STILTS- Starlink TablesInfrastructureLibrary Tool Set

Version 3.0-6

.

V)
Sarlink User Note256

Mark Taylor
27 November 2015

Abstract

STILTS isaset of command-line tools for processing tabular data. It has been designed for, but is
not restricted to, use on astronomical data such as source catalogues. It contains both generic
(format-independent) table processing tools and tools for processing VOTable documents. Facilities
offered include crossmatching, format conversion, format validation, column calculation and
rearrangement, row selection, sorting, plotting, statistical calculations and metadata display.
Calculations on cell data can be performed using a powerful and extensible expression language.

The package is written in pure Java and based on STIL, the Starlink Tables Infrastructure Library.
This gives it high portability, support for many data formats (including FITS, VOTable, text-based
formats and SQL databases), extensibility and scalability. Where possible the tools are written to
accept streamed data so the size of tables which can be processed is not limited by available
memory. As well as the tutorial and reference information in this document, detailed on-line help is
available from the tools themselves.

STILTSisavailable under the GNU Genera Public Licence.

Contents

P o 1= = (o TR 1
O 1 0o [0 To: (o] RSO 7
A N LR R R o) 1010 4 =1 o TR 9
pZ0 S 1S =T OSSR 9

2.2 TASK NBITIES.......eeeeeeei sttt et b et b e bbb e s e st e bt e et e bt b e e e st b e s e e ebe e 10

2.3 TASK ATQUIMENTS.cueeeeeiite sttt s et b et ss e bt e e e e b et e s b e ebesbe s bt eaeeae e e et e neesbesbenneebenneas 11

2.4 GEIING HEIP. ..ttt bbbt a e e e e b e ne e 12
G 1 LY7o o= o o OSSR 15
I O Sy = | OO SROTR 16
B2 JAVAFIAGS. ... bbbttt e e n et nn b nre s 16
3.3 SYSIEM PrOPEITIES. ...ttt ettt bbb bbbt et n et nne e 17
3.4 IDBC CONFIQUITON.cutititirieetieieeeeee sttt sbe sttt e e st e sbesb e seeae e e e e e ssesaesbeabenseeneeneeneas 18
A JyStiltS - STILTSTrOM PYLNON......oieieee et e 20
4.1 RUNNING JYSHTTS....ctiitieiieieeee ettt bbbttt et st e b b ne s 21
R 1= o = 1 L T 22
4.3 TADIE ODJECES......eeeieeee bbbt e e s 23
4.4 Tablefilter COMMANAS (CIU_*) ..iiverrirrerieieieesie ettt bttt se e bbb enes 25
4.5 Table OULPUL MOUES (IMDUE_*)..vevervirierierieeiieiesie sttt sttt bbb e bbb b nne s 26
N = S R 26
4.7 CalCUlALiON FUNCLIONS......c.uiiiiieeiieeie sttt e sttt esseete s esseeseeneesaeeeeeneesseenenans 27
CRLIE= ! o] [N /L TSSOSO 28
IR = o =] oo 4 o 1S OSSPSR 28
I - o =] e 0 0 R ORRTROR 29
5. 2.1 INPUL FOIMIBES. ...ttt b bt e b e e bt s e e s se e bt enn e b e e e e nnn e 29
5.2.2 OULPUL FOMMIBLS........eeeeieeiieeiieie ettt sttt b e b e et e e bt e sne e reennenns 30
B TADIE PIPEIINES.....ceeeeeeee et sb bt bttt e et n b nn e ne e 33
I I 0o =SS T a0 1 (= £ 33
& 0 00 Y T o') SR 34
T Yo [o LI Y= 11 oINS U RPN 34
G G 3= Yo [[==Y = 35
B.1.4 AAUSKYCOOI US 1iiiiiiiirrieriieeseiiiiiirrreereeessssaiabrrreeeeeseesassbrrreeeeaesssaasastraseeesaessasssssseeeeeessssanssrranens 35
G R 3 Yo - o S 36
G G 3 o Vo 1V S 36
G T Yo £ TR 36
G 08 o 3T o1 SRR 36
B.1.9 Cl QAN PAI GITB 1rreiiiiiiiiiiiiirriiee e e e e i siibtrrr e e e e s e e s sssbbrreeeeeeeessaaastbaaeeeeeessasassbsseeeseesessasssbbrseeeseessssnsnnes 37
G 00 O oo 1Y A SRS 37
G 0 00 0 e =Y oo SRR 37
TR I =AYy SRR 37
LT I R =3 g o1 I e L= I RSO URRRRS 37
T I =g oY I e L= o] =T OSSPSR 38
G 0 N BT = Vo Y SR SY 38
G300 00 G 3 =Y Y 38
T I A Y=Y o T oL =PRSS 38
G300 00 S =Y o 39
LT I R I T T A=Y= RSO 39
G 2 O 1 - Vo Vo [S 39
G 20 I - Vo Vo [4 VA T =1 2 40
LI I Y Y=Y\ S SRR PRURRN 40
LI G Y o =Y oT =Y o o] RSO URRRRRS 40
B.1.24 1 €P] BCEVAI uurrreiiiieeiiiiiiiireeeee e e e e siiitreeeeeeesssssssbraarreeeeeeaaa s b rrreeeaaeesaaaabrarereeeeeeaaarrrrreeeaeeeeaaanes 40
LT IS 1Y =Y o TSRS 41
G G oY =Y =Y o SR 41
T A=Y= o LV =T APPSR 41
O B2 S R A T - U2 F RSP 41
G 20 =Y Y o SRR 41
G0 000 =Y o B =Y Vo 42
LG 0 = Y 42
G G 72 - o] I =Y 3 - Y 1SS 43

ST I G VTP 43

QR R T Y 1oy o o1 =S 43

G300 00 TS 44
6.2 SPeCifying @ SiNGIE COIUMN.........oiiiiie et 44
6.3 SpeCifying @ List Of COIUMNS.........cciiiiiiieeeee e 45
6.4 OULPUL IMIOUES.......c.eiteeiieieee ettt bbbttt e b bbbt e st et e e e e e et e e nnas 45
G0 S o T 45
ST T 1U 12 46
T s I=Y ot 1 46
G T 46
ST RS2 A Y 46
LSRN oY 46
G Ao =] B T 47
LG oYV 1 T 47
ST S R =3 A= 48
Q0 0 oY oo Y SRR 48
G I oY= o 49
O30S ¢ g T= 1ot o1 o TSRS 50
A8 R\ = (e g 1 X = = TSRS 50
7. 1.1 sKy: SKY MEECHING. ...cuvitirieitiiieeiieiee ettt st b et e bbb b e b e s e e 51
7.1.2 skyerr: SKy Matching with Per-ODjJect EITOrS.........c.ccoeeeiiiinenine e 52
7.1.3 skyel I i pse: Sky Matching of Elliptical REQIONS...........cccooiiiiiriniceeerese e 53
7.1.4 sky3d: Spherical Polar MatChing...........cooveiiiiiiere s 53
7.1.5 exact : EXCE MEICNING.cittiiiiiiieieee sttt sttt bbb 54
7.1.6 1d, 2d, ...: Isotropic Cartesian MatChing..........ccceouereereniereere e 54
7.1.7 2d_ani sot r opi c, Anisotropic Cartesian MaChing..........cccceoverererenineneeeeeeee e 55
7.1.8 2d_cuboi d, ...: Cuboid Cartesian MatChing.........cccoeeverieiesiereere e 55
7.191d_err, 2d_err, ... Cartesian Matching with Per-Object Errors..........cocooeveiencnenencniene 56
7.1.10 2d_el I i pse: Cartesian Matching of Elliptical REgIONS..........cccooirererinirieieesesie e 57
7.1.11 CUSIOM MAICHENS.......eeeieieciee ettt ettt s e et e e e e e te e be e ear e e seesateenaeesnreeneas 57
7.1.12 Matcher COmMBDINGLIONS...........cocuieiieciee ettt ee et e s e e be e saneebeesaseenreesnneens 57
7.2 MUITI-ODJECE MBICHES........eteiieeieeeee sttt b e bbbt eenn e ne e 58
S 1 d o 1 o T OSSR T 59
oI . Lo = = 0 = = (=SSR 59
8.1.1 GlODal Para@mMELErS.........cociuieiiecctie sttt ettt et sa e s e e e e st e sane e reeeareenneeenneeans 60
8.1.2 LAYEr PalaMELErS.......cccuiieieieetieie ettt b et sn e e e neenns 60
S I RS AN 411 7= 1 o OSSPSR 61
8.2 SUIMTACE TYPES....e ettt bbbttt bbbt bbbt e st et et et et e s b b e s b e e ne e e e e enes 62
oG B = (Y G Y/ oSS TSRO P PSPPI 63
TG TR0 1 7 63
L TG TN T2 65
S TR 0 J oY 3G 67
G TR B G AV =Yl o 70
S TR T8 G V2= o S 72
LS TR G G 2= B I o 11 =S 75
S TG T A TN o 0 PSSRSO 77
ST T S 100 V72 79
LS TC TS N T 1= 81
LS TR (O B T V= Vo 1 S 82
£ TG 700 T Y= 84
TG TR 2 T T A T 87
S TR 00 I 1= 4 1Y 02 SRR 88
LS TR 00 T T | o 4 90
S G T8 e =SSR 93
£ TG TR0 1173 SRR 95

S TR 00 A 1= A T o T U 4 99

.3 L8 f UNMCE i ON ceeeeeeeeee e e e et ettt e e e e e e e e e e e e ee e aaaeeeeeeeemee i aaeeeeeeeeenn i aaaeeeeeeeennnnaaaeeeeeeenennnnnn 102

8.3.19 SKYVECT OF cuuteeitiieiiueie ettt e stee e et e e st eestae e e aeeeeseeesaseeeanseeeanseeeanseeeanteeaseeeanseeeanseeeanseeesnsneennnes 103
G TR 20 Y V2= B TR T 1o = 105
8.3 2L SKYENST LY teeeiueeeiiteeeiiuereaiteresiteresteeessteeeaseeeasseeaasseeassseeaaseeeaseeeeseeeanseeesnseeeanseeeanseeennseesnnnes 108
G TR I QY AV L= To] Ao | G 110
G TR A GV 4= G 1 S 112
S TR B =Y o 115
S TR I STy LYok T | - 14 R 117
8.4 SNAUING MOUES........eeiuiitiiiieieei ettt bbb bttt e et e e e nnas 119
S 3t YU Ao 120
S B I SRS 120
SR G R A =Y 0T BT o= 2 L 121
S I o Y T L =] 1 AR 121
S I o =Y 1o I 122
B G-V G 123
S A I o o1 =Y RS 124
8.5 OULPUL IMOUES........oeiiiitiitieieet ettt sttt b e b e bt bt be st e e e e et e e e e e 125
S T T80 oL I T T 125
TR T2« | R 125
G T T oY 125
ST T e TTCY T Voo 125
LT TS 3= V0B 126
8.6 EXPOIT FOMMELS........ceieeeiieieitieie ettt b e b e e e n e e n e e nne s 126
S @] [0 S A = o 1 g o USSP 128
0.1 Par@ameEter SUFTIXES.....cccueiiie ettt et b e s e sae e s re e sre e sareesaeesnreenreeenns 128
10 AlQEDr aIC EXPrESSION SYNTAX.iieeiiirierieesieeeesiee sttt st ee s te e sseesseseesaeesbesneesseensesneans 131
10.1 Referencing ColUMN VAIUES.........cooiiiiiieeieiese st 131
10.2 Referencing Parameter ValUES...........cooveieiirieninienieeeeee sttt 132
TO.BNUI VAIUES.......cveeeee ettt ettt s e ettt e st et e e s e e e b e e s an e e aseesaseebeesaneenseesareeneennnes 133
L0.4 OPEIBLOIS.......veeueesteete e st ettt et sse et s e ase b e eae e s he e e e e s e aae e b e eaeenbe e s e emeeane e bennnenreeneennenneennas 134
LO.5 FUNCLIONS......cciuvietieciecstee ettt et s e et e st e et e e saee e beesaeesaseesaeesabeesbeesnseesseesnseesseesnreenseesnnaens 135
0 00 R 1111 OSSR 135
ORI AN 115121 (oSO 136
ORISR o] 1V/= £ Lo o 1SR 138
LO.5.4 DISIANCES......ccueeireeetie et eetee et e et e e et e e e et e e sae e e teesaeesbeesaeeeseesaeeeaseesseeeseesseesnteesseeenseennes 140
L1O.5.5 KCOIMECHIONS.veeitieciecitee et et e ete et e st e ste e st e et e e satesabeesaeeeseesaeeeseesseeenseesaeesnseesaeeeaneenseas 142
0 T I8 7= SR 145
LO.5.7 THODEOIEES........eeueeeete ettt sttt e et e b e bt bt s bt e st e e et et e b e st e saeebeeseeneeneans 148
0 RS 1Y/ 1 R 149
JO.5.9 ATTAYS. ..ottt ettt b et h Rt R e Rt ae R e R e e R r e ne e neen e 152
LO.5.10 FIUXES...ccueeeueeeeeeieeee st esieete st este s e st este e e s seeteeseesseenseeseesseensesseesseensneneesseensesnnesseensennennsnns 156
O I0 B S 1 4T0 USSP 158
LO.5.12 FOMMELS......eeeeiieeeeiieeeteeesiteeesteeessteeessaeeesseeeeaseeeasaeeasaeessseeessseeessseeeasseeeasseeannseesasneesnsenesns 161
10.5.13 COOrdSRAMIANS.........eeiieeeeiiece ettt ae e sreente e e e sreeseeneenseenes 162
LO.5.14 COVEIAOEL. ... e iueeueeteeiee ittt ettt sttt b e b s bt e e s e e e b e e bt e ae e sre e et s seeene et e nnnenreenennnens 165
10.5.15 COOrUSDEGIEES.......ccueiueruerieeiieiesie e sttt be ettt ss b s te b e sb e be bt ese e e e e e b e ssesbesbeebesaeeneeneens 166
10.6 EXBIMPIES......eeieieeeeieste sttt b bbbt b e b e s bt bt a e aeen e e e et e b e b e b nre s 167
10.7 AQVANCEA TOPICS......eeueeueeieniestesiesieeieeieee ettt be sttt e et e s e sbesb e s besbe e st e se e e et e nnenbesaeenenneas 169
10.7.1 EXPressionN @VAIUBLTON.couiiiiiirierieeieeeeee ettt sttt ns st b b s e e e e e e 169
10.7.2 INSLANCE MELNOUS.......cccuieciiecee e s s e e b e e e e re e s ae e e reesnneeneennns 169
10.7.3 Adding User-Defined FUNCLIONS..........ccciiieiiierisesiesieseeee st 169
11 ProgrammatiC I NVOCALION........coiuiieeiieerieeiesie e s eesiee st see s e siessseessesseesbeesbesseesseesesneesseeneas 171
Appendix A: CommManNdS BY Cat@QOrYcocueierierieriereerie et see et see e sseeeesneesees 173
Appendix B: Command REFENENCE..........cooiiee e 175

B.1 cal c: EVAlUBLES EXPIESSIONS......c.eiiiiiieriestesie ettt sse st sse b se s e e s b e b sae s ese e s 175

B.2 cdsskymat ch: Crossmatchestable on sky position against VizieR/SIMBAD table......... 176

