and performs a match to find objects within 2 arcseconds of each other. The result
is a new VOTable containing only rows where a match was found.

stilts tskymatch2 in1=obs_v.xml in2=obs_i.xml out=obs_iv.xml \
error=2

This is the same as the previous example but without explicit specification of the sky position
columns in either table. It will work only if those columns are identified with appropriate
UCDs, for instance pos.eq.ra;meta.main and pos.eq.dec:meta.main. If no suitable UCDs
are in place this invocation will fail with an error.

stilts tskymatch2 in1=virgo1.txt ifmt1=ascii in2=mgc.fits \
ra1='radiansToDegrees(raRad)' dec1='radiansToDegrees(deRad)' \
ra2=MGC_ALPHA_J2000 dec2=MGC_DELTA_J2000 \
error=10 join=2not1 omode=count

Object positions in the text file virgo1.txt are compared to those in the FITS file mgc.fits. The
angles have been recorded in the text file in radians, so they are converted to degrees here
before use. Use of the join=2not1 parameter causes the command to identify all the objects in

SUN/256 207

the first list which do not have counterparts within 10 arcsec in the second list. The number of
such objects found is simply output to the terminal.

B.31 votcopy: Transforms between VOTable encodings

The VOTable standard provides for three basic encodings of the actual data within each table:
TABLEDATA, BINARY and FITS. TABLEDATA is a pure-XML encoding, which is relatively
easy for humans to read and write. However, it is verbose and not very efficient for transmission
and processing, for which reason the more compact BINARY format has been defined. FITS format
shares the advantages of BINARY, but is more likely to be used where a VOTable is providing
metadata 'decoration' for an existing FITS table. In addition, the BINARY and FITS encodings may
carry their data either inline (as the base64-encoded text content of a STREAM element) or externally
(referenced by a STREAM element's href attribute).

These different formats have their different advantages and disadvantages. Since, to some extent,
programmers are humans too, much existing VOTable software deals in TABLEDATA format even
though it may not be the most efficient way to proceed. Conversely, you might wish to examine the
contents of a BINARY-encoded table without use of any software more specialised than a text
editor. So there are times when it is desirable to convert from one of these encodings to another.

votcopy is a tool which translates between these encodings while making a minimum of other
changes to the VOTable document. The processing may result in some changes to lexical details
such as whitespace in start tags, but the element structure is not modified. Unlike tpipe it does not
impose STIL's model of what constitutes a table on the data between reading it in and writing it out,
so subtleties dependent on the exact structure of the VOTable document will not be mangled. The
only important changes should be the contents of DATA elements in the document.

B.31.1 Usage

The usage of votcopy is

stilts <stilts-flags> votcopy version=1.0|1.1|1.2|1.3
charset=<xml-encoding> cache=true|false
href=true|false nomagic=true|false
base=<location>
[in=]<location> [out=]<location>
[format=]TABLEDATA|BINARY|BINARY2|FITS

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

base = <location>

Determines the name of external output files written when the href flag is true. Normally these
are given names based on the name of the output file. But if this flag is given, the names will
be based on the <location> string. This flag is compulsory if href is true and out=- (output is
to standard out), since in this case there is no default base name to use.

cache = true|false

Determines whether the input tables are read into a cache prior to being written out. The
default is selected automatically depending on the input table; so you should normally leave
this flag alone.

charset = <xml-encoding>

Selects the Unicode encoding used for the output XML. The available options and default are

SUN/256 208

dependent on your JVM, but the default probably corresponds to UTF-8. Use help=charset

for a full listing.

format = TABLEDATA|BINARY|BINARY2|FITS

Determines the encoding format of the table data in the output document. If null is selected,
then the tables will be data-less (will contain no DATA element), leaving only the document
structure. Data-less tables are legal VOTable elements.

The BINARY2 format is only available for version=1.3

[Default: tabledata]

href = true|false

In the case of BINARY or FITS encoding, this determines whether the STREAM elements
output will contain their data inline or externally. If set false, the output document will be
self-contained, with STREAM data inline as base64-encoded characters. If true, then for each
TABLE in the document the binary data will be written to a separate file and referenced by an
href attribute on the corresponding STREAM element. The name of these files is usually
determined by the name of the main output file; but see also the base flag.

in = <location>

Location of the input VOTable. May be a URL, filename, or "-" to indicate standard input. The
input table may be compressed using one of the known compression formats (Unix compress,
gzip or bzip2).

[Default: -]

nomagic = true|false

Eliminate the null attributes of VALUES elements where they are no longer required. In
VOTable versions <=1.2, the only way to specify null values for integer-type scalar columns
was to use the null attribute of the VALUES element to indicate an in-band magic value
representing null. From VOTable v1.3, null values can be represented using empty <TD>

elements or flagged specially in BINARY2 streams. In these cases, it is recommended (though
not required) not to use the VALUES/null mechanism.

If this parameter is set true, then any VALUES/null attributes will be removed in VOTable 1.3
BINARY2 or TABLEDATA output. If this results in an empty VALUES element, it too will be
removed.

This parameter is ignored if the output VOTable version is lower than 1.3 or if
format=BINARY/FITS.

[Default: true]

out = <location>

Location of the output VOTable. May be a filename or "-" to indicate standard output.

[Default: -]

version = 1.0|1.1|1.2|1.3

Determines the version of the VOTable standard to which the output will conform. If null (the
default), the output table will have the same version as the input table.

B.31.2 Examples

Normal use of votcopy is pretty straightforward. We give here a couple of examples of its input and
output.

Here is an example VOTable document, cat.vot:

<VOTABLE>

SUN/256 209

<RESOURCE>

<TABLE name="Authors">
<FIELD name="AuthorName" datatype="char" arraysize="*"/>
<DATA>
<TABLEDATA>
<TR><TD>Charles Messier</TD></TR>
<TR><TD>Mark Taylor</TD></TR>
</TABLEDATA>
</DATA>
</TABLE>

<RESOURCE>
<COOSYS equinox="J2000.0" epoch="J2000.0" system="eq_FK4"/>
<TABLE name="Messier Objects">
<FIELD name="Identifier" datatype="char" arraysize="10"/>
<FIELD name="RA" datatype="double" units="degrees"/>
<FIELD name="Dec" datatype="double" units="degrees"/>
<DATA>
<TABLEDATA>
<TR> <TD>M51</TD> <TD>202.43</TD> <TD>47.22</TD> </TR>
<TR> <TD>M97</TD> <TD>168.63</TD> <TD>55.03</TD> </TR>
</TABLEDATA>
</DATA>
</TABLE>
</RESOURCE>

</RESOURCE>
</VOTABLE>

Note that it contains more structure than just a flat table: there are two TABLE elements, the
RESOURCE element of the second one being nested in the RESOURCE of the first. Processing this
document using a generic table tool such as tpipe or tcopy would lose this structure.