B.3 coneskymat ch: Crossmatchestable on sky position against remote cone service............ 181
B.4 funcs: Browses functions used by algebraic expression language..........ccccceveererieeneeenne. 188
B.5 pi xf oot : Generates Multi-Order COVErage MaPS........cooeeverierrerierererieeieseesre e 189
B.6 pi xsanpl e: Samplesfrom a HEAL Pix pixel datafile.........ccooovirinininiciecccene 191
B.7 pl ot 2pl ane: Draws a plane PlOt.........oooiiiiiieieerere s 195
B.8 pl 0t 25ky: DrawS @ SKY PlOL.......couiieiieieiieiieieeee e 205
B.9 pl ot 2cube: Draws @ CUDE PIOL.......ccuoiiiiiiieieeeie e 214
B.10 pl ot 2sphere: Draws a SPNere PlOt.... ..o s 224
B.11pl ot 2ti me: DrawSatime PlOt..... ..o s 232
B.12 pl ot 2d: Old-style 2D SCatter PlOt..........ccoeiiriiieierere e 241
B.13 pl ot 3d: Old-style 3D SCater PlOL.......ccceciiiieicie et nnees 249
B.14 pl ot hi st: Old-Styl@ HIStOGIr@mM........oceeieeie et 258
B.15regquery: QUErIESTNEV O FEQISIIY . ..uiiiiiice ettt st enne s 265
B.16 server: Runsan HTTP server to perform STILTS commands.........ccccceveeveveeivennenne. 267
B.17 sqgl client: EXecutes SQL StalEMENTS.........cooiiiiiie et 270
B.18 sql skymat ch: Crossmatchestable on sky position against SQL table........................... 271
B.19 sql updat e: Updatesvaluesin an SQL table.........ccccceveeiiiieiicie e 277
B.20taplint: TESES TAP SEIVICES....uviiii ittt e et r e e e e e e e abr e e e e eanees 279
B.21t apquery: Queriesa Table Access ProtOCOl SErVEYccocveevceieciiee e 281
B.22 t apresume: Resumes a previous query to a Table Access Protocol server..................... 286
B.23t apskymat ch: Crossmatches table on sky position against TAP tablecccecuueeee. 288
B.24t cat : Concatenates multiple similar tables..........cocoiriiiiiiie e, 293
B.25t cat n: ConcatenateS Multipletables..........ccoooiiiiiiiiiee e 297
B.26t copy: Convertsbetween table formats..........ccoeevcieeiiii e 301
B.27 t cube: Calculates N-dimensional histograms...........ccoeeerieeienenesesesee s 302
B.28t1 oop: Generatesa single-column tablefrom aloop variable..........c.ccccvveiiiiicnnnnene 305
B.29tj oi n: Joins multiple tables SIde-tO-Side.........ccoeiiiiiii e 307
B.30t mat ch1: Performsacrossmatch internal toasingletable.......cccoieieienincncnenee, 310
B.31t mat ch2: Crossmatches 2 tablesusing flexible criteria........ccovirniiniciiices 314
B.32 t mat chn: Crossmatches multiple tablesusing flexible criteria..........ccocovevneniicnennene 320
B.33tnulti: Writesmultipletablesto asingle container file.........ccccooevveiviceniececieseens 325
B.34tnul tin: Writesmultiple processed tablesto single container file........ccccccevvvveveennnnee. 328
B.351 pi pe: Performs pipeline processing on atable...........cccooeveeiiceve e 329
B.36t skymat ch2: Crossmatches 2 tables on sky poSition..........cccceeceieeiecceseese e 334
B.37 vot copy: Transforms between VOTable encodingsS........ccccvevveeeieeveeieseesie e sieesieseens 339
B.38votlint: ValidatesVOTable dOCUMENTS........cccueieieriiiniesieseseeee e 342
APPENdiX C: REEASENOLES.........cceeiieeeciete ettt e e s e e e e s re e reeneesreenes 346
C.L ACKNOWIEAGEMENES.... ..ottt s e et e e saaeebeesseeeseesraeans 346

(O Y= S Lo gl 1T o] YRS 347

SUN/256

SUN/256 7

1 Introduction

STILTS provides a number of command-line applications which can be used for manipulating
tabular data. Conceptually it sits between, and uses many of the same classes as, the packages STIL,
which is a set of Java APIs providing table-related functionality, and TOPCAT, which is agraphical
application providing the user with an interactive platform for exploring one or more tables. This
document is mostly self-contained - it covers some of the same ground as the STIL and TOPCAT
user documents (SUN/252 and SUN/253 respectively).

Currently, this package consists of commands in the following categories:

Generic table manipulation
t copy, tpi pe,tmul ti,tnultin,tcat,tcatn,tloop,tjoinandtcube (See Section 6).

Crossmatching
t mat chl, t mat ch2, t mat chn and t skymat ch2 (See Section 7).

Plotting
pl ot 2pl ane, pl ot 2sky, pl ot 2cube, pl ot 2sphere and pl ot 2ti me (also deprecated old-style
plot commands pl ot 2d, pl ot 3d and pl ot hi st) (See Section 8).

Sky Pixel Operations
pi xf oot and pi xsanpl e.

VOTable
vot copy and votlint.

Virtual Observatory access
cdsskymat ch, coneskymat ch, t apquery, t apr esune, t apskymat ch, t apl i nt and regquery.

SQL databases
sql client, sql updat e and sql skymat ch.

Miscellaneous
cal ¢ (Appendix B.1), f uncs (Appendix B.4) and server (Appendix B.16).

See Appendix A for an expanded version of thislist.

There are many ways you might want to use these tools; here are afew possibilities:

I'n conjunction with TOPCAT
you can identify a set of processing steps using TOPCAT's interactive graphical facilities, and
construct a script using the commands provided here which can perform the same steps on
many similar tables without further user intervention.

Format conversion
If you have a separate table processing engine and you want to be able to output the resultsin a
somewhat different form, for instance converting it from FITS to VOTable or from
TABLEDATA-encoded to BINARY-encoded VOTable, or to perform some more
scientifically substantial operation such as changing units or coordinate systems, substituting
bad values etc, you can pass the results through one of the tools here. Since on the whole
operation is streaming, such conversion can easily and efficiently be done on the fly.

Server-side oper ations
The tools provided here are suitable for use on servers, either to generate files as part of aweb
service (perhaps aong the lines of the Format conversion item above) or as configurable
components in a server-based workflow system. The server command may help, but is not
required, for use in these situations.

Quick look
You might want to examine the metadata, or a few rows, or a statistical summary of a table

SUN/256 8
without having to load the whole thing into TOPCAT or some other table viewer application.

SUN/256 9

2Thestilts command

All the functions available in this package can be used from a single command, which is usually
referred to in this document simply as"sti | t s". Depending on how you have installed the package,
you may just type"sti I ts", or something like

java -jar sone/path/stilts.jar
or

java -classpath topcat-lite.jar uk.ac.starlink.ttools.Stilts
or something else - thisis covered in detail in Section 3.

In general, the form of acommand is

stilts <stilts-flags> <task-nane> <task-args>

The forms of the parts of this command are described in the following subsections, and details of
each of the available tasks along with their arguments are listed in the command reference
(Appendix B) at the end of this document. Some of the commands are highly configurable and have
avariety of parameters to define their operation. In many cases however, it's not complicated to use
them. For instance, to convert the datain a FITS table to VOTable format you might write:

stilts tcopy cat.fits cat.vot

2.1 Stiltsflags

Some flags are common to al the tasks in the STILTS package, and these are specified after the
stilts invocation itself and before the task name. They generally have the same effect regardless
of which task is running. These generic flags are as follows:

-hel p
Prints a usage message for the stilts command itself and exits. The message contains a
listing of all the known tasks.

-version
Printsthe STILTS version number and exits.

-ver bose
Causes more verbose information to be written during operation. Specifically, what this doesis
to boost the logging level by one notch. It may be specified multiple times to increase
verbosity further.

-al l omunused
Causes unused parameter settings on the command line to be tolerated. Normally, any unused
parameters on the command line cause a usage message to be output and the command to fail,
on the assumption that if you've supplied a parameter setting that's not doing anything it is
probably a mistake and you should be given a chance to correct it. But if this flag is set, you
just get awarning through the logging system about any unused parameters, and the command
Is executed asif they weren't there.

- pronpt
Most of the STILTS commands have a number of parameters which will assume sensible
defaults if you do not give them explicit values on the command line. If you use the - pr onpt
flag, then you will be prompted for every parameter you have not explicitly specified to give
you an opportunity to enter a value other than the default.

-bench

SUN/256 10

Outputs the elapsed time taken by the task to standard error on successful completion.

- debug
Sets up output suitable for debugging. The most visible consequence of thisis that if an error
occurs then afull stacktrace is output, rather than just a user-friendly report.

- bat ch
Some parameters will prompt you for their values, even if they offer legal defaults. If you use
the - bat ch flag, then you won't be prompted at all.

- menory
Encourages the command to use java heap memory for caching large amounts of data rather
than using temporary disk files. The default is to use memory for small tables, and disk for
large ones. This flag is in most cases equivalent to specifying the system property
-Dstart abl e. st orage=nenory.

- di sk
Encourages the command to use temporary files on disk for caching table data. The default is
to use memory for small tables, and disk for large ones. Using this flag may help if you are
running out of memory. This flag isin most cases equivalent to specifying the system property
-Dstart abl e. st or age=di sk.

- mengui
Displays a graphica window while the command is running which summarises used and
available heap memory. May be useful for profiling or understanding resource constraints.

- checkversi on <vers>
Requires that the version is exactly as given by the string <ver s>. If it isnot, STILTS will exit
with an error. This can be useful when executing in certain controlled environments to ensure
that the correct version of the application is being picked up.

-stdout <file>
Sends all normal output from the run to the given file. By default this goes to the standard

output stream. Supplying an empty string or "- " for <f i | e> will restore this default behaviour.

-stderr <file>
Sends all error output from the run to the given file. By default this goes to the standard error
stream. Supplying an empty string or "- " for <fi | e> will restore this default behaviour.

If you are submitting an error report, please include the result of running stilts -version and the
output of the troublesome command with the - debug flag specified.

2.2 Task Names

The <t ask- nane> part of the command line is the name of one of the tasks listed in Appendix B -
currently the available tasks are:

calc
cdsskymat ch
coneskymat ch
funcs

pi xf oot

pi xsanpl e
pl ot 2cube
pl ot 2pl ane
pl ot 2sphere
pl ot 2sky

pl ot 2ti ne
pl ot 2d

SUN/256 11

p! ot 3d

pl ot hi st
regquery
server

sql client
sqgl skymat ch
sqgl updat e
taplint
tapquery

t apr esunme
t apskymat ch
t cat

tcatn

t copy

t cube
tjoin

tl oop
tmatchl

t mat ch2

t mat chn
tmul t

tmul tin

t pi pe

t skymat ch2
vot copy
votlint

2.3 Task Arguments

The <t ask- ar gs> part of the command lineisalist of parameter assignments, each giving the value
of one of the named parameters belonging to the task which is specified in the <t ask- name> part.

The general form of each parameter assignment is

<par am nane>=<par am val ue>

If you want to set the parameter to the null value, which islegal for some but not all parameters, use
the specia string "nul | ", or just leave the value blank ("<par am nane>="). In some cases you can
optionally leave out the <param nanme> part of the assignment (i.e. the parameter is positionally
determined); this is indicated in the task's usage description if the parameter is described like
[<par am nanme>=] <par am val ue> rather than <par am name>=<par am val ue>. If the <par am val ue>
contains spaces or other special characters, then in most cases, such as from the Unix shell, you will
have to quote it somehow. How this is done depends on your platform, but usually surrounding the
whole value in single quotes will do the trick.

Tasks may have many parameters, and you don't have to set all of them explicitly on the comand
line. For a parameter which you don't set, two things can happen. In many cases, it will default to
some sensible value. Sometimes however, you may be prompted for the value to use. In the latter
case, alinelike thiswill be written to the terminal:

mat cher - Nane of matching al gorithm [sky]:

This is prompting you for the value of the parameter named nat cher. "Name of matching
algorithm” is a short description of what that parameter does. "sky" is the default value (if there is
no default, no value will appear in square brackets). At this point you can do one of four things:

SUN/256 12

* Hit return - this will select the default value if there is one. If there is no default, this is
equivalent to entering "nul | .

» Enter a value for the parameter explicitly. The specia value "nul 1" means the null value,
which islegal for some, but not all parameters. If the value you enter is not legal, you will see
an error message and you will beinvited to try again.

» Enter "hel p" or aquestion mark "?". This will output a message giving a detailed description
of the parameter and prompt you again.

» Bail out by hitting ctrl-C or whatever is usual on your platform.

Under normal circumstances, most parameters which have a legal default value will default to it if
they are not set on the command line, and you will only be prompted for those where there is no
default or the program thinks there's a good chance you might not want to use it. Y ou can influence
this however using flagsto the sti I ts command itself (see Section 2.1). If you supply the - pr onpt
flag, then you will be prompted for every parameter you have not explicitly set. If you supply
- bat ch on the other hand, you won't be prompted for any parameters (and if you fail to set any
without legal default values, the task will fail).

If you want to see the actual values of the parameters for a task as it runs, including prompted
values and defaulted ones which you haven't specified explicitly, you can use the - ver bose flag
after thestilts command:

% stilts -verbose tcopy cat.fits cat.vot ifm=fits
INFO tcopy in=cat.fits out=cat.vot ifnm=fits ofnt=(auto)

If you make a parameter assignment on the command line for a parameter which is not used by the
task in question, STILTS will issue an error message and the task will fail. Note some parameters
are only used dependent on the presence or values of other parameters, so even supplying a
parameter which is documented in the task's usage can have this effect. This is done on the
assumption that if you have supplied a spurious parameter it's probably a mistake and you should be
given the opportunity to correct it. But if you want to be free to make these mistakes without the
task failing, you can supply the - al | owunused flag as described in Section 2.1, in which case they
will just result in awarning.

Extensive help isavailable from sti | t s itself about task and its parameters, as described in the next
section.

2.4 Getting Help

As well as the command descriptions in this document (especially the reference section Appendix
B) you can get help for STILTS usage from the command itself. Typing

stilts -help
resultsin this output:

Usage:
stilts [-help] [-version] [-verbose] [-allownused] [-pronpt] [-bench]

[-debug] [-batch] [-menory] [-disk] [-mengui]

[-checkversion <vers>] [-stdout <file>] [-stderr <file>]

<t ask- nanme> <t ask-ar gs>

stilts <task-nanme> hel p[=<par am nane>| *]

Known t asks:
calc
cdsskymat ch
coneskymat ch
funcs
pi xf oot
pi xsanpl e
pl ot 2d

SUN/256 13

p! ot 3d

pl ot hi st
regquery
server

sql client
sql skymat ch
sql updat e
taplint

t apquery

t apresumne
t apskymat ch
t cat

tcatn

t copy

t cube
tjoin

tl oop
tmatchl

t mat ch2
tmat chn
tmul t
trmultin

t pi pe

t skymat ch2
vot copy
vot |l i nt

pl ot 2pl ane
pl ot 2sky
pl ot 2cube
pl ot 2sphere
pl ot 2t ne

For help on the individual tasks, including their parameter lists, you can supply the word hel p after
the task name, so for instance

stilts tcopy help
resultsin

Usage: tcopy ifnt=<in-format> of nt=<out-formt>
[n=] <tabl e> [out =] <out -t abl e>

Finally, you can get help on any of the parameters of a task by writing hel p=<par am narme>, like
this:

stilts tcopy hel p=in
gives

Hel p for paraneter INin task TCOPY

Nanme:
in
Usage:
[i n=] <t abl e>
Sunmary:
Location of input table
Descri ption:
The | ocation of the input table. This nay take one of the follow ng
forns:
* A fil enane.
* A URL.
* The special value "-", meaning standard input. In this case the
i nput format nust be given explicitly using the ifnt paraneter.
Note that not all formats can be streanmed in this way.

SUN/256 14

* A systemconmand line with either a "<" character at the start, or

a "|" character at the end ("<syscnd" or "syscnd|"). This
executes the given pipeline and reads fromits standard output.
This will probably only work on unix-1like systens.

In any case, conpressed data in one of the supported conpression
formats (gzip, Unix conpress or bzip2) will be deconpressed
transparently.

Type:
uk. ac.starlink.tabl e. StarTabl e

If you use "+" instead of a parameter name in this usage, help for al the parameters will be printed.
Note that in most shells you will probably need to quote the asterisk, so you should write

stilts tcopy hel p="*'

In some cases, as described in Section 2.3, you will be prompted for the value of a parameter with a
line something like this:

mat cher - Nanme of matching al gorithm [sky]:

In this case, if you enter "hel p" or a question mark, then the parameter help entry will be printed to
the screen, and the prompt will be repeated.

For more detailed descriptions of the tasks, which includes explanatory comments and examples as
well as the information above, see the full task descriptions in the Command Reference (Appendix

B).

SUN/256 15

3 Invocation

There are a number of ways of invoking the stilts command, depending on how you have
installed the package. This section describes how to invoke it from the command line. An
alternative, using it from Jython (the Java implementation of the Python language), is described in
Section 4.

If you're using a Unix-like operating system, the easiest way isto usethesti | ts script. If you have
a full starjava installation it is in the starjava/ bi n directory. Otherwise you can download it
separately from wherever you got your STILTS installation in the first place, or find it at the top of
thestilts.jar Ortopcat-*.jar that containsyour STILTS installation, so do something like

unzip stilts.jar stilts
chnmod +x stilts

to extract it (if you don't have unzi p, try jar xvf stilts.jar stilts).stilts isasimple shell
script which just invokes java with the right classpath and the supplied arguments.

Torunusing thestilts script, first make sure that both the j ava executable and the sti | ts script
itself are on your path, and that the stilts.jar or topcat-*.jar jar fileisin the same directory as
stilts. Thentheform of invocationis:

stilts <java-flags> <stilts-flags> <task-nane> <task-args>

A simple example would be:

stilts votcopy format=binary t1.xm t2.xm

in this case, as often, there are no <j ava-flags> Or <stilts-flags>. If you use the - cl asspat h
argument or have a CLASSPATH environment variable set, then classpath elements thus specified
will be added to the classpath required to run the command. The examples in the command
descriptions below use this form for convenience.

If you don't have a Unix-like shell available however, you will need to invoke Java directly with the
appropriate classes on your classpath. If you have the file stilts.jar, in most cases you can just
write:

java <java-flags> -jar stilts.jar <stilts-flags> <task-nane> <task-args>
which in practice would look something like

java -jar /some/where/stilts.jar votcopy format=binary t1.xm t2.xm

In the most general case, Javas-j ar flag might be no good, for one of the following reasons:

1. You havethe classesin someform other thanthestilts.jar file(such astopcat-full.jar)

2. You need to specify some extra classes on the classpath, which is required e.g. for use with
JDBC (Section 3.4) or if you are extending the commands (Section 10.7.3) using your own
classes at runtime

In this case, you will need an invocation of thisform:

java <java-flags> -classpath <cl ass- pat h>
uk.ac.starlink.ttools.Stilts <stilts-flags> <task-nane> <task-args>

The example above in this case would ook something like:

java -classpath /sone/where/topcat-full.jar uk.ac.starlink.ttools.Stilts
votcopy format=binary t1.xm t2.xmn

SUN/256 16

Finally, as a convenience, it is possible to run STILTS from a TOPCAT installation by using its
-stilts flag, likethis:

topcat <java-flags> -stilts <stilts-flags> <task-nane> <task-args>
Thisis possible because TOPCAT is built ontop of STILTS, so contains a superset of its code.