To convert the data encoding to BINARY format, we simply execute

stilts votcopy format=binary cat.vot

and the output is

<?xml version="1.0"?>
<VOTABLE>
<RESOURCE>

<TABLE name="Authors">
<FIELD name="AuthorName" datatype="char" arraysize="*"/>
<DATA>
<BINARY>
<STREAM encoding='base64'>
AAAAD0NoYXJsZXMgTWVzc2llcgAAAAtNYXJrIFRheWxvcg==
</STREAM>
</BINARY>
</DATA>
</TABLE>

<RESOURCE>
<COOSYS equinox="J2000.0" epoch="J2000.0" system="eq_FK4"/>
<TABLE name="Messier Objects">
<FIELD name="Identifier" datatype="char" arraysize="10"/>
<FIELD name="RA" datatype="double" units="degrees"/>
<FIELD name="Dec" datatype="double" units="degrees"/>
<DATA>
<BINARY>
<STREAM encoding='base64'>
TTUxAAAAAAAAAEBpTcKPXCj2QEecKPXCj1xNOTcAAAAAAAAAQGUUKPXCj1xAS4PX
Cj1wpA==
</STREAM>
</BINARY>
</DATA>
</TABLE>
</RESOURCE>

</RESOURCE>
</VOTABLE>

SUN/256 210

Note that both tables in the document have been translated to BINARY format. The basic structure
of the document is unchanged: the only differences are within the DATA elements. If we ran

stilts votcopy format=tabledata

on either this output or the original input then the output would be identical (apart perhaps from
whitespace) to the input table, since the data are originally in TABLEDATA format.

To generate a VOTable document with the data in external files, the href parameter is used. We
will output in FITS format this time. Executing:

stilts votcopy format=fits href=true cat.vot fcat.vot

writes the following to the file fcat.vot:

...
<DATA>
<FITS>
<STREAM href="fcat-1.fits"/>
</FITS>
</DATA>
...
<DATA>
<FITS>
<STREAM href="fcat-2.fits"/>
</FITS>
</DATA>
...

(the unchanged parts of the document have been skipped here for brevity). The actual data are
written in two additional files in the same directory as the output file, fcat-1.fits and
fcat-2.fits. These filenames are based on the main output filename, but can be altered using the
base flag if required. Note this has also given you FITS binary table versions of all the tables in the
input VOTable document, which can be operated on by normal FITS-aware software quite
separately from the VOTable if required.

B.32 votlint: Validates VOTable documents

The VOTable standard, while not hugely complicated, has a number of subtleties and it's not
difficult to produce VOTable documents which violate it in various ways. In fact it's probably true
to say that most VOTable documents out there are not strictly legal. In some cases the errors are
small and a parser is likely to process the document without noticing the trouble. In other cases, the
errors are so serious that it's hard for any software to make sense of it. In many cases in between,
different software will react in different ways, in the worst case appearing to parse a VOTable but in
fact understanding the wrong data.

votlint is a program which can check a VOTable document and spot places where it does not
conform to the VOTable standard, or places which look like they may not mean what the author
intended. It is meant for use in two main scenarios:

1. For authors of VOTables and VOTable-producing software, to check that the documents they
produce are legal and problem-free.

2. For users of VOTables (including authors of VOTable-processing software) who are having
problems with one and want to know whether it is the data or the software at fault.

Validating a VOTable document against the VOTable schema or DTD of course goes a long way
towards checking a VOTable document for errors (though it's clear that many VOTable authors
don't even go this far), but it by no means does the whole job, simply because the schema/DTD
specification languages don't have the facilities to understand the data structure of a VOTable
document. For instance the VOTable schema will allow any plain text content in a TD element, but

SUN/256 211

whether this makes sense in a VOTable depends on the datatype attribute of the corresponding
FIELD element. There are many other examples. votlint tackles this by parsing the VOTable
document in a way which understands its structure and assessing the content as critically as it can.
For any incorrect or questionable content it finds, it will output a short message describing the
problem and giving its location in the document. What you do with this information is then up to
you.

Using votlint is very straightforward. The votable argument gives the location (filename or URL)
of a VOTable document. Otherwise, the document will be read from standard input. Error and
warning messages will be written on standard error. Each message is prefixed with the location at
which the error was found (if possible the line and column are shown, though this is dependent on
your JVM's default XML parser). The processing is SAX-based, so arbitrarily long tables can be
processed without heavy memory use.

votlint can't guarantee to pick up every possible error in a VOTable document, but it ought to pick
up many of the most serious errors that are commonly made in authoring VOTables.

Note: votlint's handling of XML namespaces seems to be somewhat dependent on the XML
parser in use. As far as I can see, Crimson (the default in many JREs) works for any namespace
arrangements, but Xerces seems to have problems when validating documents which use
namespace prefixes. Not sure about other parsers. This probably won't cause you trouble, but if it
does you may need to set validate=false to work around it. Contact this author if this seems to be
a serious issue for you.

B.32.1 Usage

The usage of votlint is

stilts <stilts-flags> votlint validate=true|false version=1.0|1.1|1.2|1.3
out=<location>
[votable=]<location>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

out = <location>

Destination file for output messages. May be a filename or "-" to indicate standard output.

[Default: -]

validate = true|false

Whether to validate the input document aganist the VOTable DTD. If true (the default), then as
well as votlint's own checks, it is validated against an appropriate version of the VOTable
DTD which picks up such things as the presence of unknown elements and attributes, elements
in the wrong place, and so on. Sometimes however, particularly when XML namespaces are
involved, the validator can get confused and may produce a lot of spurious errors. Setting this
flag false prevents this validation step so that only votlint's own checks are performed. In this
case many violations of the VOTable standard concerning document structure will go
unnoticed.

[Default: true]

version = 1.0|1.1|1.2|1.3

Selects the version of the VOTable standard which the input table is supposed to exemplify.
The version may also be specified within the document using the "version" attribute of the

SUN/256 212

document's VOTABLE element; if it is and it conflicts with the value specified by this flag, a
warning is issued.

If no value is provided for this parameter (the default), the version will be determined from the
VOTable itself.

votable = <location>

Location of the VOTable to be checked. This may be a filename, URL or "-" (the default), to
indicate standard input. The input may be compressed using one of the known compression
formats (Unix compress, gzip or bzip2).

[Default: -]

B.32.2 Items Checked

Votlint checks that the XML input is well-formed, and, unless the valid=false parameter is
supplied, that it validates against the 1.0 DTD or 1.1, 1.2 or 1.3 schema as appropriate. Some of the
validity checks are also done by votlint internally, so that some validity-type errors may give rise
to more than one warning. In general, the program errs on the side of verbosity.

In addition to these checks, the following checks are carried out, and lead to ERROR reports if
violations are found:

• TD contents incompatible datatype/arraysize attributes declared in FIELD

• BINARY/BINARY2 data streams which don't match metadata declared in FIELD

• PARAM values incompatible with declared datatype/arraysize
• Meaningless arraysize declarations
• Array-valued TD elements with the wrong number of elements
• Array-valued PARAM values with the wrong number of elements
• nrows attribute on TABLE element different from the number of rows actually in the table
• VOTABLE version attribute is unknown
• ref attributes without matching ID elements elsewhere in the document
• Same ID attribute value on multiple elements.