The <stilts-flags>, <task-nanme> and <t ask- ar gs> parts of these invocations are explained in
Section 2, and the <class-path> and <java-flags> parts are explained in the following
subsections.

3.1 Class Path

The classpath is the list of places that Javalooks to find the bits of compiled code that it usesto run
an application. Depending on how you have done your installation the core STILTS classes could
be in various places, but they are probably in a file with one of the names stilts.jar,
topcat-lite.jar Or topcat-full.jar. The full pathname of one of these files can therefore be
used as your classpath. In some cases these files are self-contained and in some cases they reference
other jar filesin the filesystem - this means that they may or may not continue to work if you move
them from their original location.

Under certain circumstances the tools might need additional classes, for instance:

» JDBC drivers (see Section 3.4)
* Providing extended algebraic functions (see Section 10.7.3)
* Installing I/O handlers for new table formats (see SUN/252)

In this case the classpath must contain a list of al the jar files in which the required classes can be
found, separated by colons (unix) or semicolons (MS Windows). Note that even if al your jar files
are in a single directory you can't use the name of that directory as a class path - you must name
each jar file, separated by colons/semicolons.

3.2 Java Flags

In most cases it is not necessary to specify any additional arguments to the Java runtime, but it can
be useful in certain circumstances. The two main kinds of options you might want to specify
directly to Java are these:

System properties
System properties are a way of getting information into the Java runtime from the outside,
rather like environment variables. There is a list of the ones which have significance to
STILTS in Section 3.3. You can set them from the command line using a flag of the form
- Dnane=val ue. SO for instance to ensure that temporary files are written to the / hone/ scrat ch
directory, you could use the flag

-Djava.io.tnpdir=/hone/ scratch

Memory size
Java runs with a fixed amount of 'heap’ memory; this is typically 64Mb by default. If one of
the tools fails with a message that says it's out of memory then this has proved too small for the
job in hand. You can increase the heap memory with the - xnx flag. To set the heap memory
size to 256 megabytes, use the flag

- Xnx256M

(don't forget the 'M' for megabyte). You will probably find performance is dreadful if you

SUN/256 17

specify a heap size larger than the physical memory of the machine you're running on.

Y ou can specify other options to Java such as tuning and profiling flags etc, but if you want to do
that sort of thing you probably don't need me to tell you about it.

If you are using the sti | t s command-line script, any flagsto it starting - D or - X are passed directly
to the j ava executable. You can pass other flags to Java with the stilts script's -J flag; for
instance:

stilts -Xnx4M -J-verbose: gc calc 'njdTol so(0)
IS equivalent to

java - Xnx4M -verbose:gc -jar stilts.jar calc 'njdTol so(0)

3.3 System Properties

System properties are a way of getting information into the Java runtime - they are a bit like
environment variables. There are two ways to set them when using STILTS: either on the command
line using arguments of the form - bname=val ue (see Section 3.2) or in afile in your home directory
named . st arj ava. properti es, in the form of anane=val ue line. Thus submitting the flag

-Dvotabl e. strict=true
on the command line is equivalent to having the following in your . st arj ava. properti es file:

Force strict interpretation of the VOTabl e standard.
vot abl e. strict=true

The following system properties have special significanceto STILTS:

htt p. pr oxyHost
Can be used to force HTTP access to go via a named proxy; may be required if you are
attempting access to remote data or services from behind a firewall configured to block direct
HTTP connections. See java documentation for this property for more details.

j ava. awt . headl ess
May need to be set to "t rue” if running the plotting tasks on a headless server. You only need
to worry about thisif you see error messages complaining about headl essness.

java.io.tnpdir
The directory in which STILTS will write any temporary files it needs. This is usually only
doneif the - di sk flag has been specified (see Section 2.1).

jdbc.drivers
Can be set to a (colon-separated) list of JDBC driver classes using which SQL databases can
be accessed (see Section 3.4).

jel.classes
Can be set to a (colon-separated) list of classes containing static methods which define
user-provided functions for synthetic columns or subsets. (see Section 10.7.3).

mar k. wor kar ound
If set to "true”, this will work around a bug in the mar k() /reset () methods of some java
| nput St r eam classes. These are rather common, including in Sun's J2SE system libraries. Use
thisif you are seeing errors that say something like "Resetting to invalid mark". Currently
defaultsto "false”.

servi ce. maxparal | el

SUN/256 18

Raises the maximum number of concurrent queries that may be made during a multi-cone
operation. You should only increase this value with great care since you risk overloading
servers and becoming unpopular with data centres. As a rule, you should only increase this
value if you have obtained permission from the data centres whose services on which you will
be using the increased parallelism.

st ar. basi caut h. user

st ar. basi caut h. passwor d
If set, these will provide username and password for HTTP Basic Authentication. Any time the
application attempts to access an HTTP URL and is met by a 401 Unauthorized response, it
will try again supplying these user credentials. Thisis arather blunt instrument, since the same
identity is supplied regardless of which URL is being accessed, but it may be of some use in
accessing basi c-authentication protected services.

startabl e. readers
Can be set to a (colon-separated) list of custom table format input handler classes (see
SUN/252).

startabl e. st orage
Can be set to determine the default storage policy. Setting it to "di sk" has basically the same
effect as supplying the "-di sk" argument on the command line (see Section 2.1). Other
possible values are "adaptive", "nenory"”, "si deways" and "di scard"; see SUN/252. The
default is"adapt i ve", which means storing smaller tables in memory, and larger ones on disk.

startabl e. unmap
Determines whether and how unmapping of memory mapped buffers is done. Possible values
are "sun" (the default) or "none". In most cases you are advised to leave this alone, but in the
event of unmapping-related JVM crashes (not expected!), setting it to none may help.

startable.witers
Can be set to a (colon-separated) list of custom table format output handler classes (see
SUN/252).

vot abl e. nanespaci ng
Determines how namespacing is handled in input VOTable documents. Known values are
"none” (N0 namespacing, xmins declarations in VOTable document will probably confuse
parser), "l ax" (anything that looks like it is probably a VOTable element will be treated as a
VOTable element) and "strict" (VOTable elements must be properly declared in one of the
correct VOTable namespaces). May adso be set to the classname of a
uk. ac. starlink. vot abl e. Namespaci ng implementation. The default is"l ax".

votabl e. stri ct
Set true for strict enforcement of the VOTable standard when parsing VOTables. This
prevents the parser from working round certain common errors, such as missing arr aysi ze
attributes on FI ELD or PARAM el ements with dat at ype="char " . False by default.

vot abl e. ver si on
Selects the version of the VOTable standard which output VOTables will conform to by
default. May take the values "1. 0", "1. 1", "1. 2" or "1. 3". By default, version 1.2 VOTables
are written.

3.4 JDBC Configuration

This section describes additional configuration which must be done to alow the commands to
access SQL-compatible relational databases for reading or writing tables. If you don't need to talk to
SQL-type databases, you can ignore the rest of this section. The steps described here are the
standard ones for configuring JDBC (which sort-of stands for Java Database Connectivity),
described in more detail on Sun's JDBC web page.

SUN/256 19

To use STILTS with SQL-compatible databases you must:

* Have access to an SQL-compatible database locally or over the network
 HaveaJDBC driver appropriate for that database

* Install that driver for use with STILTS

* Know the format the driver uses for URL s to access database tables

» Have appropriate privileges on the database to perform the desired operations

Installing the driver consists of two steps:

1. Ensurethat the classpath you are using includes this driver class as described in Section 3.1
2. Setthejdbc. drivers system property to the name of the driver class as described in Section
3.3

These steps are all standard for use of the JIDBC system. See SUN/252 for information about JDBC
drivers known to work with STIL (the short story isthat at least MySQL and PostreSQL will work).

Here is an example of using t copy to write the results of an SQL query on a table in a MySQL
database asaVOTable:

stilts -classpath /usr/local/jars/nysqgl-connector-java.jar \
-Dj dbc. dri vers=com mmysql . j dbc. Driver \
tcopy \
i n="] dbc: nysql ://local host/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
of nt =vot abl e gsc. vot

or invoking Java directly:

java -classpath stilts.jar:/usr/local/jars/ mysql-connect-java.jar \
-Dj dbc. drivers=com nysql . jdbc. Driver \
uk.ac.starlink.ttools.Stilts tcopy \
i n="jdbc: nysql ://local host/db1#SELECT id, ra, dec FROM gsc WHERE mag < 9" \
of nt =vot abl e out =gsc. vot

Y ou have to exercise some care to get the arguments in the right order here - see Section 3.

Alternatively, you can set some of this up beforehand to make the invocation easier. If you set your
CLASSPATH environment variable to include the driver jar file (and the STILTS classes if you're
invoking Javadirectly rather than using the scripts), and if you put the line

j dbc. drivers=com nysql .jdbc. Driver

inthe . starjava. properties filein your home directory, then you could avoid having to give the
-cl asspat h and - Oj dbc. dri ver s flags respectively.

SUN/256 20

4 JyStilts- STILTS from Python

Most of the discussions and examples in this document describe using STILTS as a standalone java
application from the command line; in this case, scripting can be achieved by executing one
STILTS command, followed by another, followed by another, perhaps controlled from a shell
script, with intermediate results stored in files.

However, it is aso possible to invoke STILTS commands from within the Jython environment.
Jython is a pure-java implementation of the widely-used Python scripting language. Using Jython is
almost exactly the same as using the more usual C-based Python, except that it is not possible to use
extensions which use C code. This means that if you are familiar with Python programming, it is
very easy to string STILTS commands together in Jython.

This approach has several advantages over the conventional command-line usage:

* You can make use of python programming constructions like loops, functions and variables

* Intermediate processing stages can be kept in memory (in a python variable) rather than having
to write them out to a file and read them in for the next command; this can be much more
efficient

» Because of the previous point, there are separate read, filter, processing and write commands,
which means command lines can be shorter and less confusing

* The java startup overhead (typically a couple of seconds) happens only once when entering
jython, not once for every STILTS command

Note however that you will not be able to introduce JyStilts commands into your larger existing
Python programs if those rely on C-based extensions, such as NumPy and SciPy, since JyStilts will
only run in JPython, while C-based extensions will only run in CPython. (See however JNumeric
for some of the Numpy functionality from Jython.)

Usage from jython has syntax which is similar to command-line STILTS, but with a few changes.
The following functions are defined by JyStilts:

* A function tread, which reads a table from a file or URL and turns it into a table object in
jython

A table method wr i t e which takes atable object and writesit to file

A table method for each STILTSfilter (e.g. cmd_head, cnd_sel ect, cmd_addcol)

A table method for each STILTS output mode (e.g. node_out , node_nret a, node_sanp),

A function for each STILTStask (e.g. t mat ch2, t cat , pl ot 2sky)

A number of table methods which make table objects integrate nicely into the python
environment

Reasonably detailed documentation for these is provided in the usual Python way ("doc strings"),
and can be accessed using the Python "hel p* command, however for full documentation and
examples you should refer to this document.

In JyStilts the input, processing, filtering and output are done in separate steps, unlike in
command-line STILTS where they all have to be combined into a single line. This can make the
flow of execution easier to follow. A typical sequence will involve:

1. Reading one or more tables from file using thet r ead function

2. Perhapsfiltering the input table(s) using one or more of the cnd_* filter methods

3. Performing core processing such as crossmatching

4. Perhapsfiltering the result using one or more of the cnd_* filter methods

5. If running interactively, perhaps examining the intermediate results using one of the node_*
output modes

6. Writing thefinal result to afile using thewr i t e method

SUN/256 21

Here is an example command line invocation for crossmatching two tables:

stilts tskymatch2 inl=survey.fits \
i cmd1=" addskycoords fk4 fk5 RA1950 DEC1950 RA2000 DEC2000' \
i n2=nycat.csv ifnm2=csv \
i cmd2=" sel ect VMAG>18' \
ral=ALPHA dec1=DELTA ra2=RA2000 dec2=DEC2000 \
error=10 joi n=2not1 \
out=matched.fits

and hereiswhat it might look like in JyStilts:

>>> jnport stilts

>>> t1 = stilts.tread(' survey.fits")

>>> t1 = t1. cnd_addskycoords(tl, 'fk4', 'fk5', 'RA1950', 'DEC1950', 'RA2000', 'DEC2000')
>>> t2 = stilts.tread(' mycat.csv', 'csv')

>>> t2 = t2.cnd_sel ect (' VMAG>18')

>>> tm= stilts.tskymatch2(inl=tl, in2=t2, ral=" ALPHA', decl='DELTA',

C error=10, join="2notl")

>>> tmwite(' matched. fits')

When running interactively, it can be convenient to examine the intermediate results before
processing or writing as well, for instance:

>>> tm node_count ()

columms: 19 rows: 2102

>>> tm cnd_keepcol s(' I D ALPHA DELTA'). cnd_head(4).wite()
+

e e +
| 1D | ALPHA | DELTA |
- Fmem e ae o e e +
| 262 | 149.82439 | -0.11249 |
| 263 | 150.14438 | -0.11785 |
| 265 | 149.92944 | -0.11667 |
| 273 | 149. 93185 | -0.12566 |
o - e o - +

More detail about how to run JyStilts and its usage is given in the following subsections.

4.1 Running JyStilts

The easiest way to run JyStilts is to download the standalone j ystilts.jar file fromthe STILTS
web page, and simply run

java -jar jystilts.jar

This file includes jython itself and all the STILTS and JyStilts classes. To use the JyStilts
commands, you will need to import the stilts module using alinelike"i nport stilts" from Jython
in the usual Python way.

Alternatively, you can run JyStilts from an existing Jython installation using just the stilts.jar
file. First, make sure that Jython isinstalled; it is available from http://www.jython.org/, and comes
asasdaf-installing jar file. JyStilts has been tested, and appears to work, on versions 2.5.0 and 2.5.1;
it's recommended to use the latest version if you don't have some reason to use one of the others.
Some earlier versions of JyStilts worked with jython 2.2.1, but that no longer seems to be the case;
it might be possible to reinstate thisif there is some pressing need.

To use JyStilts, you then just need to start jython with the sti I ts.jar file on your classpath, for
instance like this:

jython -J-classpath /sone/where/stilts.jar

or (C-shdll):

SUN/256 22

set env CLASSPATH / sone/ where/stilts.jar
j yt hon

Optionally, you can extract the stilts. py module from the stiltsjar file (using a command like
"unzip stilts.jar stilts.py"”) and put it in a directory on your jython sys.path (eg.
j ythondi r/ Li b); this may cause jython to compile it to bytecode (stilts$py. cl ass) and thus
improve startup time. Note that in this case you will still needthestilts.jar fileonyour classpath
as above.

42 Tablel/O

Thetread function reads tables from an external location into JyStilts. Its arguments are as follows:

tread(l ocation, fm="(auto)', randonrFal se)

and its return value is a table object, which can be interrogated directly, or used in other JyStilts
commands. Usually, the location argument should be a string which gives the filename or URL at
which a table can be found. Y ou can aternatively use a readable python file (or file-like) object for
the location, but be aware that this may be less efficient on memory. As with command-line
STILTS, thef nt argument is one of the optionsin Section 5.2.1, but may be left as the default if the
format auto-detectable, which currently means if the file is in VOTable, FITS, CDF or GBIN
format. The random argument can be used to ensure that the returned file has random (i.e. not
sequential-only) access; for some table formats the default way of reading them in means that their
rows can only be accessed in sequence. Depending on what processing you are doing, that may or
may not be satisfactory.

Examples of reading atable are:

>>> jnmport stilts

>>> t1 = stilts.tread('cat.fits")

>>> t2 = stilts.tread(open('cat.fits', 'rb")) # less efficient
>>> t3 = stilts.tread('data.csv', fm="ascil', randon¥True)

The most straightforward way to write a table (presumably the result of one or a sequence of
JyStilts commands) isusing thewr i t e table method:

write(self, location=None, fnt='"(auto)")

Thel ocat i on gives either a string which is afilename, or awritable python file (or file-like) object.
Again, use of afilename is preferred as it may(?) be more efficient. If no location is supplied, the
table will be written to standard output (useful for inspection, but a bad idea for binary formats or
very large tables). Thef nt argument is one of the output formatsin Section 5.2.2, but may be left as
the default if the format can be guessed from the filename.