Additionally, the following conditions, which are not actually forbidden by the VOTable standard,
will generate WARNING reports. Some of these may result from harmless constructions, but it is
wise at least to take a look at the input which caused them:

• Wrong number of TD elements in row of TABLEDATA table
• Mismatch between VOTable and FITS column metadata for FITS data encoding
• TABLE with no FIELD elements
• Use of deprecated attributes
• FIELD or PARAM elements with datatype of either char or unicodeChar and undeclared

arraysize - this is a common error which can result in ignoring all but the first character in TD

elements from a column
• ref attributes which reference other elements by ID where the reference makes no, or

questionable sense (e.g. FIELDref references FIELD in a different table)
• Multiple sibling elements (such as FIELDs) with the same name attributes

B.32.3 Examples

Here is a brief example of running votlint against a (very short) imperfect VOTable document. If
the document looks like this:

<VOTABLE version="1.1">
<RESOURCE>

SUN/256 213

<TABLE nrows="2">
<FIELD name="Identifier" datatype="char"/>
<FIELD name="RA" datatype="double"/>
<FIELD name="Dec" datatype="double"/>
<DESCRIPTION>A very small table</DESCRIPTION>
<DATA>
<TABLEDATA>
<TR>
<TD>Fomalhaut</TD>
<TD>344.48</TD>
<TD>-29.618</TD>
<TD>HD 216956</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>

</RESOURCE>
</VOTABLE>

then the output of a votlint run looks like this:

INFO (l.4): No arraysize for character, FIELD implies single character
ERROR (l.7): Element "TABLE" does not allow "DESCRIPTION" here.
WARNING (l.11): Characters after first in char scalar ignored (missing arraysize?)
WARNING (l.15): Wrong number of TDs in row (expecting 3 found 4)
ERROR (l.18): Row count (1) not equal to nrows attribute (2)

(Note that the details of the reports will vary according to the XML parser/validator that forms part
of your Java installation.)

Note also that the warning at line 11 has resulted from the same error as the one at line 4 - because
the FIELD element has no arraysize attribute, arraysize="1" (single character) is assumed, while
the author almost certainly intended arraysize="*" (unknown length string).

By examining these warnings you can see what needs to be done to fix this table up. Here is what it
should look like:

<VOTABLE version="1.1">
<RESOURCE>
<TABLE nrows="1"> <!-- change row count -->
<DESCRIPTION>A very small table</DESCRIPTION> <!-- move DESCRIPTION -->
<FIELD name="Identifier" datatype="char"

arraysize="*"/> <!-- add arraysize -->
<FIELD name="RA" datatype="double"/>
<FIELD name="Dec" datatype="double"/>
<DATA>
<TABLEDATA>
<TR>
<TD>Fomalhaut</TD>
<TD>344.48</TD>
<TD>-29.618</TD>

</TR> <!-- remove extra TD -->
</TABLEDATA>

</DATA>
</TABLE>

</RESOURCE>
</VOTABLE>

When fed this version, votlint gives no warnings.

SUN/256 214

C Release Notes

This is STILTS, Starlink Tables Infrastructure Library Tool Set. It is a collection of non-GUI
utilites for general purpose table manipulation.

Author
Mark Taylor (Bristol University)

Email
m.b.taylor@bristol.ac.uk

WWW
http://www.starlink.ac.uk/stilts/

User comments, suggestions, requests and bug reports to the above address are welcomed.

C.1 Acknowledgements

The initial development of STILTS was done under the UK's Starlink project (1980-2005, R.I.P.).
Since then it has been supported by grant PP/D002486/1 from the UK's Particle Physics and
Astronomy Research Council, the VOTech project (from EU FP6), the AstroGrid project (from
PPARC/STFC), the AIDA project (from EU FP7), grant ST/H008470/1 from the UK's Science and
Technology Facilities Council (STFC), and the GAVO project (BMBF Bewilligungsnummer
05A08VHA), and grants ST/H008470/1, ST/I00176X/1 and ST/J001414/1 from STFC. All of this
support is gratefully acknowledged.

Apart from the excellent Java 2 Standard Edition itself, the following external libraries provide
important parts of STILTS's functionality:

• JEL (GNU) for algebraic expression evaluation
• PixTools (Fermilab EAG) for HEALPix-based celestial sphere row matching
• iText (1T3XT BVBA) for PDF output
• EPSGraphics2D (Jibble) for encapsulated postscript output
• MOC (CDS) for Multi-Order Coverage map manipulation
• ADQL (CDS) for ADQL parsing in TAP query preparation
• nom.tam.fits (NASA) for parts of FITS I/O
• IVOARegistry (NVO) for parts of IVOA registry access
• GifEncoder (Acme) for GIF output
• HTM (Sloan Digital Sky Survey) for HTM-based celestial sphere row matching (now

deprecated within STILTS)

Thanks in particular to Nickolai Kouropatkine and Chris Stoughton of Fermilab for writing the
PixTools specially for use in STIL.

Many people have contributed ideas and advice to the development of STILTS and its related
products. I can't list all of them here, but my thanks are especially due to the following:

• Malcolm Currie (Starlink, RAL)
• Clive Davenhall (Royal Observatory Edinburgh)
• Peter Draper (Starlink, Durham)
• David Giaretta (Starlink, RAL)
• Clive Page (AstroGrid, Leicester)

If you use this software in published work, the following citation would be appreciated:

2006ASPC..351..666T: M. B. Taylor, "STILTS - A Package for Command-Line Processing
of Tabular Data", in Astronomical Data Analysis Software and Systems XV, eds. C. Gabriel
et al., ASP Conf. Ser. 351, p. 666 (2006)

SUN/256 215

C.2 Version History

Releases to date have been as follows:

Version 0.1b (29 April 2005)
First public release

Version 0.2b (30 June 2005)

• Added Times func class for MJD-ISO8601 time conversions.
• Fixed bug when doing NULL_ test expressions on first column in table.

Version 1.0b (30 September 2005)
This is the first non-experimental release of STILTS, and it incorporates major changes and
backward incompatibilities since version 0.2b.

Parameter system
The parameter system has undergone a complete rewrite; there is now only a single
command "stilts", invoked using the stilts script or the stilts.jar jar file, and the
various tasks are named as subsequent arguments on the command line. Command
arguments are supplied after that. The new invocation syntax is described in detail
elsewhere in this document. As well as invocation features such as improved on-line help,
optional prompting, parameter defaulting, and more uniform access to common features,
this will make it more straightforward to wrap these tasks for use in non-command-line
environments, such as behind a SOAP or CORBA interface, or in a CEA-like execution
environment.

Crossmatching
A new command tmatch2 has been introduced. This provides flexible and efficient
crossmatching between two input tables. Future releases will provide commands for
intra-table and multi-table matching.

Concatentation
A new command tcat has been introduced, which allows two tables to be glued together
top-to-bottom. This is currently working but very rudimentary - improvements will be
forthcoming in future releases.

Calculator
A new utility command calc has been introduced, which performs one-line expression
evaluations from the command line.

Pipeline filters
The following new filter commands for use in tpipe and other commands have been
introduced:

• addskycoords: calculates new celestial coordinate pair from existing ones (FK4,
FK5, ecliptic, galactic, supergalactic)

• replacecol: replaces column data, using existing metadata
• badval: replaces given 'magic' value with null
• replaceval: replaces given 'magic' value with any specified value
• tablename: edits table name
• explodecols and explodecols commands replace explode

The new stream parameter of tpipe now allows you to write filter commands in an
external file, to facilitate more manageable command lines.

Wildarding for column specification is now allowed for some filter commands.

Algebraic functions

SUN/256 216

• New functions for converting time values between different coordinate systems
(Modified Julian Date, ISO-8601, Julian Epoch and Besselian Epoch).

• New RANDOM special function.

Documentation
SUN/256 has undergone many changes. Much of the tool documentation is now
automatically generated from the code itself, which goes a long way to ensuring that the
documentation is correct with respect to the current state of the code.

Version 1.0-1b (7 October 2005)
Fixed jar file manifest bug which prevented working on Java 1.5

Version 1.1 (10 May 2006)
A number of new features and capabilities have been introduced:

tcube Command
The new tcube (Appendix B.21) command calculates N-dimensional histograms (density
maps) from N columns of an input table and writes the result to a FITS file.

Processing Filters
The following new filters have been added:

• stats filter provides the same information as the old stats output mode, but allows
much more flexible use of the results. It can also calculate many new quantities,
including quantiles, skew and kurtosis.

• meta filter provides the same information as the old meta output mode, but allows
much more flexible use of the results.

• assert filter provides in-pipeline logical assertions.
• uniq filter collapses multiple adjacent identical or similar rows.
• sorthead filter provides a (usually) more efficient method of doing what you could

previously do by combining sort and head filters.
• colmeta filter adds/modifies metadata for selected columns.
• check filter checks table in stream - for debugging purposes only.

Additionally usage of the sort filter has been changed so that it can now do everything
that sortexpr used to be able to do; sortexpr is now withdrawn.

Output Modes
The following new output modes have been introduced:

• plastic mode broadcasts the table to one or all registered PLASTIC listeners.
• cgi mode writes the table to standard output in a form suitable for output from a CGI

script.
• discard mode throws away the table.

and usage of the following has been modified:

• topcat mode now attempts to use PLASTIC (amongst other methods) to contact
TOPCAT.

• stats and meta modes are mildly deprecated in favour of the corresponding new
filters (see above).

Other new features

• New IPAC table format input handler added.
• New csv-noheader format variant output handler added.
• roundDecimal and formatDecimal functions introduced for more control over visual

appearance of numeric values.
• Experimental facilities for automatically generating a CEA application description

file.

SUN/256 217

Bug fixes and minor improvements

• Now copes with 'K'-format FITS binary table columns (64-bit integers).
• Improved, though still imperfect, retention of table-wide metadata in VOTables.
• Distinctions between null and false values in boolean columns are handled more

carefully for FITS and VOTable files.
• Efficiency improvement when writing FITS-plus format (now only requires a

maximum of two passes rather than three of the input rows).
• Added the mark.workaround system property which can optionally work around a

bug in some input streams ("Resetting to invalid mark" errors).
• Fixed a bug in Cartesian matching which failed to match if the required error in any

dimension was zero.
• Fixed erroneous reports about unknown ucd and utype attributes of TABLE element

in votlint.
• When joining tables, column name comparison to determine whether deduplication

is required is now case-insensitive.
• Error message improved when no automatic format detection is attempted for

streamed tables.
• Setting istream=true is now less likely to cause a "Can't re-read stream" error.

Version 1.2 (7 July 2006)

Column-oriented Storage
New features for permitting column-oriented storage (colfits format, new
startable.storage policy "sideways") have been introduced. These can provide
considerable efficiency improvements for certain tasks when working with very large
(and especially wide) tables.

New VO commands
Added two new commands for querying Virtual Observatory services:

• multicone - Makes multiple cone search queries to the same service
• regquery - Queries the VO registry

These tasks are experimental and may be modified or renamed in future releases.

Other items

• transpose filter added.
• Added flux conversion functions (Jansky<->magnitude).
• ISO-8601 strings now permit times of 24:00:00 as they should.

Version 1.2-1 (3 August 2006)

• Tab-Separated Table (TST) format now supported for reading and writing.
• New setparam and clearparams filters.
• Added ICRS coordinate system for addskycoords.
• TUCDnn header cards now used in FITS files to transmit UCDs (non-standard

mechanism).
• Efficiency improvements for column-oriented access.

Version 1.3 (5 October 2006)

Table Concatenation
The old tcat command has been replaced by more capable tcat and tcatn commands.
Between them these provide concatenation of an unlimited number of homogeneous or
heterogeneous input tables. Additional columns may be added to indicate which of the
input tables given output rows originated from.

SUN/256 218

Parameter value indirection
Certain parameters (in in tcat, cmd and friends) may now be specified in the form
"@filename". This indicates that the value for the parameter is to be obtained by reading
it from the named file. This is useful if a very long value is required for the parameter in
question. The script parameter of tpipe has therefore been withdrawn, since it did just
the same thing.

MySpace access
Direct access to the MySpace virtual file system is now provided by use of ivo:- or
myspace:-type URLs.

Conversion functions

• Time conversion functions between MJD and Decimal Year have been added
(Section 9.5.6).

• toHex and fromHex numeric conversion functions have been added (Section 9.5.3).

Documentation improvements

• The HTML version of SUN/256 now uses CSS to provide better highlighting of
commands etc.

• The Output Modes and Processing Filter sections are now split into subsections to
make the table of contents clearer.

• The Command Reference section now has only one level of subsection listed in the
table of contents to make it clearer.

Other new features and improvements

• Added -J flag to stilts script for passing flags directly to Java.
• Added new out parameter to votlint.
• Added -ifndim and -ifshape flags to explodeall filter.
• The exact match mode in tmatch2 now copes with array-valued columns.
• Added force parameter to multicone task as a workaround for some broken

services.
• Added Sample (as opposed to Population) Standard Deviation/Variance calculation

options to the stats filter.
• Improved CEA description file output - now contains details of all tasks rather than

just a few, as well as various improvements in documentation etc.

Bug fixes

• Fixed erroneous complaints from votlint about utype attribute on RESOURCE
elements.

• Fixed a couple of minor crossmatching bugs (which wouldn't have affected results).

Version 1.3-1 (Starlink Hokulei release)

• New command tjoin introduced.
• Output to MySpace can now be streamed, if running under J2SE1.5 or later.
• Slight changes to parameters for votlint and votcopy.
• Fixed bug in handling of single quotes in FITS file metadata.
• Added -bench flag to stilts command.
• Various scalability improvements for use with very large (Tb?) files.
• Improved efficiency for text and ascii output formats (now one-pass not two-pass).
• Improved CEA app-description file, including especially option lists for things like input

and output formats.
• Added README.cea file to distribution.
• Fixed problem which could mis-report VOTable out of memory errors as Broken Pipe.

SUN/256 219

• Added Vega<->AB magnitude conversion constants to Fluxes functions.
• Added duptag parameters to tmatch2 task for customised renaming of columns with

duplicated names.
• Added hyperbolic trig functions to Maths class (sinh, cosh, tanh and inverses).
• Added cosmology distance calculations in class Distances.
• Added funcs task, a browser for expression language function documentation.
• Added -checkversion to list of stilts flags.