Examples of writing atable are:

>>> table.wite('out.fits")

>>> table.wite(open('out.fits', "wh')) # less efficient?
>>> table.wite(' catal ogue.dat’', fnt="csv')

>>> table.wite() # display to stdout

Often it's convenient to combine examining the table with filtering steps, for instance:

>>> table. every(100). wite()
would write only every hundredth row, and

SUN/256 23

>>> (table.cmd sorthead(lO ' BMAG)
.cnd_sel ect (" ' NULL_VNMAG)
.cmd_keepcol s(' BVAG VVAG)
. wite())
would write only the BMAG and VMAG columns for the ten rows in which VMAG is non-null

with the lowest BMAG values.

Y ou can also read and write multiple tables, if you use a table format for which that is appropriate.
This generally means FITS (which can store tables in multiple extensions) or VOTable (which can
store multiple TABLE elements in one document). This is done using the treads and twrites
functions. The functions look like this:

treads(l ocation, fnt='(auto)', randomFFal se)

twites(tables, l|ocation=None, fmt="(auto)')
These are similar to the tread and twite functions, except that treads returns a list of tables
rather than a single table, and twr it es's t abl es argument is an iterable over tables rather than a
single table. Here is an example of reading multiple tables from a multi-extension FITS file,
counting the rows in each, and then writing them out to amulti-TABLE VOTablefile:

import stilts

tables = stilts.treads('nulti.fits")
print([t.getRowCount() for t in tables])
stilts.twites(tables, "nulti.vot', fnt="votable')

4.3 Table objects

The tables read by the tread function and produced by operating on them within JyStilts have a
number of methods defined on them. These are explained below.

First, a number of specia methods are defined which allow a table to behave in python like a
sequence of rows:

_iter__
This special method means that the table can be treated as an iterable, so that for instance "f or
row i n table:" will iterate over all rows.

__len__ (random-access tables only)
This special method means that you can use the expression "l en(t abl e) " to count the number
of rows. This method is not available for tables with sequential access only.

__getitem _ (random-access tables only)
Returns a row at a given index in the table. This special method means that you can use
indexing expressions like "t abl e[3] " Or t abl e[0: 10] to obtain the row or rows corresponding
to a given row index or dlice. This method is not available for tables with sequential access
only.

add__, mul __, rmul__

These special methods allow the addition and multi pllcat|on operators "+" and and "+" to be
used with the sense of concatenation. Thus "t abl e1+t abl e2" will produce a new table with the
rows of t abl e1 followed by the rows of t abl e2. Note this will only work if both tables have
compatible columns. Similarly "t abl e*3" would produce a table like t abl e but with al its

rows repeated three times.

In al of these cases, each row object that is accessed is a tuple of the column values for that row of
the table. The tuple items (table cells) may be accessed using a key which is a numeric index or
dice in the usual way, or with a key which is a column name, or one of the Columninfo objects
returned by col urms().

SUN/256 24

Sometimes, the result of a table operation will be a table which does not have random access. For
such tables you can iterate over the rows, but not get their row values by indexing.
Non-random-access tables are also peculiar in that get RowCount returns a negative value. To take a
table which may not have random access and make it capable of random access, use the random
filter: "t abl e=t abl e. cnd_r andon() ".

To a large extent it is possible to duplicate the functions of the various STILTS commands by
writing your own python code based on these python-friendly table access methods. Note however
that such python-based processing is likely to be much slower than the STILTS equivalents. If
performance is important to you, you should try in most cases to use the various cmd_* commands
etc for table processing.

Second, some additional utility methods are defined:

count _rows()
Returns the number of rows in the table in the most efficient way possible. If the table is
random-access or otherwise knows its row count without further calculation, that value is
returned. Otherwise, the rows are iterated over without reading, which may take some time but
should be much more efficient than iterating over the table as an iterable, since the row cell
dataitself is not retrieved.

col umms()
Returns a tuple of the column descriptors for the table. Each item in the tuple is an instance of
the Columninfo class; useful methods include get Name(), get UnitString(), getUCD().
str(col um) will return its name.

col dat a(key)
Returns a sequence of the values for the given column. The sequence will have the same
number of elements as the number of rows in the table. The key argument may be either an
integer column index (if negative, counts backwards from the end), or the column name or info
object. The returned value will always be iterable (has __iter__), but will only be indexable
(has__len__and __getitem) if thetableisrandom access.

par anet ers()
Returns a name to value mapping of the table parameters (per-table metadata). This does not
include all the available information about those parameters, for instance unit and UCD
information is not included. For more detailed information, use the st ar Tabl e methods. Note
that as currently implemented, changing the values in the returned mapping will not change the
actual table parameter values.

write(locati on=None, fnt=None)
Outputs the table. The optional | ocati on argument gives a filename or writable file object,
and the optional fnt argument gives a format, one of the options listed in Section 5.2.1. If
| ocation is not supplied, output is to standard output, so in an interactive session it will be
printed to the terminal. If fnt is not supplied, an attempt will be made to guess a suitable
format based on the location.

Third, a set of cnd_* methods corresponding to the STILTSfilters are avail able; these are described
in Section 4.4.

Fourth, a set of mode_* methods corresponding to the STILTS output modes are available; these are
described in Section 4.5.

Finally, tables are also instances of the StarTable interface defined by STIL, which is the table 1/0
layer underlying STILTS. The full documentation can be found in the user manual and javadocs on
the STIL page, and all the java methods can be used from JyStilts, but in most cases there are more
pythonic equivalents provided, as described above.

SUN/256 25

Here are some examples of these methods in use:

>>> jnport stilts
>>> xsc = stilts.tread('/data/table/2mss_xsc.xm') # read table

>>> xsc. node_count () # show rows/ col utm count

colums: 6 rows: 1646844

>>> print xsc.col ums() # full info on colums

(id(string), ra(Doubl e)/degrees, dec(Double)/degrees, jmag(Double)/nmag, hmag(Double)/ mg,
>>> print [str(col) for col in xsc.colums()] # colum nanes only

['id, 'ra", "dec', "jmag', 'hmag', 'kmag']

>>> row = xsc[1000000] # examne mllionth row

>>> print row
(u' 19433000+4003190', 295.875, 40.055286, 14.449, 13.906, 13.374)

>>> print row 0] # cell by index
19433000+4003190
>>> print rowf'ra'], row ' dec'] # cells by col nane

295. 875 40. 055286
>>> print |en(xsc) # count rows, maybe sl ow
1646844
>>> print xsc.count_rows() # count rows efficiently
1646844L
>>> print (xsc+xsc).count_rows() #
3293688L
>>> print (xsc*10000). count _rows()
16468440000L
>>> for row in Xsc: # sel ect rows using python commands

if rowf4] - row 3] > 3.0:

print row 0]

11165243+2925509
20491597+5119089
04330238+0858101
01182715-1013248
11244075+5218078
>>> # same thing using stilts (50x faster)
>>> (xsc.cnd_select('hmag - jnag > 3.0')
.. .cnd_keepcol s('id")
.wite())

concat enate

| 11165243+2925509 |
| 20491597+5119089 |
| 04330238+0858101 |
| 01182715-1013248 |
| 11244075+5218078 |

The following are all ways to obtain the value of a given cell in the table from the previous
example.

xsc.getCell (99, 0)
xsc[99] [0]
xsc[99]['1d"]
xsc. col dat a(0) [99]
xsc.coldata('id)[99]
Some of these methods may be more efficient than others. Note that none of these methods will

work if the table has sequential-only access.

4.4 Tablefilter commands (cnd_*)

The STILTS table filters documented in Section 6.1 are available in JyStilts as table methods which
start with the "cnd_" prefix. The return value when calling the method on a table object is another
table object. The arguments, which are the same as those required for the command-line version, are
supplied as a list of unnamed arguments of the cnd_* function. In genera the arguments are strings,
but numbers are accepted where appropriate. Use the python hel p command to see the usage of
each method.

SUN/256 26

So, tousethetail filter to select only the last ten lines of atable, you can write:

table.cnd_tail (10)
To set units of "Hz" for some columns using the col net a filter write:

table.cnd_colneta(' -units', 'Hz', ' AFREQ BFREQ CFREQ)

Note that where afilter argument is a space-separated list it must appear as a single argument in the
filter invocation, just asin command-line STILTS.

Thefilter commands are also available as modul e functions. This means that

stilts.cnd_head(table, 10)
and

t abl e. cnd_head(10)
have exactly the same meaning. It's a matter of taste which you prefer.

4.5 Table output modes (node_*)

The STILTS table output modes documented in Section 6.4 are available in JyStilts as table
methods which start with the "node_" prefix. These methods have no return value, but cause
something to happen, in some cases output to be written to standard output. Some of these methods
have named arguments, others have no arguments. Use the python hel p command to see the usage
of each method.

These methods are straightforward to use. The following example calculates statistics for a table
and writes the results to standard output:

>>> t abl e. nnde_st at s()

and this one attempts to send the table via the SAMP communications protocol to a running
instance of TOPCAT:

>>> tabl e. nrode_sanp(client='"topcat')

The output modes are also available as module functions. This means that

stilts. node_sanp(table, client="topcat')

and

tabl e. node_sanp(client="topcat)
have exactly the same meaning. It's a matter of taste which you prefer.

4.6 Tasks

The STILTS tasks documented in Appendix B can be used under their usual names if they are
imported from the sti | ts module. STILTS parameters as are supplied as named arguments of the
python functions. In general they are either table objects for table input parameters or strings, but in
some cases python arrays are accepted, and numbers may be used where appropriate. The STILTS
input format (i fnt, i stream), filter (cmd/i cmd/ocnd) and output mode (onode) parameters are not
used however; instead perform filtering directly on the table inputs and outputs using the python
cmd_* and node_* table methods or functions.

SUN/256 27

Here is an example of concatenating two similar tables together and writing the result:

>>> fromstilts inport tread, tcat
>>> t1 = tread('datal.csv', fnt="csv')
>>> t2 = tread('data2.csv', fnt="csv')
>>> t12 = tcat([t1,t2], seqcol = seq')
>>> t12.wite('tl12.csv', fnt="csv')

Note that for those tasks which have a parameter named "i n" in command-line STILTS, it has been
renamed as "i n_" for the python version, to avoid a name clash with the python reserved word. In
most cases, thei n parameter is the first, mandatory parameter in any case, and so can be referenced
by position asin the previous example (we could have written "t cat (i n_=[t 1, t2])" instead).

4.7 Calculation Functions

The various functions from the expression language listed in Section 10.5 are available directly
from JyStilts. Each of the subsections in that section is a class in the sti | t s module namespace,
with unbound functions representing the functions.

This means you can use them like this:

>>> jnport stilts
>>> print stilts. Tines. njdTol so(54292)
2007-07-11T00: 00: 00

or like this:

>>> fromstilts inport CoordsDegrees
>>> di st = CoordsDegrees. skyDi st anceDegrees(ral, decl, ra2, dec2)

SUN/256 28

5Tablel/O

Most of the tools in this package either read one or more tables as input, or write one or more tables
as output, or both. This section explains what kind of tables the tools can read and write, and how
you tell them where to find the tables to operate on.

In most cases input and output table specifications are given by parameters with the following
names (or similar ones):

in

Location of the input table

i fnt

Format of the input table

out

Location of the output table

of nt

Format of the output table

The values of these parameters are discussed in more detail below.

5.1 Table Locations

The location of tables for input and output are usually given using the i n and out parameters
respectively. These are often, but not always, filenames. The possibilities are these:

Filename
Very often, you will simply specify a filename as location, and the tool will just read
from/writeto it in the usual way.

URL
Tables can be read from URLs directly, and in some cases written to them as well. Some
non-standard URL protocols are supported as well as the usual ones. Thelistis:

htt p:
Read from HTTP resources.

ftp:
Read from anonymous FTP resources.

file:
Read from local files. This is not particularly useful since you can do much the same
using just the filename. There is a difference: using this form forces reads to be sequential
rather than random access, which may allow you to experience a different set of different
performance characteristics and bugs.

jar:
Specidised protocol for looking inside Java Archive files - see JarURLConnection
documentation.

nmyspace:
Accesses files in the AstroGrid "MySpace" virtua file store. These URL s ook something
like "nyspace: / survey/iras_psc. xm ", and can access files in the myspace are that the
user is currently logged into. These URLSs can be used for both input and output of tables.
To use them you must have an AstroGrid account and the AstroGrid WorkBench or
similar must be running; if you're not currently logged in a dialogue will pop up to ask
you for name and password.

i vo:

SUN/256 29

Understands ivo-type URLs which signify files in the AstroGrid "MySpace” virtua file
store. These URLs look something like
"ivo://uk.ac.le.star/fil emanager#node-2583". These URLs can be used for both
input and output of tables. To use them you must have an AstroGrid account and the
AstroGrid WorkBench or similar must be running; if you're not currently logged in a
dialogue will pop up to ask you for name and password.

j dbc:
Used for communicating with SQL-compliant relational databases. These are a bit
different to normal URLs - see section Section 3.4.

Minussign ("-")
The special location "-" (minus sign) indicates standard input (for reading) or standard output
(for writing). Thisallows you to use STILTS commandsin anormal Unix pipeline.

System command (" < syscmd" or " syscmd |)
If the location starts with a "<" character or ends with a”| " character, the rest of the string is
taken as a command line to be executed by the system shell. For instance alocation like "<cat
header.txt data.txt™ (Or equivalently "cat header.txt data.txt|") could be used to
prepend a header line to an ASCII data file before it is passed to the STILTS ASCII-format
input handler. Note this syntax will probably only work on Unix-like systems.

In any of these cases, for input locations compression is taken care of automatically. That means
that you can give the filename or URL of a file which is compressed using gzi p, bzi p2 or Unix
conpr ess and the program will uncompressit on the fly.

5.2 Table For mats

The generic table commands in STILTS (currently t pi pe, tcopy, tmulti, tmultin, tcat, tcatn,
tl oop, tjoin, tcube, tmatchl, tmat ch2, t mat chn, t skymat ch2, pi xf oot, pi xsanpl e, pl ot 2cube,
pl ot 2pl ane, pl ot 2sky, plot2sphere, plot2tinme, plot2d, plot3d, plothist, cdsskymatch,
coneskymat ch, sql skymat ch, tapquery, tapresune, tapskymatch and regquery) have no native
format for table storage, they can process data in a number of formats equally well. STIL has its
own model of what atable consists of, which is basicaly:

» Some per-table metadata (parameters)

* A number of columns

* Some per-column metadata

* A number of rows, each containing one entry per column

Some table formats have better facilities for storing this sort of thing than others, and when
performing conversions STILTS does its best to trandate between them, but it can't perform the
impossible: for instance there is nowhere in a Comma-Separated Values file to store descriptions of
column units, so these will be lost when converting from VOTable to CSV formats.

The formats the package knows about are dependent on the input and output handlers currently
installed. The ones installed by default are listed in the following subsections. More may be added
in the future, and it is possible to install new ones at runtime - see the STIL documentation for
details.

Some formats can be used to hold multiple tables in a single file, and others can only hold a single
table per file.

5.2.1 Input Formats

Some of the tools in this package ask you to specify the format of input tables using the i f nt

SUN/256 30

parameter. The following list gives the values usually allowed for this (matching is
case-insensitive):

fits

FITS format - FITS binary or ASCII tables can be read. For commands which take a single
input table, by default the first table HDU in the file will used, but this can be atered for
multi-extension FITS files by supplying an identifier after a '# sign. The identifier can be
either an HDU index or the extension name (EXTNAME header, possibly followed by "-" and
the EXTVER header), so "tablefits#3" means the third HDU extension, and
"tablefitstUV_DATA" means the HDU with the value "UV_DATA" for its EXTNAME
header card.

colfits
Column-oriented FITS format. This is where a table is stored as a BINTABLE extension
which contains a single row, each cell of the row containing a whole column of the table it
represents. This has different performance characteristics from normal FITS tables; in
particular it may be considerably more efficient for very large, and especialy very wide tables
where not all of the columns are required at any one time. Only likely to be efficient for
uncompressed files on disk.

vot abl e
VOTable format - any legal version 1.0, 1.1, 1.2 or 1.3 format V OTable documents, and many
illegal ones, can be read. For commands which take a single input table, by default the first
TABLE element in the document is used, but this can be altered by supplying the O-based index
after a'#' sign, so "tablexml#4" means the fifth TABLE el ement in the document.

cdf
NASA Common Data Format. CDF is described at http://cdf.gsfc.nasa.gov/.

asci i
Plain text file with one row per column in which columns are separated by whitespace.

Csv

Comma-Separated Vaues format, using approximately the conventions used by M S Excel.
gbin

Special-interest GBIN format for internal use by the DPAC consortium in relation to the Gaia

astrometry satellite. Additional classes (data model and GaiaTools GBIN reader) are required

on the classpath a runtime to wuse this format (eg. stilts -classpath

MDBExpl or er St andal one. j ar or j ava -cl asspath
stilts.jar: MDBExpl orer St andal one.jar uk.ac.starlink.ttools.Stil ts).

t st
Tab-Separated Table format, as used by Starlink's GAIA and ESO's SkyCat amongst other

tools.

i pac

IPAC Table Format.

wdc
World Datacentre Format (experimental).

For more details on these formats, see the descriptionsin SUN/253.

In some cases (when using VOTable, FITS, CDF or GBIN format tables) the tools can detect the
table format automatically, and no explicit specification is necessary. If this isn't the case and you
omit the format specification, the tool will fail with a suitable error message. It is always safe to
specify the format explicitly; this will be slightly more efficient, and may lead to more helpful error
messages in the case that the table can't be read correctly.

SUN/256 31

5.2.2 Output Formats

Some of the tools ask you to specify the format of output tables using the of nt parameter. The
following list gives the values usually allowed for this; in some cases as you can see there are
several variants of a given format. You can abbreviate these names, and the first match in the list
below will be used, so for instance specifying votable IS equivalent to specifying
vot abl e-tabl edata andfits isequivalenttofits- pl us. Matching is case-insensitive.

fits-plus
FITS file; primary HDU contains a VOTable representation of the metadata, subsequent
extensions contain one or more FITS binary tables (behaves the sasme asfi t s- basi ¢ for most
purposes)

fits-basic
FITSfile; primary HDU is data-less, subsequent extensions contain a FITS binary table

colfits-plus
FITS file containing a BINTABLE with a single row; each cell of the row contains a whole
column's worth of data. The primary HDU aso contains a VOTable representation of the
metadata.

colfits-basic
FITS file containing a BINTABLE with a single row; each cell of the row contains a whole
column's worth of data. The primary HDU contains nothing.

vot abl e-t abl edat a

VOTable document with TABLEDATA (pure XML) encoding

vot abl e- bi nary-inline
VOTable document with BINARY -encoded data inline within a STREAM element. If VOTable
1.3 output is in force (see vot abl e. ver si on System property), vot abl e- bi nary2-inline iS
provided instead.

vot abl e- bi nary- hr ef
VOTable document with BINARY -encoded data in a separate file (only if not writing to a
stream). If VOTable 1.3 output is in force (see votable.version System property),
vot abl e- bi nary2- href isprovided instead.

vot abl e-fits-href
V OTable document with FITS-encoded datain a separate file (only if not writing to a stream)

votable-fits-inline
V OTable document with FITS-encoded data inline within a STREAMelement

asci i

Simple space-separated ASCI| file format

t ext
Human-readable plain text (with headers and column boundaries marked out)

Csv
Comma-Separated Value format. The first line is a header which contains the column names.

csv- noheader
Comma-Separated Value format with no header line.

i pac
IPAC Table Format.

t st
Tab-Separated Table format.

ht m

SUN/256 32

Standalone HTML document containing a TABLE element

ht il - el enent
HTML TABLE element

| at ex
LaTeX t abul ar environment

| at ex- docunent
LaTeX standalone document containing at abul ar environment

m rage
Mirage input format

For more details on these formats, see the descriptionsin SUN/253.

In some cases the tools may guess what output format you want by looking at the extension of the
output filename you have specified.

SUN/256 33

6 Table Pipelines

Several of the tasks available in STILTS take one or more input tables, do something or other with
them, and produce one or more output tables. Thisis a pretty obvious way to go about things, and in
the most straightforward case that's exactly what happens. you name one or more input tables,
specify the processing parameters, and name an output table; the task then reads the input tables
from disk, does the processing and writes the output table to disk.

However, many of the tasksin STILTS allow you to do pre-processing of the input tables before the
main job, post-processing of the output table after the main job, and to decide what happens to the
final tabular result, without any intermediate storage of the data. Examples of the kind of
pre-processing you might want to do are to rearrange the columns so that they have the right units
for the main task, or replace 'magic' values such as -999 with genuine blank values; the kind of
post-processing you might want to do is to sort the rows in the output table or delete some of the
columns you're not interested in. As for the destination of the final table, you might want to write it
to disk, but equally you might not want to store it anywhere, but only be interested in counting the
number of rows, or seeing the minima/maxima of a few of the columns, or you might want to send
it straight to TOPCAT or some other table viewing application for interactive analysis.

Clearly, you could achieve the same effect by running multiple applications. preprocess your
original input tables to write intermediate files on disk, run the main processing application which
reads those files from disk and writes a new output file, run another application to postprocess the
output file and write a new final output file, and finally do something with this such as counting the
rows in it or viewing it in TOPCAT. However, by doing it all within a single task instead, no
intermediate results have to be stored, and the whole sequence can be very much more efficient.
You can think of this (if it helps) like a Unix pipeline, except what is being streamed from the start
to the end of the pipe is not bytes, but table metadata and data. In most cases, the table data is
streamed through the pipeline arow at atime, meaning that the amount of memory required is small
(though in some cases, for instance row sorting and crossmatching, thisis not possible).

Tasks which allow this pre/post-processing, or "filtering”, have parameters with names like "cnd"
which you use to specify processing steps. Tasks with multiple input tables (t mat ch2, t skymat ch2,
tcatn, tjoi n) may have parameters named i cnd1, i cnd2, ... for preprocessing the different input
tables and ocnd for postprocessing the output table. t pi pe does nothing except filtering, so there is
no distinction between pre- and post-processing, and its filter parameter is just named cnd. t pi pe
additionally hasascri pt parameter which allows you to use atext file to write the commandsiin, to
prevent the command line getting too long. In both cases there is a parameter named onode which
defines the "output mode", that is, what happens to the post-processed output table that comes out
of the end of the pipeline.

Section 6.1 lists the processing steps available, and explains how to use them, Section 6.2 and
Section 6.3 describe the syntax used in some of these filter commands for specifying columns, and
Section 6.4 describes the available output modes. See the examples in the command reference, and
particularly thet pi pe examples (Appendix B.35.2), for some examples putting all this together.

6.1 Processing Filters

This section lists the filter commands which can be used for table pipeline processing, in
conjunction with crd- or scri pt -type parameters.

Y ou can string as many of these together as you like. On the command line, you can repeat the cnd
(or i cnd1, or ocnd...) parameter multiple times, or use one cnd parameter and separate different
filter specifiers with semicolons (';). The effect is the same.

It's important to note that each command in the sequence of processing steps acts on the table at that

SUN/256 34

point in the sequence. Thus either of the two identical invocations:

stilts tpipe cnd="delcols 1; delcols 1; delcols 1
stilts tpipe cmd="delcols 1' cnd="delcols 1' cnd='delcols 1'

has the same effect as

stilts tpipe cnd="delcols "1 2 3"

since in the first case the columns are shifted | eft after each one is deleted, so the table seen by each
step has one fewer column than the one before. Note also the use of quotes in the latter of the
examples above, which is necessary so that the <colid-list> of the del cols command is
interpreted as one argument not three separate words.

The available filters are described in the following subsections.

6.1.1 addcol

Usage:

addcol [-after <col-id> | -before <col-id>]
[-units <units>] [-ucd <ucd>] [-utype <utype>] [-desc <descri p>]
<col - name> <expr >

Add a new column called <col - nane> defined by the algebraic expression <expr>. By default the
new column appears after the last column of the table, but you can position it either before or after a
specified column using the -before or -after flags respectively. The -units, -ucd -utype and
- desc flags can be used to define metadata values for the new column.

Syntax for the <expr > and <col -i d> argumentsis described in the manual.

6.1.2 addpi xsanpl e

Usage:

addpi xsanpl e [-radi us <expr-rad>] [-systens <in-sys> <pi x-sys>]
<expr-lon> <expr-|at> <heal pi x-file>

Samples pixel data from an all-sky image file in HEALPix format. The <heal pi x-fi | e> argument
must be the filename of atable containing HEALPix pixel data. The URL of such afile can be used
instead, but local files are likely to be more efficient.

The <expr-1on> and <expr-|at> arguments give expressions for the longitude and latitude in
degrees for each row of the input table; this is usually just the column names. The long/lat must
usually be in the same coordinate system as that used for the HEALPix data, so if the one isin
galactic coordinates the other must be as well. If this is not the case, use the - syst ens flag to give
the input long/lat and healpix data coordinate system names respectively. The available coordinate
system names are:

i crs: ICRS (Hipparcos) (Right Ascension, Declination)

fk5: FK5 J2000.0 (Right Ascension, Declination)

fk4: FK4 B1950.0 (Right Ascension, Declination)

gal acti c: IAU 1958 Galactic (Longitude, L atitude)

super gal acti c: de Vaucouleurs Supergalactic (Longitude, Latitude)
ecliptic: Ecliptic (Longitude, Latitude)

The <expr-rad>, if present, is a constant or expression giving the radius in degrees over which
pixels will be averaged to obtain the result values. Note that this averaging is somewhat

SUN/256 35

approximate; pixels partly covered by the specified disc are weighted the same as those fully
covered. If no radiusis specified, the value of the pixel covering the central position will be used.

The <heal pi x-fil e> file is a table with one row per HEALPix pixel and one or more columns
representing pixel data. A new column will be added to the output table corresponding to each of
these pixel columns. This type of data is available in FITS tables for a number of all-sky data sets,
particularly from the LAMBDA (http://lambda.gsfc.nasa.gov/) archive; see for instance the page on
foreground products (including dust emission, reddening etc) or WMAP 7 year data. If the filename
given does not appear to point to a file of the appropriate format, an error will result. Note the
LAMBDA files mostly (all?) use galactic coordinates, so coordinate conversion using the - syst ens
flag may be appropriate, see above.

Syntax for the <expr -1 on> , <expr - | at > and <expr - r ad> arguments is described in the manual.
Thisfilter is somewhat experimental, and its usage may be changed or replaced in a future version.

Note: you may prefer to usethe pi xsanpl e command instead.

6.1.3 addr esol ve

Usage:

addr esol ve <col -i d- obj name> <col - nane-ra> <col - name- dec>

Performs name resolution on the string-valued column <col - i d- obj name> and appends two new
columns <col -nane-ra> and <col - name- dec> containing the resolved Right Ascension and
Declination in degrees.

Syntax for the <col -i d- obj name> argument is described in Section 6.2.

UCDs are added to the new columns in a way which tries to be consistent with any UCDs aready
existing in the table.

Since this filter works by interrogating a remote service, it will obviously be slow. The current
implementation is experimental; it may be replaced in a future release by some way of doing the
same thing (perhaps a new STILTS task) which is able to work more efficiently by dispatching
multiple concurrent requests.

Thisis currently implemented using the Simbad service operated by CDS.

6.1.4 addskycoor ds

Usage:

addskycoords [-epoch <expr>] [-inunit deg|rad|sex] [-outunit deg|rad|sex]
<i nsys> <outsys> <col -id1> <col -1d2> <col -nanel> <col - nane2>

Add new columns to the table representing position on the sky. The values are determined by
converting a sky position whose coordinates are contained in existing columns. The <col -i d>
arguments give identifiers for the two input coordinate columns in the coordinate system named by
<i nsys>, and the <col - name> arguments name the two new columns, which will be in the
coordinate system named by <out sys>. The <i nsys> and <out sys> coordinate system specifiers are
one of

e icrs:|ICRS (Hipparcos) (Right Ascension, Declination)
e fk5: FK5J2000.0 (Right Ascension, Declination)
e fk4: FK4 B1950.0 (Right Ascension, Declination)

SUN/256 36

* galactic: AU 1958 Galactic (Longitude, Latitude)
* supergal acti c: de Vaucouleurs Supergalactic (Longitude, L atitude)
» ecliptic: Ecliptic (Longitude, Latitude)

The -inunit and - outunit flags may be used to indicate the units of the existing coordinates and
the units for the new coordinates respectively; use one of degr ees, radi ans Or sexagesi mal (may
be abbreviated), otherwise degrees will be assumed. For sexagesimal, the two corresponding
columns must be string-valued in forms like hh:mm:ss.s and dd:mm:ss.s respectively.

For certain conversions, the value specified by the - epoch flag is of significance. Where significant
its value defaults to 2000.0.

Syntax for the <expr >, <col -i d1> and <col -i d2> arguments is described in the manual.

6.1.5assert

Usage:

assert <expr>

Check that a boolean expression is true for each row. If the expression <expr> does not evaluate
true for any row of the table, execution terminates with an error. As long as no error occurs, the
output tableisidentical to the input one.

The exception generated by an assertion violation is of class
uk.ac.starlink.ttools.filter.AssertException athough that is not usually obvious if you are
running from the shell in the usual way.

Syntax for the <expr > argument is described in Section 10.

6.1.6 badval

Usage:
badval <bad-val > <colid-I|ist>

For each column specified in <col i d- 1 i st > any occurrence of the value <bad- val > isreplaced by a
blank entry.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.7 cache

Usage:
cache

Stores in memory or on disk a temporary copy of the table at this point in the pipeline. This can
provide improvements in efficiency if there is an expensive step upstream and a step which requires
more than one read of the data downstream. If you see an error like "Can't re-read data from stream”
then adding this step near the start of the filters might help.

The result of thisfilter is guaranteed to be random-access.

See also the r andomfilter, which caches only when the input table is not random-access.

SUN/256 37

6.1.8 check

Usage:
check

Runs checks on the table at the indicated point in the processing pipeline. This is strictly a
debugging measure, and may be time-consuming for large tables.

6.1.9 cl ear par ans

Usage:

cl ear parans <pnane> ...

Clears the value of one or more named parameters. Each of the <pnane> values supplied may be
either a parameter name or a simple wildcard expression matching parameter names. Currently the
only wildcarding is a"*" to match any sequence of characters. cl earparans * will clear al the
parametersin the table.

It isnot an error to supply <pname>s which do not exist in the table - these have no effect.

6.1.10 col net a
Usage:
colmeta [-name <nane>] [-units <units>] [-ucd <ucd>] [-utype <utype>]

[-desc <descri p>]
<colid-list>

Modifies the metadata of one or more columns. Some or al of the name, units, ucd, utype and
description of the column(s), identified by <coli d-1ist> can be set by using some or al of the
listed flags. Typically, <col i d-1i st > will simply be the name of a single column.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.11 del col s

Usage:
del cols <colid-Ilist>

Delete the specified columns. The same column may harmlessly be specified more than once.

Syntax for the <col i d- 1 i st > argument is described in Section 6.3.

6.1.12 every

Usage:

every <step>
Include only every <st ep>'th row in the result, starting with the first row.

6.1.13 expl odeal |

SUN/256 38

Usage:
expl odeal | [-ifndim<ndinmp] [-ifshape <di ns>]

Replaces any columns which is an N-element arrays with N scalar columns. Only columns with
fixed array sizes are affected. The action can be restricted to only columns of a certain shape using
the flags.

If the -i f ndi mflag is used, then only columns of dimensionality <ndi m> will be exploded. <ndi m»
may bel, 2,

If the -i f shape flag is used, then only columns with a specific shape will be exploded; <di ms> isa

space- or commarseparated list of dimension extents, with the most rapidly-varying first, e.g. 2 5'
to explode all 2 x 5 element array columns.

6.1.14 expl odecol s

Usage:
expl odecol s <colid-Iist>

Takes a list of specified columns which represent N-element arrays and replaces each one with N
scalar columns. Each of the columns specified by <colid-1ist> must have a fixed-length array
type, though not al the arrays need to have the same number of elements.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.15fi xcol nares

Usage:

fi xcol nanes

Renames all columns and parameters in the input table so that they have names which have
convenient syntax for STILTS. For the most part this means replacing spaces and other
non-al phanumeric characters with underscores. This is a convenience which lets you use column
names in algebraic expressions and other STILTS syntax.

6.1.16 head

Usage:
head <nr ows>

Include only the first <nr ows> rows of the table. If the table has fewer than <nr ows> rows then it
will be unchanged.

6.1.17 keepcol s

Usage:
keepcol s <colid-Ilist>

Select the columns from the input table which will be included in the output table. The output table
will include only those columns listed in <col i d-1ist>, in that order. The same column may be
listed more than once, in which case it will appear in the output table more than once.

SUN/256 39

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.18 et a

Usage:
neta [<item> ...]

Provides information about the metadata for each column. This filter turns the table sideways, so
that each row of the output corresponds to a column of the input. The columns of the output table
contain metadata items such as column name, units, UCD etc corresponding to each column of the
input table.

By default the output table contains columns for the following items:

I ndex: Position of column in table

Narre: Column name

C ass: Datatype of objectsin column

Shape: Shape of array values

El Si ze: Size of each element in column (mostly useful for strings)
Uni ts: Unit string

Descri pti on: Description of datain the column

ucD: Unified Content Descriptor

Ut ype: Type in data model

aswell as any table-specific column metadata items that the table contains.

However, the output may be customised by supplying one or more <i t em> headings. These may be
selected from the above as well as the following:

e UCD desc: Textua description of UCD

as well as any table-specific metadata. It is not an error to specify an item for which no metadata
existsin any of the columns (such entries will result in empty columns).

Any table parameters of the input table are propagated to the output one.

6.1.19 progr ess

Usage:

progress

Monitors progress by displaying the number of rows processed so far on the termina (standard
error). This number is updated every second or thereabouts; if all the processing is done in under a
second you may not see any output. If the total number of rows in the table is known, an ASCII-art
progress bar is updated, otherwise just the number of rows seen so far is written.

Note under some circumstances progress may appear to complete before the actual work of the task

is done since part of the processing involves slurping up the whole table to provide random access
on it. In this case, applying the cache upstream may help.

6.1.20 r andom

Usage:

random

SUN/256 40

Ensures that random access is available on this table. If the table currently has random access, it has
no effect. If only sequential accessis available, the table is cached so that downstream steps will see
the cached, hence random-access, copy.