Version 1.3-2 (6 July 2007)

• Added optional table parameter to calc command (for access to table parameters).
• Can use table parameter names in expressions using param$ notation (Section 9.2).
• Can reference columns/parameters by UCD by using ucd$ notation in expressions

(Section 9.1) and as column identifiers (Section 6.2).
• Improved deduplication of column names when joining tables.
• Fix error in output of FITS table TNULL n header cards - write them as numeric not string

values.
• Improve error message for broken CSV files.
• Modified JDBC handling so that MySQL and PostgreSQL do not run out of heap memory

when streaming large datasets for input. Think I've done the same for SQL Server, but
this is not tested.

• Improve error reporting in the presence of a deficient JVM (such as GNU gcj).
• Add locale-specific formatDecimalLocal functions in class Formats.
• Add fluxToLuminosity and luminosityToFlux functions in class Fluxes.
• Fix bug which was causing NullPointerExceptions in the transpose filter.

Version 1.3-3 (4 Sep 2007)

• Experimental, and currently undocumented, sqlcone task introduced, along with some
classes in package uk.ac.starlink.ttools.cone designed for library use by AstroGrid
DSA code.

• CEA description of tmatch2 params parameter now has minoccurs=0, since that can be
true for exact matches.

Version 1.3-4 (10 Sep 2007)

• Fixed VotCopy bug.

Version 1.3-5 (30 Oct 2007)

• Added -stdout and -stderr flags to stilts command.
• Some bugs fixed in generation of CEA app-description.xml file.
• Documentation provided for sqlcone command.
• Fixed error in fluxToLuminosity function.

Version 1.4 (6 December 2007)

Table joins
This version provides more cross matching functionality. Added to the existing tmatch2

command are new tasks:

• tskymatch2: stripped down version of tmatch2 for ease of use when matching with
sky coordinates.

• tmatch1: internal matcher, finds groups of objects within a table.
• tmatchn: finds group or multiple-pair matches between multiple (>2) tables.

Two tasks have been renamed for improved clarity and consistency:

• multicone is now named coneskymatch

SUN/256 220

• sqlcone is now named sqlskymatch

There has also been some enhancement and rationalisation of parameters for all table join
tools (tmatch* as well as tjoin, coneskymatch and sqlskymatch):

• All table join commands now use similar fixcols and suffix* parameters to control
renaming of duplicated columns in output tables (note this replaces the old duptag*

parameters in tmatch2).
• Crossmatching tasks have a new progress parameter which allows you to configure

whether progress is reported to the console.
• The copycols parameter of coneskymatch and sqlskymatch now defaults to "*"

(include all columns from input table in the output).

Section 7 of the manual has been somewhat rearranged and improved.

Other enhancements

• FITS reader now imports table HDU header cards as table parameters.
• CeaWriter can now output CEA service definition XML config file as well as

app-description file (experimental - may be withdrawn).

Bug fixes

• Embedded spaces in output ASCII format table column names are now substituted
with underscores.

• Fix a bug which caused an infinite number of dots to be printed when attempting a
crossmatch with an empty input table.

• Corrected votlint handling of TABLEDATA-type multi-dimensional
char/unicodeChar arrays. These are now split up into strings by counting characters
rather than using whitespace delimiters. I think it's doing the right thing now.

Version 1.4-1 (28 January 2008)

New RDBMS-related features

• New command sqlclient, which is a general JDBC-based SQL command-line
client.

• New command sqlupdate, which allows updates to existing rows in SQL tables.
• Some changes to tosql output mode:

• choice of options for how to write to the database output table, controlled by
new associated parameter write (can be create, dropcreate or append)

• associated parameter newtable renamed dbtable

• associated parameter database renamed db for consistency with other
commands

Local and service-based matching command enhancements

• New parameter scorecol added to tmatch2, coneskymatch and sqlskymatch

commands, which controls adding a new column to match output tables containing a
goodness-of-match value.

• New parameter parallel added to coneskymatch task which allows multiple cone
searches to be carried out in parallel.

• New parameter erract added to coneskymatch which controls response to isolated
failures in individual cone search queries.

General improvements

• Improved error reporting (reasons for errors are now reported even without the

SUN/256 221

-debug flag).
• Add new help option help='*' which prints help for all parameters of a task at once.
• Added (mostly undocumented) +verbose flag for reducing verbosity level.
• Minor improvements to CEA app-description.
• Downgraded from WARNING to INFO log messages about the (extremely

common) VOTable syntax error of omitting a FIELD/PARAM element's datatype

attribute.

Version 1.4-2 (26 March 2008)

Minor enhancements:

• Add progress parameter to tmatchn.
• Add emptyok parameter to coneskymatch.

Bugfixes:

• Fixed pair matching performance bug (slower if tables were not given in the right
order) introduced at v1.4.

• Fixed null handling error in calc task.
• Fixed error in stats filter cardinality value calculation.
• Fixed minor bugs in suffix addition for matching commands fixcols.
• Removed unformatted XML output in stats filter usage message.
• Try to avoid exponential format in cone search URLs (some endpoints seem to

require fixed point format).
• Minor CEA fixes.

Version 2.0b (23 October 2008)
This version contains two new major items, plotting and server mode. Both work, but are
missing desirable features and have not had extensive testing in the field, so should be
considered experimental at this stage.

Plotting
Two table plotting commands are now provided:

• plot2d: 2D Scatter Plot
• plot3d: 3D Scatter Plot
• plothist: Histogram

See also the new Plotting (Section 8) section in the manual.

Server/Servlet Mode
A new command server is provided which allows STILTS commands to be executed via
HTTP. One purpose of this is to facilitate server-side use of the plotting commands
co-located with data to generate on-the-fly graphical summaries of server-held datasets.

Smaller enhancements and bugfixes

• Efficiency improvements (~25%? in both CPU time and memory usage) for
HEALPix-based sky crossmatching (thanks to Nikolay Kouropatkine at Fermilab for
a new version of the PixTools library).

• New class Arrays added to algebraic functions.
• New Appendix Commands by Category (Appendix A) added to manual.
• Add minReal and maxReal functions (max/min ignoring blank values) in class

Arithmetic.
• Sexagesimal field identification for ASCII input files is less stringent (now permits

minutes or seconds equal to 60).
• Minor CEA fixes.
• HEALPix bug fix (PixTools bug fix update).

SUN/256 222

• Fix bug in use of tcat's loccol parameter.

Version 2.0-1 (23 December 2008)

• Can reference columns/parameters by Utype by using utype$ notation in expressions
(Section 9.1) and as column identifiers (Section 6.2).

• Non-alphanumeric column names may now be used for algebraic expressions in the
special case that the expression is just the value of a single column.

• regquery command has changed in implementation, data access, and output format. It
now queries VOResource1.0 registries rather than the very out of date registry protocol
which was used in earlier versions.

Version 2.0-2 (9 January 2009)

• Added new samp output mode which passes the generated table to clients using the
SAMP protocol.