6.1.21 r andonvi ew

Usage:

randonvi ew

Ensures that steps downstream only use random access methods for table access. If the table is
sequential only, thiswill result in an error. Only useful for debugging.

6.1.22 r epeat

Usage:

repeat [-row -table] <count>

Repeats the rows of a table multiple times to produce a longer table. The output table will have
<count > times as many rows as the input table.

The optional flag determines the sequence of the output rows. If <count >=2 and there are three
rows, the output sequence will be 112233 for - r ow and 123123 for -t abl e. The default behaviour is
currently -t abl e.

The <count > value will usually be a constant integer value, but it can be an expression evaluated in
the context of the table.

6.1.23 r epl acecol

Usage:

repl acecol [-nane <name>] [-units <units>] [-ucd <ucd>] [-utype <utype>]
[-desc <descri p>]
<col -i d> <expr>

Replaces the content of a column with the value of an algebraic expression. The old values are
discarded in favour of the result of evaluating <expr>. You can specify the metadata for the new
column using the - nane, - uni ts, - ucd, - ut ype and - desc flags; for any of these items which you do
not specify, they will take the values from the column being replaced.

It islegal to reference the replaced column in the expression, so for example "r epl acecol pi xsi ze
pi xsi ze*2" just multiplies the values in column pi xsi ze by 2.

Syntax for the <col -i d> and <expr > arguments is described in the manual.

6.1.24 r epl aceval

Usage:
repl aceval <ol d-val > <newval > <colid-Iist>

For each column specified in <col i d-1i st > any instance of <ol d-val > is replaced by <new val >.
The value string 'nul | ' can be used for either <ol d- val ue> or <new- val ue> to indicate a blank value
(but see also the badval filter).

SUN/256 41

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.1.25 r owr ange

Usage:

row ange <first> <l ast>|+<count>

Includes only rows in a given range. The range can either be supplied as "<fi rst > <l ast >", where
row indices areinclusive, or "<first > +<count >". In either case, the first row is numbered 1.

Thus, to get the first hundred rows, use either "r owr ange 1 100" or "row ange 1 +100" and to get
the second hundred, either "r owr ange 101 200" or "r owr ange 101 +100"

6.1.26 sel ect

Usage:

sel ect <expr>

Include in the output table only rows for which the expression <expr > evaluates to true. <expr >
must be an expression which evaluates to a boolean value (true/false).

Syntax for the <expr > argument is described in Section 10.

6.1.27 seqvi ew

Usage:

seqvi ew

Ensures that steps downstream see the table as sequential access. Any attempts at random access
will fail. Only useful for debugging.

6.1.28 set par am

Usage:

setparam [-type byte|short|int]|long|fl oat|doubl el bool ean|string]
[-desc <descrip>] [-unit <units>] [-ucd <ucd>] [-utype <utype>]
<pnane> <pexpr >

Sets a named parameter in the table to a given value. The parameter named <pnane> is set to the
value <pexpr >, which may be a literal value or an expression involving mathematical operations
and other parameter names (using the par an<name> syntax). By default, the data type of the
parameter is determined by the type of the supplied expression, but this can be overridden using the
-t ype flag. The parameter description, units, UCD and Utype attributes may optionally be set using
the other flags.

6.1.29 sort

Usage:
sort [-down] [-nullsfirst] <key-list>

Sorts the table according to the value of one or more algebraic expressions. The sort key
expressions appear, as separate (space-separated) words, in <key- | i st >; sorting is done on the first

SUN/256 42

expression first, but if that results in atie then the second oneis used, and so on.

Each expression must evaluate to a type that it makes sense to sort, for instance numeric. If the
- down flag is used, the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nul I sfirst flagisgiven then they are considered to come at the start instead.

Syntax for the <key- 1 i st > argument is described in Section 10.

6.1.30 sort head

Usage:

sorthead [-tail] [-down] [-nullsfirst] <nrows> <key-Ilist>

Performs a sort on the table according to the value of one or more algebraic expressions, retaining
only <nrows> rows at the head of the resulting sorted table. The sort key expressions appear, as
separate (space-separated) words, in <key- | i st >; sorting is done on the first expression first, but if
that results in a tie then the second one is used, and so on. Each expression must evaluate to a type
that it makes sense to sort, for instance numeric.

If the-tail flagisused, thenthelast <nr ows> rows rather than the first ones are retained.
If the - down flag is used the sort order is descending rather than ascending.

Blank entries are by default considered to come at the end of the collation sequence, but if the
-nul I sfirst flagisgiven then they are considered to come at the start instead.

This filter is functionally equivalent to using sort followed by head, but it can be done in one pass
and is usually cheaper on memory and faster, as long as <nr ows> is significantly lower than the size
of the table.

Syntax for the <key- | i st > argument is described in Section 10.

6.1.31stats
Usage:
stats [<itenr ...]

Calculates statistics on the data in the table. This filter turns the table sideways, so that each row of
the output corresponds to a column of the input. The columns of the output table contain statistical
items such as mean, standard deviation etc corresponding to each column of the input table.

By default the output table contains columns for the following items:

Narre: Column name

Mean: Average

St Dev: Population Standard deviation
M ni mumi Numeric minimum

Maxi mumi Numeric maximum

NGood: Number of non-blank cells

However, the output may be customised by supplying one or more <i t em> headings. These may be
selected from the above as well as the following:

SUN/256 43

NBad: Number of blank cells

vari ance: Population Variance

SanpSt Dev: Sample Standard Deviation

SanpVar i ance: Sample Variance

MedAbsDev: Median Absolute Deviation
ScMedAbsDev: Median Absolute Deviation * 1.4826
Skew. Gamma 1 skewness measure

Kurt osi s: Gamma 2 peakedness measure

Sumi Sum of values

M nPos: Row index of numeric minimum

MaxPos: Row index of numeric maximum

Car di nal i t y: Number of distinct values in column; values >100 ignored
Medi an: Middle value in sequence

Quartilel: First quartile

Quartil e2: Second quartile

Quartile3: Third quartile

Additionally, the form "Q.nn" may be used to represent the quantile corresponding to the proportion
0.nn, e.q.:

* Q 25: First quartile
e Q 625: Fifth octile

Any parameters of the input table are propagated to the output one.
Note that quantile calculations (including median and quartiles) can be expensive on memory. If
you want to calculate quantiles for large tables, it may be wise to reduce the number of columns to

only those you need the quantiles for earlier in the pipeline. No interpolation is performed when
calculating quantiles.

6.1.32 t abl enarne

Usage:

t abl enanme <nane>
Sets the table's name attribute to the given string.

6.1.33tail

Usage:

tail <nrows>

Include only the last <nr ows> rows of the table. If the table has fewer than <nr ows> rows then it will
be unchanged.

6.1.34 transpose

Usage:
transpose [-namecol <col-id>]

Transposes the input table so that columns become rows and vice versa. The - nanecol flag can be
used to specify a column in the input table which will provide the column names for the output
table. The first column of the output table will contain the column names of the input table.

SUN/256 44

Syntax for the <col -i d> argument is described in Section 6.2.

6.1.35 uni g

Usage:
uniq [-count] [<colid-list>]

Eliminates adjacent rows which have the same values. If used with no arguments, then any row
which has identical valuesto its predecessor is removed.

If the <coli d-1i st > parameter is given then only the values in the specified columns must be equal
in order for the row to be removed.

If the - count flag is given, then an additional column with the name DupCount will be prepended to
the table giving a count of the number of duplicated input rows represented by each output row. A
unique row has a DupCount value of 1.

Syntax for the <col i d- I i st > argument is described in Section 6.3.

6.2 Specifying a Single Column

If an argument is specified in the help text for a command with the symbol <col -i d> it means you
must give a string which identifies one of the existing columnsin atable.

There are three ways you can specify a column in this context:

Column Name
The name of the column may be used if it contains no spaces and doesn't start with a minus
character (-'). It is usually matched case insensitively. If multiple columns have the same
name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; thisis a useful fallback if the column name isn't
suitable for some reason. The first column is 'l', the second is '2' and so on. You may
alternatively use the forms '$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running t pi pe with
onode=mret a OF onpde=st at s 0n the table may help.

Column ucd$ specifier

If the column has a Unified Content Descriptor (this will usually only be the case for VOTable
or possibly FITS format tables) you can refer to it using an identifier of the form
"ucd$<ucd- spec>". Depending on the version of UCD scheme used, UCDs can contain various
punctuation marks such as underscores, semicolons and dots; for the purpose of this syntax
these should all be represented as underscores ("_"). So to identify a column which has the
UCD "phot.mg;emopt.R"', you should use the identifier "ucd$phot_mag_em opt _r".
Matching is not case-sensitive. Futhermore, atrailing underscore acts as a wildcard, so that the
above column could also be referenced using the identifier "ucd$phot _mag_". If multiple
columns have UCDs which match the given identifer, the first one will be used.

Column utype$ specifier
If the column has a Utype (this will usually only be the case for VOTable or possibly FITS
format tables) you can refer to it using an identifier of the form "ut ype$<ut ype- spec>".
Utypes may contain various punctuation marks such as colons and dots; for the purpose of this
syntax these should all be represented as underscores ("_"). So to identify a column which has
the Utype "ssa: Access. Format ", you should use the identifier "ut ype$ssa_Access_format".
Matching is not case-sensitive. If multiple columns have Utypes which match the given

SUN/256 45

identifier, thefirst one will be used.

6.3 Specifying a List of Columns

If an argument is specified in the help text for a command with the symbol <col i d-1i st> it means
you must give a string which identifies alist of zero, one or more of the existing columnsin atable.
The string you specify is a separated into separate tokens by whitespace, which means that you will
normally have to surround it in single or double quotes to ensure that it is treated as a single
argument and not several of them.

Each token in the <col i d- I i st > string may be one of the following:

Column Name
The name of a column may be used if it contains no spaces and doesn't start with a minus
character (-'). It is usually matched case insensitively. If multiple columns have the same
name, the first one that matches is selected.

Column Index or $ID
The index of the column may always be used; thisis a useful fallback if the column name isn't
suitable for some reason. The first column is ‘1, the second is '2' and so on. You may
aternatively use the forms'$1', '$2' etc.

Tip: if counting which column has which index is giving you a headache, running t pi pe with
onpde=net a Of onpde=st at s on the table may help.

Wildcard Expression
You can use a simple form of wildcard expression which expands to any columns in the table
whose names match the pattern. Currently, the only special character is an asterisk ' which
matches any sequence of characters. To match an unknown sequence at the start or end of the
string an asterisk must be given explicitly. Other than that, matching is usualy case
insensitive. The order of the expanded list is the same as the order in which the columns
appear in the table.

Thus "col *" will match columns named col 1, Col um2 and COL_1024, but not decd d. "* MAG*"
will match columns named magni t ude, ABS_MAG_U and JMAG. "*" on its own expands to alist of
al the columns of the table in order.

Specifying a list which contains a given column more than once is not usually an error, but what
effect it has depends on the function you are executing.

6.4 Output Modes

This section lists the output modes which can be used as the value of the onode parameter of t pi pe
and other commands. Typically, having produced a result table by pipeline processing an input one,
you will write it out by specifying omode=out (Or not using the onode parameter at al - out isthe
default). However, you can do other things such as calculate statistics, display metadata, etc. In
some of these cases, additional parameters are required. The different output modes, with their
associated parameters, are described in the following subsections.

6.4.1 cgi

Usage:
onode=cgi of nt =<out-f or mat >

Writes atable to standard output in away suitable for use as output from a CGl (Common Gateway

SUN/256 46

Interface) program. This is very much like out mode but a short CGI header giving the MIME
Content-Type is prepended to the output

Additional parameters for this output mode are:

of mt = <out-format > (String)
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters).

[Default: vot abl €]

6.4.2 count

Usage:
onbde=count

Counts the number of rows and columns and writes the result to standard output.

6.4.3 di scard

Usage:
onpde=di scard

Reads al the data in the table in sequential mode and discards it. May be useful in conjunction with
theassert filter.

6.4.4 gui

Usage:

onode=gui
Displays the table in a scrollable window.

6.45neta

Usage:
onode=net a

Prints the table metadata to standard output. The name and type etc of each column is tabulated, and
table parameters are also shown.

See the net a filter for more flexible output of table metadata.

6.4.6 out

Usage:
onbde=out out =<out -t abl e> of nt =<out - f or nat >

Writes a new table.

Additional parameters for this output mode are:

SUN/256 47

out = <out-tabl e> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

[Default: -]

of m = <out-format > (String)
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

[Default: (aut o)]

6.4.7 pl astic

Usage:
onmode=pl astic transport=string|file client=<app-nanme>

Broadcasts the table to any registered Plastic-aware applications. PLASTIC, the PLatform for
AStronomical Tool InterConnection, is a tool interoperability protocol. A Plastic hub must be
running in order for thisto work.

Additional parameters for this output mode are:
transport = string|file (String)

Determines the method (PLASTIC message) used to perform the PLASTIC communication.

The choices are

e string: VOTable seridized as a string and passed as a cal parameter
(i vo: //vot ech. or g/ vot abl e/ | oad). Not suitable for very largefiles.

 file: VOTable written to a temporary file and the filename passed as a call parameter
(i vo: //vot ech. or g/ vot abl e/ | oadFr onURL). The file ought to be deleted once it has been
loaded. Not suitable for inter-machine communication.

If novalueisset (nul 1) then adecision will be taken based on the apparent size of the table.

client = <app-name> (String)
Gives the name of a PLASTIC listener application which is to receive the broadcast table. If a
non-null value is given, then only the first registered application which reports its application
name as that value will receive the message. If no value is supplied, the broadcast will be to al

listening applications.

6.4.8 sanp

Usage:
onmode=sanp format =<val ue> cli ent =<nane-or-i d>

Sends the table to registered SAMP-aware applications subscribed to a suitable table load M Type.
SAMP, the Simple Application Messaging Protocol, is a tool interoperability protocol. A SAMP
Hub must be running for thisto work.

Additional parameters for this output mode are:

format = <val ue> (String[])

SUN/256 48

Gives one or more table format types for attempting the table transmission over SAMP. If
multiple values are supplied, they should be separated by spaces. Each value supplied for this
parameter corresponds to a different MType which may be used for the transmission. If a
single value is used, a SAMP broadcast will be used. If multiple values are used, each
registered client will be interrogated to see whether it subscribes to the corresponding MTypes
in order; the first one to which it is subscribed will be used to send the table. The standard
options are

* votable:use MTypetabl e. | oad. vot abl e
e fits:useMTypetable.load.fits

If any other string is used which corresponds to one of STILTS's known table output formats,
an attempt will be made to use an ad-hoc MType of theformt abl e. | oad. f or mat .

[Default: vot abl e fits]

ient = <name-or-id> (String)

Identifies a registered SAMP client which is to receive the table. Either the client ID or the
(case-insensitive) application name may be used. If a non-null value is given, then the table
will be sent to only the first client with the given name or ID. If no value is supplied the table
will be sent to all suitably subscribed clients.

C

6.49stats

Usage:
onpde=st ats

Calculates and displays univariate statistics for each of the numeric columns in the table. The
following entries are shown for each column as appropriate:

e mean
* population standard deviation
e minimum

e maximum

* number of non-null entries

Seethest at s filter for more flexible statistical calculations.

6.4.10t opcat

Usage:

onode=t opcat

Attempts to display the output table directly in TOPCAT. If a TOPCAT instance is already running
on the local host, an attempt will be made to open the table in that. A variety of mechanisms are
used to attempt communication with an existing TOPCAT instance. In order:

1. SAMPusing existing hub (TOPCAT v3.4+ only, requires SAMP hub to be running)

2. PLASTIC using existing hub (requires PLASTIC hub to be running)

3. SOAP (requires TOPCAT to run with somewhat deprecated - soap flag, may be limitations on
table size)

4. SAMP using internal, short-lived hub (TOPCAT v3.4+ only, running hub not required, but
may be slow. It's better to start an external hub, e.g. t opcat - ext hub)

Failing that, an attempt will be made to launch a new TOPCAT instance for display. This only
worksif the TOPCAT classes are on the class path.

SUN/256 49

If large tables are involved, starting TOPCAT with the - di sk flag is probably a good idea.

6.4.11 t osql

Usage:

onmode=t osql protocol =<j dbc- prot ocol > host =<val ue> db=<db- nane>
dbt abl e=<t abl e- name> writ e=creat e| dr opcr eat e| append
user =<user nanme> passwor d=<passwd>

Writes a new table to an SQL database. You need the appropriate JDBC drivers and
-Dj dbc. dri vers Set asusual (see Section 3.4).

Additional parameters for this output mode are:

protocol = <jdbc-protocol > (String)
The driver-specific sub-protocol specifier for the JIDBC connection. For MySQL 's Connector/J
driver, thisisnysql , and for PostgreSQL 's driver it is post gr esql . For other drivers, you may
have to consult the driver documentation.

host = <value> (String)
The host which is acting as a database server.

[Default: | ocal host]

db = <db-name> (String)
The name of the database on the server into which the new table will be written.

dbt abl e = <tabl e-name> (String)
The name of the table which will be written to the database.

wite = create|dropcreate| append (WriteMode)
Controls how the values are written to a table in the database. The options are:

» create: Creates a new table before writing. It is an error if a table of the same name
aready exists.

» dropcreate: Creates a new database table before writing. If a table of the same name
aready exigts, it is dropped first.

» append: Appends to an existing table. An error results if the named table has the wrong
structure (number or types of columns) for the data being written.

[Default: creat e]

user = <username> (String)
User name for the SQL connection to the database.
[Default: nbt |

password = <passwd> (String)
Password for the SQL connection to the database.

SUN/256 50

7 Crossmatching

STILTS offers flexible and efficient facilities for crossmatching tables. Crossmatching is
identifying different rows, which may be in the same or different tables, that refer to the same item.
In an astronomical context such an item is usually, though not necessarily, an astronomical source
or object. This operation corresponds to what in database terminology is called ajoin.

There are various complexities to specifying such a match. In the first place you have to define
what is the condition that must be satisfied for two rows to be considered matching. In the second
place you must decide what happensiif, for a given row, more than one match can be found. Finally,
you have to decide what to do having worked out what the matched rows are; the result will
generally be presented as a new output table, but there are various choices about what columns and
rows it will consist of. Some of these issues are discussed in this section, and othersin the reference
sections on the tools themselves in Appendix B.

Matching can in general be a computationally intensive process. The algorithm used by the t mat ch*
tasksin STILTS, except in pathological cases, scales as O(N log(N)) or thereabouts, where N is the
total number of rows in all the tables being matched. No preparation (such as sorting) is required on
the tables prior to invoking the matching operation. It is reasonably fast; for instance an RA, Dec
positional match of two 10°-row catalogues takes of the order of 60 seconds on current (2005
laptop) hardware. Attempting matches with large tables can lead to running out of memory; the
calculation just mentioned required a java heap size of around 200Mb (- Xmx200M).

In the current release of STILTS the following tasks are provided for crossmatching between local
tables:

t mat ch2
Generic crossmatching between two tables.

t skymat ch2
Crossmatching between two tables where the matching criterion is a fixed separation on the
sky. This is smply a stripped-down version of t mat ch2 provided for convenience when the
full generality is not required.

tmat chl
Generic crossmatching internal to a single table. The basic task this performs is to identify
groups of rows within a single table which match each other.

t mat chn
Generic crossmatching between multiple (>2) tables.
tjoin
Trivia join operation between multiple tables in which no row re-ordering is required. This

barely warrants the term "crossmatch” and the concepts explained in the rest of this section are
not relevant to it.

7.1 Match Criteria

Determining whether one row represents the same item as another is done by comparing the values
in certain of their columns to see if they are the same or similar. The most common astronomical
case is to say that two rows match if their celestial coordinates (right ascension and declination) are
within a given small radius of each other on the sky. There are other possibilities; for instance the
coordinates to compare may be in a Cartesian space, or have a higher (or lower) dimensionality than
two, or the match may be exact rather than within an error radius....

If you just need to match two tables according to sky position with fixed errors you are

SUN/256 51

recommended to use the ssmplified t skymat ch2 task. For other cases, this section describes how to
specify much more flexible match criteriafor use with t mat chi, t mat ch2 or t mat chn by setting the
following parameters:

mat cher
Name of the match criteriatype.

par ans
Fixed value(s) giving the parameters of the match (typically an error radius). If more than one
valueisrequired, the values should be separated by spaces.

val ues*
Expressions to be compared between rows. This will typically contain the names of one or
more columns, but each element may be an algebraic expression (see Section 10) rather than
just a column name if required. If more than one value is required, the values should be
separated by spaces. There is one of these parameters for each table taking part in the match,
so for t mat ch2 you must specify both val ues1 and val ues2.

t uni ng

Fixed value(s) supplying tuning parameters for the match algorithm. If there is more than one
value, they should be separated by spaces. This value will have a sensible default, so you do
not need to supply it, but providing adjusted values may make your match run faster or require
less memory (or the reverse). Adjusting tuning parameters will not change the result of any
match, only the resources required to run it. Looking at the progress output of a match will
indicate what tuning values have been used; adjusting the value a bit up or down is a good way
to experiment.

For example, suppose we wish to locate objects in two tables which are within 3 arcseconds of each
other on the sky. One table has columns RA and DEC which give coordinates in degrees, and the
other has columns RArad and DECrad which give coordinates in radians. These are the arguments
which would be used to tell t mat ch2 what the match criteria are:

mat cher =sky

par ans=3

val uesl=' RA DEC

val ues2='r adi ansToDegr ees(RArad) radi ansToDegr ees(DECrad)’
It is clearly important that corresponding values are comparable (in the same units) between the
tables being matched, and in geometrically sensitive cases such as matching on the sky, it's
important that they are the units expected by the matcher as well. To determine what those units are,
either consult the roster below, or run the following command:

stilts tmatch2 hel p=mat cher

which will tell you about all the known matchers and their associated par ans, val ues* and t uni ng
parameters.

The following subsections list the basic nat cher types and the requirements of their associated
parans, val ues* and tuning parameters. The units of the required values are given where
significant.

7.1.1sky: Sky Matching

mat cher =sky val ues* ="' <r a/ degrees> <dec/ degr ees>'
par ams=' <max-error/arcsec>'
t uni ng=' <heal pi x- k>'

val ues*:

SUN/256 52

* raldegrees: Right Ascension
* dec/ degrees: Declination

par ams:

* max-error/arcsec: Maximum separation along a great circle

t uni ng:

* heal pi x- k: Controls sky pixel size. Legal range O - 20. 0is 60deg, 20is0.2".

The sky matcher compares positions on the celestial sphere with a fixed error radius. Rows are
considered to match when the two (ra, dec) positions are within max-error arcseconds of each
other along a grest circle.

In fact this matching is not restricted to equatorial coordinates - the ra and dec parameters may
represent any longitude-like and latitude-like coordinates in degrees, since the spherical geometry
for the matching is unchanged under such transformations.

7.1.2 skyerr: Sky Matching with Per-Object Errors

mat cher =skyerr val ues*=' <ra/ degrees> <dec/ degrees> <error/arcsec>'
parans='<scal e/ ar csec>'
t uni ng=' <heal pi x- k>'

val ues*:

* raldegrees: Right Ascension
* dec/ degrees: Declination
* error/arcsec: Per-object error radius along a great circle

par ans:

» scal e/ arcsec: Rough average of per-object error distance; just used for tuning to
set default pixel size

tuni ng:

* heal pi x- k: Controls sky pixel size. Legal range 0 - 20. 0is 60deg, 20is0.2".

The skyerr matcher compares positions on the celestial sphere using error radii which can be
different for each row. Rows are considered to match when the separation between the two r a, dec
positionsis no larger than the sum of the two per-row er ror values.

The scal e parameter should be a rough average value of the error distances. It is used only to set a
sensible default for heal pi x- k tuning parameter, and its value does not affect the result. If you set
heal pi x- k directly, its value isignored.

As with sky matching, other longitude/latitude coordinate pairs may be used in place of right
ascension and declination.

Note: the semantics of this matcher have changed dlightly at version 2.4 of STILTS. In earlier
versions the single parameter was named max- error and provided an additional constraint on the
maximum accepted separation between matched objects. For most uses, the old and new behaviours

SUN/256 53

are expected to give the same results, but in cases of difference, the new behaviour is more likely
what you want.

7.1.3 skyel li pse: Sky Matching of Elliptical Regions

mat cher =skyel | i pse val ues*=' <ra/ degrees> <dec/ degrees> <pri mary-radi us/ arcsec>
<secondary-radi us/ arcsec>
<posi tion-angl e/ degr ees>'
par ans=' <scal e/ ar csec>'
t uni ng=' <heal pi x- k>'

val ues*.

ra/ degr ees: Right ascension of centre

dec/ degr ees: Declination of centre

pri mary-radi us/ ar csec: Length of ellipse semi-major axis

secondary-radi us/ ar csec: Length of ellipse semi-minor axis

posi ti on-angl e/ degr ees: Position angle - measured from north pole to primary
axis, in direction of positive RA

par ans:

* scal e/ arcsec: Rough average of ellipse mgjor radius; just used for tuning to set
default pixel size

t uni ng:

* heal pi x- k: Controls sky pixel size. Legal range O - 20. 0 is 60deg, 20is0.2".

The skyel i pse matcher compares elliptical regions on the sky for overlap. Each row has to
provide five values, giving the centre, the major and minor radii, and the position angle of an
ellipse. Rows are considered to match if there is any overlap between the ellipses. The goodness of
match is a normalised generalisation of the symmetrical case used by the skyer r matcher, in which
the best possible match is two concentric ellipses, and the worst allowable match is when the
circumferences just touch.

The calculations are approximate since in some cases they rely on projecting the ellipses onto a
Cartesian tangent plane before evaluating the match, so for larger ellipses the criterion will be less
exact. For objects the size of most observed stars or galaxies, this approximation is not expected to
be problematic.

The scal e parameter must be supplied, and should be a rough average value of the mgjor radii. it is
used only to set a sensible default for the heal pi x- k tuning parameter, and its value does not affect
the result. If you set heal pi x- k directly, the value of scal e isignored.

7.1.4 sky3d: Spherical Polar Matching

mat cher =sky3d val ues*=' <ra/ degr ees> <dec/ degrees> <di st ance>'
paranms='<error/units of distance>'
t uni ng=' <bi n-f act or >'

val ues*:

* raldegrees: Right Ascension
e dec/ degrees: Declination
* distance: Distance from origin

SUN/256 54

par ams:

* error/units of distance: Maximum Cartesian separation for match

t uni ng:

* bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The sky3d matcher compares positions in the volume of the sky taking account of distance from the
observer. The position in three-dimensional space is calculated for each row using the ra, dec and
di stance as spherical polar coordinates, where di st ance is the distance from the observer along
the line of sight. Rows are considered to match when their positions in this space are within err or
units of each other. The units of error arethe same asthose of di st ance.

As with sky matching, other longitude/latitude coordinate pairs may be used in place of right
ascension and declination.

7.1.5 exact : Exact Matching

mat cher =exact val ues*=' <mat ched- val ue>

val ues*:

* matched-val ue: Vauefor exact match

The exact matcher compares arbitrary key values for exact equality. Rows are considered to match
only if the values in their mat ched- val ue columns are exactly the same. These values can be
strings, numbers, or anything else. A blank value never matches, not even with another blank one.
Since the par ans parameter holds no values, it does not have to be specified. Note that the values
must also be of the same type, so for instance a Long (64-bit) integer value will not match an
Integer (32-hit) value.

7.1.6 1d, 2d, ...: Isotropic Cartesian Matching

mat cher =1d val ues*=" <x>'
parans=' <error>'
t uni ng=' <bi n-f act or >

val ues*.

e x: Cartesian co-ordinate #1

par ans.
* error: Maximum Cartesian separation for match
t uni ng:

* bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

mat cher =2d val ues*=" <x> <y>'
parans=' <error>'

SUN/256 55

t uni ng=' <bi n-f act or >

val ues*:
» x: Cartesian co-ordinate #1
» y: Cartesian co-ordinate #2
parans:

e error: Maximum Cartesian separation for match

tuni ng:

* bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 1d matcher compares positions in 1-dimensional Cartesian space. Rows are considered to
match if their x column values differ by no morethanerror.

The 2d matcher compares postions in 2-dimensional Cartesian space. Rows are considered to match
if the difference in their (x,y) positions reckoned using Pythagorasislessthanerror.

Matching in any number of Cartesian dimensions can be done by extending this syntax in the
obvious way.

7.1.7 2d_ani sot r opi c, Anisotropic Cartesian Matching

mat cher =2d_ani sot ropi ¢ val ues*=" <x> <y>' .
paranms='<error-in-x> <error-in-y>
t uni ng=' <bi n-f act or >

val ues*:
» x: Cartesian co-ordinate #1
e y: Cartesian co-ordinate #2
par ans.
* error-in-x: Axislength of error ellipsein Cartesian co-ordinate #1 direction
* error-in-y: Axislength of error ellipsein Cartesian co-ordinate #2 direction
tuni ng:

* bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_ani sot ropi ¢ matcher compares positions in 2-dimensional Cartesian space using an
anisotropic metric. Rows are considered to match if their (x,y) positions fall within an error elipse
with axis lengths error-i n-x, error-in-y of each other. This kind of match will typicaly be used
for non-'spatial’ spaces, for instance (magnitude,redshift) space, in which the metrics along different
axes are not related to each other.

Matching in any number of dimensions of Cartesian space using an anisotropic metric can be done
by extending this syntax in the obvious way.

7.1.8 2d_cuboi d, ...: Cuboid Cartesian Matching

SUN/256 56

mat cher =2d_cuboi d val ues*=' <x> <y>'
params='<error-in-x> <error-in-y>
t uni ng=' <bi n-fact or>

val ues*:
» x: Cartesian co-ordinate #1
» y: Cartesian co-ordinate #2
par ans.
e error-in-x: Haf length of cuboid in Cartesian co-ordinate #1 direction
e error-in-y: Haf length of cuboid in Cartesian co-ordinate #2 direction
tuni ng:

* bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_cuboi d matcher compares positions in 2-dimensional Cartesian space in cuboidal cells.
Rows are considered to match if their (x,y) positions fall within an error cuboid with half-axis
lengths error-in-x, error-in-y of each other. This kind of match is suitable for grouping items
into pixels, though it's not avery efficient way of doing that.

Matching in any number of dimensions using N-dimensional hyper-cuboids can be done by
extending this syntax in the obvious way.

7.1.91d_err,2d_err, ... Cartesian Matching with Per-Object Errors

mat cher =2d_err val ues*=' <x> <y> <error>
paranms=' <scal e>'
t uni ng=' <bi n-f act or >

val ues*.

e x: Cartesian co-ordinate #1
» y: Cartesian co-ordinate #2
* error: Per-object error radius

par ams:

* scale: Rough average of per-object error distance; just used for tuning in
conjunction with bin factor

t uni ng:

* bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 1d_err, 2d_err, ... matchers compare positions in N-dimensional Cartesian space like the 1d,
2d matchers described in Section 7.1.6, except that the match radius can be different for each row.
Rows are considered to match when the separation reckoned by Pythagoras between the x, vy, ...
positions is no larger than the sum of the two per-row error values. Matching in any number of
Cartesian dimensions can be done by extending this syntax in the obvious way.

The scal e parameter must be supplied, and should be approximately the characteristic size of the
per-object error values. In conjunction with the bi n-fact or tuning parameter its value affects the

SUN/256 57

performance of the match, but not the result.

7.1.10 2d_el | i pse: Cartesian Matching of Elliptical Regions

mat cher=2d_el | i pse val ues*=' <x> <y> <pri mary-radi us> <secondary-radi us>
<orientation-angl e/ degrees>'
par ans=' <scal e>'
t uni ng=' <bi n-f act or >'

val ues* .

* x: X coordinate of centre

e y:Y coordinate of centre

* primary-radius: Length of ellipse semi-magjor axis

* secondary-radius: Length of ellipse semi-minor axis

e orientation-angl e/ degrees: Angle from X axis towards Y axis of semi-major
axIs

par ams:

* scale: Rough average of per-object error distance; just used for tuning in
conjunction with bin factor

t uni ng:

* bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

The 2d_el I'i pse matcher compares €lliptical regions in a 2d plane for overlap. Each row has to
specify five values, giving the centre, the major and minor radii, and the orientation angle of an
ellipse. Rows are considered to match if there is any overlap between the ellipses. The goodness of
match is a normalised generalisation of the symmetrical case used by the isotropic matcher, in
which the best possible match is two concentric ellipses, and the worst allowable match is when the
circumferences just touch.

Note the orientation angle is measured anticlockwise from the horizontal, unlike the position angle
used by the skyel | i pse matcher.

The scal e parameter must be supplied, and should be approximately the characteristic size of the
per-object major radius. In conjunction with the bi n- f act or tuning parameter its value affects the
performance of the match, but not the result.

7.1.11 Custom Matchers

For advanced users, it is possible to supply the name of a class on the classpath which implements
the uk. ac. starlink. tabl e. j oi n. Mat chEngi ne interface and which has a no-arg constructor. This
allows java programmers to write their own matchers using any match criteria and binning
algorithms they choose.

7.1.12 Matcher Combinations

In addition to the matching criteria listed in the previous subsections, you can build your own by
combining any of these. To do this, take the two (or more) matchers that you want to use, and
separate their names with a"+" character. The val ues* parameters of the combined matcher should
then hold the concatenation of the val ues* entries of the constituent matchers, and the same for the
par ans parameter.

SUN/256 58

So for instance the matcher "sky+1d" could be used with the following syntax:

mat cher =sky+1d val ues*=' <ra/ degr ees> <dec/ degr ees> <x>'
parans=' <max-error/arcsec> <error>'
t uni ng=' <heal pi x- k> <bi n-f act or>'

val ues*:

* raldegrees: Right Ascension
* dec/degrees: Declination
* x: Cartesian co-ordinate #1

par ans:

* max-error/arcsec: Maximum separation along a great circle
e error: Maximum Cartesian separation for match

t uni ng:

* heal pi x- k: Controls sky pixel size. Legal range O - 20. 0 is 60deg, 20is0.2".
e bin-factor: Scaling factor to adjust bin size; larger values mean larger bins

This would compare positions on the sky with an additional scalar constraint. Rows are considered
to match if both their r a, dec positions are within max- er r or arcseconds of each other along a great
circle (asfor mat cher =sky) and their x values differ by no more than error (asfor mat cher =1d).