• Updated the topcat output mode to use SAMP as one way of communicating with a
running TOPCAT.

• -version flag now reports starjava subversion revision as well as other items.

Version 2.0-3 (27 March 2009)

• Fits BINTABLE TZERO/TSCAL value reading improvements:

• Columns with integer TZERO values now read as integers rather than floating point
values where possible. This includes unsigned longs ('K'), which were previously
represented as doubles with lost precision. Unsigned longs which are too large
however (>263) are read as nulls.

• Byte-valued columns can now be written out by fits-basic output handler as
signed byte values (TFORM=B,TZERO=-128) rather than signed shorts
(TFORM=I).

• More comprehensive testing.
• Fixed bug in calculating value scaled double ('D') values.
• Fixed bug in typing value for scaled float ('E') arrays.
• Fixed bug which caused registry queries (regquery) to fail for Java 1.6.

• Fix minor bugs in detail of votlint's validation tests (VOTABLE element content model,
INFO and PARAM and FIELD required attributes).

• Report application name and version in User-Agent header of outgoing HTTP requests.
• The fixed length Substring Array Convention for string arrays (TFORMnn=rAw) is now

understood for FITS binary tables.
• Minor SAMP bugs fixed (JSAMP upgraded to 0.3-1).

Version 2.0-4 (17 July 2009)

• Work around J2SE mark/reset bug when loading table direct from URL.
• Produce null rather than nonsense results from sky coordinate conversions with

unphysical latitudes (addskycoords filter).
• Produce null rather than questionable results from sexagesimal conversions with

mins/secs out of range.
• Fix two bugs in votcopy: XML processing instructions garbled on output, and pathnames

in base parameters inappropriately flattened in hrefs attribute values.

Version 2.0-5 (2 Oct 2009)

• VOTable 1.2 supported.
• votlint can now validate VOTable documents following the (provisional, 2009-09-29

PR) VOTable 1.2 standard.

SUN/256 223

• Namespacing of VOTable documents made more intelligent, and configurable using the
votable.namespacing system property.

• votlint now checks that the correct XML namespaces are in use.
• Be more careful in XML, including VOTable, output; fix VOTable output encoding to be

UTF-8, and ensure no illegal XML characters are written.
• HTML table output is now HTML 4.01 by default (includes THEAD and TBODY tags).
• parse* string->numeric conversion functions now cope with leading or trailing

whitespace.
• Work around illegally truncated type declarations in IPAC tables.
• Fix a bug which caused the first table in a multi-table file (FITS or VOTable) to be used

in streaming mode, even if a subsequent one was requested.
• Bug fixed in crossmatching output: entries which should have been null were sometimes

written as non-null (typically large negative numbers) in FITS and in non-TABLEDATA
VOTable output. This affected cells in otherwise non-nullable columns where the entire
row was absent. The previous behaviour is not likely to have been mistaken for genuine
results.

Version 2.1 (6 November 2009)

• coneskymatch can now match using SIA and SSA services as alternatives to Cone Search
ones (see its new servicetype parameter).

• Fixed an obscure bug which could under rare circumstances cause truncation of strings
with leading/trailing whitespace read from text-format files.

• A new startable.storage policy "adaptive" is now the default. This should mean
running out of memory less often. The old behaviour can be restored by giving the new
-memory command line flag.

Note that the STIL API used by this release has changed in some backwardly incompatible
ways, and may change further. If you're using STILTS as a library rather than an application
you might want to wait for a later release when the API has settled down.

Version 2.1-1 (21 December 2009)

• Plotting commands can now output to PDF as well as existing graphics formats.
• New filter fixcolnames.
• Fixed internationalisation bug which could cause coneskymatch to fail in locales that use

"," for a decimal point.
• Significant performance improvements related to the case of VOTable documents

containing many tables.

Version 2.1-2 (24 March 2010)

• JyStilts introduced. This is a jython (i.e. Python, though not CPython) interface to the
STILTS commands. It is believed to be fully working, but somewhat experimental -
feedback is encouraged.

• Considerable performance and scalability improvements to the crossmatching commands
(tmatch1, tmatch2, tmatchn and tskymatch2). For several common regimes, using
default settings, memory use has been decreased by a factor of about 5, and CPU time
reduced by a factor of about 3.

• Add optional tuning parameters to crossmatch commands (parameter tuning for tmatch1,
tmatch2 and tmatchn, and parameter healpixk for tskymatch2). Experimentation with
these can lead to significant performance improvements for given matches.

• Fixed a crossmatch bug; it was giving a possibility of suboptimal "find=best" match
assignments when pair matching in crowded fields. Crossmatch results thus may differ
between earlier versions and this one. Both are reasonable, but the newer behaviour is
more correct. In non-crowded fields, there should be no change.

• Further performance improvement for VOTable documents with very many TABLEs.
• Memory management adjusted further - default (Adaptive) storage policy now uses direct

SUN/256 224

allocation (=malloc()) for intermediate-sized buffers to avoid running out of java heap
space.

• New option "find=each" for coneskymatch and sqlskymatch commands. This allows
you to get an output table with exactly one row for each row of the input table.

• New flag -memgui to monitor memory usage during runs.
• Add new filter rowrange.
• Add new functions to Arrays: array functions for constructing arrays, and new

aggregating functions median and quantile.
• Syntax of the crossmatching commands' progress parameter has changed; it now has an

additional option which will write limited profiling information as well as logging as the
match progresses.

• Add ylabel parameter to plothist command.
• The random and sequential filters have been renamed randomview and seqview

respectively. This provides a better idea of what they do. Since they are only useful for
debugging, it is unlikely that this will break anyone's existing code.

• New filter random introduced which converts tables to random-access if necessary.
• Document previously undocumented legend parameter to plotting commands.
• Matching commands matcher parameters can now accept classnames of MatchEngine

implementation classes as an option.
• Classes are now distributed as a zip of jars (stilts_jars.zip) as an alternative to the

monolithic jar file (stilts.jar). This may be more appropriate for those using STILTS
classes in a framework that contains other third party class libraries.

• Adjusted the way that data types are read from JDBC databases. Date, Time and
Timestamp typed columns will now be converted to Strings which means they can be
written to most output formats (previously they were omitted from output tables).

• STILTS no longer attempts to communicate with TOPCAT using SOAP. TOPCAT's
SOAP interface has been deprecated since v2.1 (2006), so this isn't likely to cause trouble,
and it permits removal of SOAP (Axis) classes from the application jar file, saving
several megabytes and reducing potential version clash problems.

• Fix bug in code for handling very large mapped FITS files. This was causing fatal read
errors in some cases.

Version 2.2 (6 August 2010)
New capabilities for multi-table I/O have been introduced:

• New multi-table output tasks tmulti and tmultin. These currently just copy multiple
input tables to a single multi-table container file (e.g. Multi-Extension FITS or
multi-TABLE VOTable). Future releases may generalise the output of multi-table
processing.

• New multi parameter introduced for tcat and tmulti tasks to pick up all tables in a
multi-table container file.

• New JyStilts functions treads and twrites for multi-table I/O.

There are some additional enhancements:

• Added experimental name-resolution filter addresolve; this currently uses Sesame.
• Added filter repeat, which repeats table rows a given number of times.

And a number of bug fixes:

• Recognise unofficial column type "long" in IPAC format tables.
• Better behaviour (warn + failover) when attempting to read large files on 32-bit OS or

JVM.
• Efficiency warning now issued for large compressed FITS files.
• Upgraded PixTools HEALPix library to 2010/02/09 version. This fixes a bug that could

theoretically cause deficient crossmatch results, though I haven't managed to produce
such errors.

• Fixed bug in TST table output.

SUN/256 225

• Fixed bug in FITS-plus metadata output (table parameters were getting lost).
• Corrected literature references in Fluxes conversion class documentation (thanks to

Mattia Vaccari).
• Fixed bug in CSV file parsing that could ignore header row in absence of non-numeric

columns.
• Shape and ElSize metadata items now correctly reported by meta filter.
• Fixed JyStilts bug when supplying an empty string for a parameter value.

Finally, from this release STILTS requires version 1.5 (a.k.a. 5.0) of the Java J2SE Runtime
Environment; it will no longer run on version 1.4, which is now very old. I don't expect this to
cause compatibility issues for anyone, but I'm interested to hear if that's not the case.

Version 2.2-1 (23 December 2010)

• Storage management improvements; removed restriction on large (>2Gb) non-FITS
datasets in some circumstances.

• Efficiency improvement in sequential mapped access to large FITS files.
• Fix so FITS tables >2Gb can provide random access in 32-bit mode (though slower than

64-bit).
• FITS files now store table names in EXTNAME (and possibly EXTVAR) header cards.
• Window placement for the few GUI tasks should now behave a bit more like platform

norms, rather than sitting in the top left hand corner.
• HTML table output now writes cell contents which look like URLs in HTML <A> tags.
• Basic authorization (http://user:pass@host/path) on table URLs handled.
• Fixed file pointer int overflow bug in FITS MultiMappedFiles.

Version 2.3 (9 May 2011)

TAP
The new commands tapquery and tapresume have been introduced. These provide
support for the Table Access Protocol (TAP), and allow freeform queries in an SQL-like
language to be made to remote databases.

Minor enhancements

• Random Groups HDUs are now tolerated, though not interpreted, within FITS files.
• Added soapout parameter to regquery command.
• Added count, variance and stdev functions to Arrays.
• Upgrade to JSAMP v1.2.
• Improve text rendering in funcs window display.
• Attempt case-sensitive matching before case-insensitive for column names.
• Fix replaceval filter to work with Infinities.

Bug fixes and workarounds

• JDBC table input handler now effectively downcasts BigInteger/BigDecimal types to
Long/Double. The PostgreSQL JDBC driver seems to use the Big* types routinely
for numeric values (which I don't think it used to do).

• Add workaround for J2SE bug #4795134, which could cause errors when reading
compressed FITS files.

• Fix FITS character handling bug which could cause corrupted FITS files on output in
presence of non-ASCII characters.

• Fix (some) JDBC connection leaks.
• Add missing parameters dashNS and linewidthNS to plot2d task.

Version 2.3-1 (30 June 2011)

• Added new command taplint. This is a validator for TAP (Table Access Protocol)

SUN/256 226

services. It is only likely to be useful to people developing or operating TAP services.
• ASCII table parsers now understand python-friendly nan and inf representations.
• Added new constants to expression language Infinity and NaN.
• Fixed a significant bug in sky crossmatching. If all points in a table were on one side of

the RA=0 line, but the error radius extended across that line, matches on the other side
could be missed. Matches could also be missed if different tables used different
conventional ranges for RA (e.g. -180..180 in one case and 0..360 in another). This fix
may in some, but not most, cases result in slower matching than previously.

• Fixed coneskymatch cone search verbosity parameter so that VERB=3 is not erroneously
ignored.

Version 2.4 (27 October 2011)

Crossmatching:

• Two new asymmetric match options best1 and best2 have been added for the find

parameter in the pair matching commands tmatch2 and tskymatch2. They
correspond to finding the best match in table B for each row in table A, and in
crowded fields often provide more intuitive semantics than the previous symmetric
best option (in non-crowded fields there is generally no difference). This replicates
the matching performed by some other tools, including Aladin.

• New matchers have been added to permit matching of general elliptical, rather than
just circular, regions in both planar and sky coordinates; see 2d_ellipse, and
skyellipse.

• Another new matcher is available for dealing with per-object errors in Cartesian
coordinates (previously per-object errors could only be handled in sky coords); see N
d_err.

• Semantics of the skyerr matcher have changed slightly.

Expression language functions:

• Algebraic functions involving angles are now mostly available using degrees as well
as radians. The Coords class has been replaced by CoordsDegrees and
CoordsRadians classes providing sky coordinate functions, and a new class
TrigDegrees provides normal degree-based trigonometric functions alongside the
radian-based versions in Maths. Some of the old function names have changed to
make clear that they use radians and not degrees. This change should be much more
convenient in most cases; sorry it's taken so long to get round to.

• Add new join function is added to the Arrays class to combine all the elements of an
array into a string.

taplint:
There are several bugfixes and changes related to the TAP validator tool taplint, mostly
thanks to bug reports etc from the TAP community:

• Improve test logic for record limiting queries.
• Errors no longer reported (e.g. E-Qxx-CNAM) for unexpected TAP_SCHEMA table

column ordering (when running query stage but no metadata acquisition stages).
• Add new stage MDQ, which checks query result columns for all tables against

declared metadata.
• Add check of versioned and unversioned LANG variants.
• Now uses corrected upload ID (ivo://ivoa.net/std/TAPRegExt#upload-*) as per

most recent TAPRegExt draft.

Bug fixes and minor enhancements:

• Add parameter parse to tapquery command, allowing pre-send syntax checking of
submitted ADQL.

SUN/256 227

• Add experimental system properties star.basicauth.user and
star.basicauth.password.

• Improve resilience of coneskymatch in the presence of unreliable or inconsistent
DAL services.

• A PARAMref element with no referent in a VOTable no longer causes an uncaught
NullPointerException.

Version 2.5 (28 March 2013)

New coverage-related functionality:

• Add new command pixsample which can sample pixel data from HEALPix table
files (useful for things like Schlegel dust extinction). Also addpixsample filter,
which does the same job.

• Add new command pixfoot which can generate MOC (Multi-Order Coverage)
maps.

• Add MOC-based coverage filter to coneskymatch when using some Cone Search
services (mostly VizieR). This uses the Multi-Order Coverage map service operated
by CDS. It can make VizieR multi-cone queries much faster by not doing cone
searches that are outside the coverage region of the catalogue in question.

• Add new class Coverage to the expression language containing MOC-related
functions (currently, just inMoc).

Other new capabilities:

• Add IPAC table output format.
• Add new class KCorrections to the expression language, containing a method for

calculating K-corrections following the method of Chilingarian and Zolotukhin.
• You can now reference tables in multi-extension FITS files by name (EXTNAME or

EXTNAME-EXTVER) as an alternative to by HDU index.

VOTable enhancements:

• VOTable input, output and validation are now supported for version 1.3 of the
VOTable standard.

• The version of the VOTable format used for VOTable output can now be selected,
by using the system property votable.version. Output version is VOTable 1.2 by
default.

• votlint has been changed so that it handles different VOTable versions more
capably. Versions 1.1+ are now validated against a schema (which is how those
versions are defined) rather than against a DTD hacked to do the same job as the
schema. VOTable 1.3 validation is now provided.

• The votcopy command has a new version parameter to control output version, and
a new nomagic parameter to control whether VALUES/null attributes are removed
where appropriate.

• Infinite floating point values are now correctly encoded in VOTable output
("+Inf"/"-Inf", not "Infinity"/"-Infinity" as in previous versions).

• votlint is now stricter about floating point TD element contents.
• VOTable output no longer writes the schemaLocation attribute by default.

Other enhancements:

• Add new function hypot (=sqrt(x*x+y*y)) to the Maths class in expression language.
• Add new split functions for string splitting to the Strings class in expression

language.
• Add -utype flags for addcol, replacecol, colmeta and setparam filters, and utype

option for meta filter.

SUN/256 228

• Some changes to the toString function: it now works on non-numeric values, gives
the right answer for Long integers and character values, and returns a blank value
rather than the string "null" or "NaN" for blank inputs.

• Sexagesimal to numeric angle conversion functions now permit the seconds part of
the sexagesimal string to be missing.

• Changes to the IPAC format definition are accommodated: the "long"/"l" type,
which is apparently now official, no longer generates a warning, and headers may
now use minus signs instead of whitespace.

• Add OBS stage (ObsTAP validation) to taplint.
• Add more checks to CAP stage of taplint. Declared languages (including features)

and output formats are now checked.
• Tidy up error reporting a bit (fewer duplicate nested messages reported).
• PNG graphics output no longer has transparent background.
• Issue a warning for high values of coneskymatch parallel parameter.
• Upgrade JSAMP library to version 1.3-3.
• Upgrade Grégory Mantelet's ADQL library to version 1.1.

Bug fixes:

• Fix serious and long-standing bug (bad TZERO header, causes subsequent reads to
fail) for FITS output of boolean array columns.

• Fix small but genuine sky matching bug. The effect was that near the poles matches
near the specified threshold could be missed. The bug was in the PixTools library,
fixed at the 2012-07-28 release.

• Fix bug in tmatchn group mode which could result in output rows with columns
from only a single table, i.e. not representing an inter-table match, even when
join*=default.

• Fix bug which failed when attempting to read FITS files with complex array
columns (TFORMn=rC/rM).

• Fix failure when caching very large sequential tables.
• Fix bug in replacecol and replaceval filters which could cause truncation of

strings in FITS and possibly VOTable output when the new value was longer than
the previously declared maximum length.

• Fix tcat, tcatn so that in most cases output column metadata is compatible with all
input tables, not just the first one in terms of nullability, array shape etc.

• Adjust SQL writer to avoid a type error for MySQL.
• Fix bug in HMS sexagesimal formatting: minus sign was omitted from negative

angles. Now the output is forced positive.
• Cope with 1-column CSV files.
• Use the correct form "rows"/"bytes" rather than "row"/"byte" for TAP capability

unit values.
• Fix error bar rendering bug which could result in diagonal lines being offset near the

edge of plots.

Version 2.5-1 (1 July 2013)

New functionality

• Add read-only support for CDF (NASA Common Data Format) files.
• Add Median Absolute Deviation calculation (MedAbsDev and ScMedAbsDev) options

to stats filter.
• Improved handling of HTTP basic authorization. 401s now generate a useful

message about the star.basicauth.* system properties if they have not been set up.

Bug fixes and minor enhancements

• Fix CSV regression bug introduced at v2.5 - CSV files now work again with

SUN/256 229

MSDOS-style line breaks.
• Fixed FITS output bug which could result in badly-formed string-valued header

cards (no closing quote).
• Source code is now managed by git and not subversion. The format of the "Starjava

revision" string reported by the -version flag has changed accordingly.
• Output mode meta now copes better with array-valued table parameters.
• Implemented fixes to reduce the chance of users inadvertently overloading external

Cone/SIA/SSA services with multicone-like queries. First, fix it so that abandoned
queries are properly terminated, rather than continuing to hit the server until
completion or JVM shutdown. Second, implement a sensible default maximum value
for the parallel parameter of skyconematch (though this may be adjusted with a
system property).

• Quoting behaviour has changed when generating SQL to write to RDBMS tables.
This ought to reduce problems related to mixed-case identifiers. However, it is
possible that it could lead to unforseen new anomalies.

• More toString overloads - now works for byte and boolean values too.

Version 2.5-2 (7 March 2014)

• Add some more colour maps.
• Fix some broken and misdocumented non-table-output JyStilts commands (tcube,

pixfoot).
• Fix bug which prevented access to long integer array elements from expression language.
• The Exact matcher now considers scalar numeric values equal if they have the same

numeric value; they are no longer required to have the same type.
• Fixed a registry client bug which means that the regquery command can now

successfully talk to the NVO/VAO/STSci registry. That has been broken since mid-2010.
• Add new command tloop for generating single-column tables from a numeric loop

variable.
• taplint now checks for the right ObsCore ID, though still recognises the wrong one (got

from TAPRegExt), and warns if found.
• Fix TST input handler so TST files with fewer than 3 columns can be read.
• Add Nd_cuboid matcher option to match commands.

Version 2.5-3 (4 July 2014)

New and improved functionality:

• Add new command cdsskymatch. In most cases (for querying tables that can be
found in VizieR) this can and should be used instead of coneskymatch - it's much
faster.

• Commands coneskymatch, sqlskymatch and pixfoot will now guess RA/Dec
columns if relevant parameters are left blank.

• Added new graphics output format png-transp to generate PNG files with
transparent backgrounds.

• Upgraded Gregory Mantelet's ADQL library to version 1.2. Better ADQL parsing.

Improvements and adjustments to taplint:

• Rework taplint API to facilitate static acquisition of report codes during
programmatic use. A few error codes have changed.

• Add new "duff query" test to taplint.
• Avoid taplint MDQ stage data type mismatch error report for BOOLEAN/boolean

declared/returned data.
• taplint now takes steps to ensure that TAP_SCHEMA column list query is not

truncated.
• taplint now flags absence of ObsCore table with I[nfo] not F[ailure] status.

SUN/256 230

• Change the implementation of taplint stages which perform validation against
XSD schemas. Schemas from external namespaces may now be imported and used.
The CPV stage, which was previously broken and disabled by default, is now fixed
and enabled by default. Known/expected schemas are stored locally, and a warning
is reported if external ones are used. Schema validation seems remarkably
complicated, so it's possible there are still errors in this implementation - if you
suspect so, please report it.

• Add missing geometric reserved words to ADQL reserved word list. This fixes some
problems with column names like "DISTANCE" in taplint tests.

• Fixed some bugs related to TAP table uploads. In particular these could cause
incorrect table upload error reports in taplint.

SUN/256 231