This example might be used for instance to identify objects from two catalogues which are within a
couple of arcseconds and also 0.5 blue magnitudes of each other. Rolling your own matchersin this
way can give you very flexible match constraints.

7.2 Multi-Object Matches

The generic matching in STILTS is determined by specified match criteria, as described in Section
7.1. These criteria give conditions for whether two items (table rows) count as matched with each
other. In the case of a pair match, as provided by t mat ch2, it is clear how thisisto be interpreted.

However, some of the matching tasks (t mat chn in group mode and t mat ch1) search for match
groups which may have more than two members. This section explains precisely how STILTS
applies the pair-wise matching criteriait is given to identifying multi-object groups.

In a multi-object match context, the matcher identifies a matched group as the largest possible
group of objects in which each is linked by a pair match to any other object in the group - it isa
group of "friends of friends'. Formally, the set of matched groupsis a set of digoint graphs whose
nodes are input table rows and whose edges are successful pair matches, where no successful pair
match exists between nodes in different elements of that set. Thus the set has a minimal number of
elements, and each of its elements is a matched group of maximal size. The important point to note
is that for any particular pair in a matched group, there is no guarantee that the two objects match
each other, only that you can hop from one to the other via pairs which do match.

So in the case of a multi-object sky match on a field which is very crowded compared to the
specified error radius, it is quite possible for all the objects in the input table(s) to end up as part of
the same large matching group. Results at or near this percolation threshold are (a) probably not
useful and (b) likely to take a long time to run. Some care should therefore be exercised when
specifying match criteriain multi-object match contexts.

SUN/256 59

8 Plotting

As of version 3.0 (October 2014), STILTS offers plotting commands corresponding to the
new-style plotsin version 4 of the TOPCAT application. The commands are currently:

* plot2pl ane (Appendix B.7): Draws a plane plot
* plot2sky (Appendix B.8): Draws asky plot

* plot2cube (Appendix B.9): Draws a cube plot

* plot2sphere (Appendix B.10): Draws a sphere plot
* plot2time (Appendix B.11): Draws atime plot

(In previous versions the less capable commands pl ot 2d, pl ot 3d and pl ot hi st were available -
these are now deprecated, but described in Section 9).

These commands al have a similar structure. The plot surface, or geometry of the plot, is defined
by which command you use (for instance, if you want to plot longitude/latitude data on the celestial
sphere, use pl ot 2sky). Content is added to the plot by specifying zero or more plot layers, as
described in Section 8.3 below. Section 8.4 describes the shading modes which affect how
colouring is performed for some of the layer types. Once a plot has been specified, it can be
displayed on the screen or exported in some way according to a selected output mode (Section 8.5)
and perhaps export format (Section 8.6). Plots displayed to the screen are by default "live" - they
can be resized and navigated around (pan, zoom, rotate, ...) using the mouse in the same way asin a
TOPCAT window.

These commands allow you to make all the plots that can be produced with TOPCAT, in some
cases with more flexibility in configuration. Unlike TOPCAT, the size of table you can plot is not
limited by the size of table you can load into the application. In most cases, STILTS will generate
plots from arbitrarily large data sets with fixed (and modest) memory requirements. Performance is
of course highly dependent on the details of the plot, but for instance an all-sky density plot for 2
billion points can be produced in the order of 30 minutes.

8.1 Plot Parameters

The plotting commands offer a great deal of control over what is plotted and how it is represented,
and thus unavoidably have lots of parameters. When looking at the command documentation in
Appendix B the Usage sections may look rather daunting. However, the discussion below and the
Examples sections should help. Generating a smple plot is straightforward and can be done with
only four or five parameters; if you want to represent more complicated data or have specific
preferences for appearance then you can consult the documentation for the additional options.

As asimple example, if afile "cat.fits" contains the columns RMAG and BMAG for red and blue
magnitudes, you can draw atwo-dimensional colour-magnitude scatter plot with the command:

stilts plot2plane layer_l=mark in_l=cat.fits x_1=BMAG RVMAG y_1=BMAG

Since an output file is not specified, the plot is shown in awindow on the screen. This plot window
is"live" - you can resize the window, or pan and zoom around it using the same mouse controls as
in TOPCAT. To send the output to a PNG file, do instead:

stilts plot2plane layer_l1=mark in_l=cat.fits x_1=BMAG RMAG y_1=BMAG out =fi g. png
We can adjust the plot by inverting the Y axis so it increases downwards instead of upwards:

stilts plot2pl ane
yflip=true
layer _1=mark in_1l=cat.fits x_1=BMAG RVAG y_1=BMAG

SUN/256 60

The parameters of the plot now fall into two groups. Global parameters, without suffixes, make
global adjustments to the plot. In this example yf 1 i p=t rue invertsthe Y axis. Layer parameters,
with suffixes, are introduced by al ayer parameter and grouped together by a given suffix. Each
layer group defines a plot layer with content to be drawn on the plot surface. In this case the layer is
of type mark (draw markers) and the suffix is "_1". Global and Layer parameters are described
separately in the following subsections.

8.1.1 Global Parameters

The global plot parameters are documented in the usage sections of the various plot commands (e.g.
Appendix B.7.1). They deal with things like positioning the plot axes, fixing the data bounds,
selecting font types and sizes, adjusting grids and tickmarks, configuring how interactive navigation
works, managing data storage, and so on. They are al optional, since they all have sensible defaults,
for instance data bounds will be determined from the supplied data if they are not given explicitly.

8.1.2 Layer Parameters

The layer parameters come in groups, each specifying the details of one plot layer. Each layer type
has its own list of parameters. A plot layer is introduced on the command line with a parameter of
the form

| ayer <suf fi x>=<I| ayer -t ype>

and any other parameters with the same <suf f i x> are considered to apply to the same layer. In the
basic example we considered:

stilts plot2plane layer_l1=mark in_1l=cat.fits x_1=BMAG RVAG y_1=BVAG

the suffix is"_1" and the layer type associated with it is mar k (plotting markers to make a scatter
plot). The different layer types are documented in Section 8.3, and each has its own set of
parameters, some of which are mandatory and some which are optional with sensible defaults. In
the documentation, the suffix is represented as "N". For instance the nar k layer type requires you to
specify an input table (i nN) and point positions (xN and yN). Since the suffix we have used in the
example for the | ayer N parameter is"_1", we have writtenin_1, x_1 andy_1. The nark layer has
some optional style parameters as well, so we could adjust the plot's appearance by adding
shape_l=cross size_1=4 col or _1=bl ue.

You can have as many layers as you like (even none), so we could overplot two datasets from
different input files like this:

stilts plot2pl ane
layer _1=mark in_1=catl.fits x_1=BMAG RMAG y_1=BMAG col or_l=nmgenta size_1=5
layer 2=mark in_2=cat2.fits x_2=nmag_b-nmag_r y_2=rmag b col or _2=cyan size_2=5

We have assigned different coloursto the different layers and boosted the marker sizeto 5 pixels.

As a convenience, if the same value is used for all the layers, you can omit the suffix. So to avoid
having to specify the same markers size for both layers, you can write instead:

stilts plot2plane

si ze=5

layer _1=mark in_l=catl.fits x_1=BMAG RMAG y_1=BMAG col or_1=magenta

| ayer _2=mark in_2=cat2.fits x_2=nag_b-mag_r y_2=mag_b col or_2=cyan
Although the si ze parameter no longer has an explicit suffix, it's still a layer parameter, it just
applies to multiple layers. This shorthand works for all layer parameters. Here is another example
which also shows how you can use the i cmdN parameter to pre-process input data prior to
performing the plot. Here, we make two different selections of the input rows to plot two different
data sets.

SUN/256 61

stilts plot2pl ane
in=cat.fits x=BMAG RMAG y=BMAG
| ayer _1=mark icnd_1="sel ect vel <1000' col or_1=bl ue
| ayer _2=mark icnd_2='sel ect vel >=1000" col or_2=red
The input tables and data values are the same for both datasets, so we can just supply the parameters
in,xandy, ratherthanin_1,in_2 €tc.

Any string can be used as a suffix, including the empty string (though an empty string can cause
confusion if there are multiple layers). The suffixing is also dightly more sophisticated than
described above; to find parameters relating to a layer with a given suffix, the parameter |ooks first
using the whole suffix, and strips single characters off it until it has none left. So if a layer is
introduced with the parameter | ayer _ab, you can give the marker shape using any of the parameters
shape_ab, shape_a, shape_ Or shape. If more than one of these is present, the first one in that list
will be used (the order in which they appear on the command line is not significant). This can be
used to group sets of layers.

By default, if multiple layers are specified, they are plotted in the order in which the introducing
| ayer N parameters appear on the command line. This may be relevant, since layers plotted later
sometimes obscure ones plotted earlier. You can alter the order of plotting with the seq (global)
parameter, which is a comma-separated list of layer suffixes giving the sequence in which layers
should be plotted. So adding "seq=_2, _1" would cause layer 2 to be plotted before layer 1,
instead of the other way round.

By default, if more than one layer is plotted, a legend will appear labelling the datasets. The dataset
labels appearing in the legend are by default the layer suffixes specified on the command line.
However, the labels can be given explicitly with the | egendN parameter, so for instance in the
example above | egl abel _1=Sl ow | egl abel _2=Fast would adjust the legend accordingly. Legend
appearance and positioning can be adjusted by various| eg* globa parameters.

8.1.3 Animation

The plotting commands can be used to produce animations. This is done by supplying an animation
control table using the ani mat e parameter (which has associated af nt and acnd parameters for
specifying its file format and applying filters). One output image is produced for each row of the
control table. The columns of the table have names which correspond to plot command parameters,
and for each row, the basic plot command is executed with the parameters on the command line
supplied or replaced by those from the table. Thisis most commonly used for providing a movie of
the kind of navigation you can do interactively with the mouse, but other applications are possible.

For instance, given the following animation control table with the name "bounds.txt”, in ASCII
format:

X

SINIEE
QOO OoOX
orrN3
IO 010 X

then this command:

(7))
Q

stilts plot2plane xm n=0 ym n=0
layer _1=mark in_1=guns_snt.fits x_l=ag y_l=av
ani mat e=bounds. t xt af nt =asci i

would produce a 4-frame animation zooming in towards the origin.

If output is to the screen (ormode=swi ng) the animation can be seen directly. If it isto an output file
(omode=out) then a number of output files is written with sequence numbers, so adding the

SUN/256 62

parameter "out =x. png" to the above command would produce 4 files, x- 1. png, x- 2. png, x- 3. png
and x- 4. png. Padding zeros are used to keep the files in a phanumeric sequence, so for instancein a
500-frame animation the first one would be named x- 001. png. STILTS does not actually turn these
files into a single animated output file, but you can use other tools to do this, for instance using
ImageM agick:

convert x-*.png xmovie.gif
will produce an animated gif from the input frames.

Y ou can create the animation control table any way you like, but you may find the t | oop command
convenient. For instance the above table can be written like this:

stilts tloop xmax 4 0 -1 ocnd="addcol ymax xmax*0.5' of nt=ascii

You can pipe the output of tloop (or any other command) as the animation table on the unix
command line by specifying ani mat e=- (the "-" character stands for standard input). Note however
that in this case you must explicitly give the file format (using the af nt parameter) and it must be a
format which STILTS s capable of streaming (VOTableis suitable; ASCII is not).

A common requirement is to produce an animation of rotating a 3-d plot. Here's an example of how
todo it from aunix shell:

stilts tloop phi 15 375 2 ofnt=votable \
| stilts plot2sphere |layer_l=mark in_1=hip_main.fits lon_l=radeg | at_1=dedeg r_1=pl x \
ani mat e=- af nt =vot abl e
The phi parameter controls the angle from which the 3D plot is viewed, and here it is incremented
by 2 degrees for each frame. The same thing would work for pl ot 2cube aswell aspl ot 2sphere.

Note that producing animations in this way is usually much more efficient than writing a shell script
which invokes STILTS multiple times. The plot commands aso employ multi-threading when
animating to output files, so should make efficient use of multi-core machines (though currently
animations to the screen are not multi-threaded).

8.2 Surface Types

The different pl ot 2+ commands correspond to different plot surface geometries. The different
commands come with their own specific axis configuration parameters. Some of the plot layer types
are specific to certain surface types. When supplying data from input tables to plot layers, the
coordinate values you need to supply (and hence the corresponding parameter names) are
determined not by the layer type, but by the surface type. For instance, point positions for layer N
on a 2-d Cartesian surface (pl ot 2pl ane command) are given using parameters xN and yN, but when
plotting to the celestial sphere (pl ot 2sky command) you supply | onNand | at N).

The following list summarises the available surface types and their corresponding positional
coordinates.

Plane (pl ot 2pl ane)
2-dimensional Cartesian axes. Positional coordinates are supplied as x, y pairs. Note that this
command can also be used to draw histograms.

SKky (pl ot 2sky)
Celestial sphere. Positional coordinates are supplied as | on, | at pairs, giving longitude and
latitude in decimal degrees. A number of different projections are available, and conversion
between different celestial coordinate systems can aso be performed. You could use it for
other spherical coordinate systems too (like the surface of a planet).

Cube (pl ot 2cube)

SUN/256 63

3-dimensional Cartesian axes. Positional coordinates are supplied asx, y, z triples.

Sphere (pl ot 2spher e)
3-dimensional isotropic space with spherical polar coordinates. Positional coordinates are
supplied as 1 on, l at, r triples, giving longitude and latitude in decimal degrees, and radius in
an arbitrary unit. The plotting surface (space) is similar to Cube, except that the unit distanceis
alwaysthe samein al three directions.

Time (pl ot 2t i ne)
2-dimensional axes, but the horizontal axis represents time. The axis may be labelled in
various ways (1SO-8601 dates, decimal year, MJD etc). Positional coordinates are supplied as
t,y pairs. How to provide a data value representing a time is somewhat under-documented, but
reading data from a time-sensitive format such as CDF will give column values that can be
used as times. This surface type is somewhat experimental, and the pl ot 2ti me command
currently lacks some important features.

8.3 Layer Types

The different plot layers and how to configure them with parameters is given in the following
subsections. The layers which may be plotted on a particular surface depend on the plot geometry,
so not al of these are available for every plot command.

8.3.1mark
Plots a marker of fixed size and shape at each position.
Usage Overview:

| ayer N=mark shapeN=filled _circle|lopen_circle|... sizeN=<pixel s>
shadi ngN=aut o| fl at | transl ucent | transpar ent | densi t y| aux| wei ght ed <shade- paransN
<pos- coor d- paranmsN> i nN=<t abl e> i f nt N=<i n-f or mat >
i streamN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par amsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (pl ot 2pl ane) the parameters would be xN and yN. The coordinate parameter values
arein all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

icmiN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@i | ename" causes the file fil ename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

SUN/256 64

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

shadi ngN = auto| flat|translucent|transparent|density|aux|wei ghted <shade- paranmsN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)
translucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

shapeN = filled _circle|open_circle|... (MarkShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

filled circle
open_circle
Cross

X

SUN/256 65

open_squar e
open_di anond
open_triangl e_up
open_triangl e_down
filled_square
filled_di anond
filled_triangle_up
filled_triangl e_down

[Default: filled_circle]

sizeN = <pixel s> (Integer)
Size of the scatter plot markers. The unit is pixels, in most cases the marker is approximately
twice the size of the supplied value.

[Default: 1]

8.3.2si ze

Plots a marker of fixed shape but variable size at each position. The size is determined by an
additional input data value.

The actual size of the markers depends on the setting of the aut oscal e parameter. If autoscaling is
off, then the basic size of each marker is the input data value in units of pixels. If autoscaling is on,
then the data values are gathered for all the currently visible points, and a scaling factor is applied
so that the largest ones will be a sensible size (a few tens of pixels). This basic size can be further
adjusted with the scal e factor.

Currently data values of zero always correspond to marker size of zero, negative data values are not
represented, and the mapping is linear. An absolute maximum of 100 pixels is aso imposed on
marker sizes. Other options may be introduced in future.

Note: for marker sizes that correspond to data values in data coordinates, you may find Error
plotting more appropriate.

Usage Overview:

| ayer N=si ze shapeN=filled_circlelopen_circle|... scal eN=<factor>
aut oscal eN=true| fal se
shadi ngN=aut o| fl at|transl ucent | transparent| density| aux| wei ght ed <shade- paransN
<pos- coor d- paransN> si zeN=<num expr > i nN=<t abl e>
ifntN=<in-format> istreanN=true|fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par amsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (pl ot 2pl ane) the parameters would be xN and yN. The coordinate parameter values
arein all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

autoscaleN = true|false (Boolean)
Determines whether the basic size of variable sized markers is automatically scaled to have a
sensible size. If true, then the sizes of al the plotted markers are examined, and some

SUN/256 66

dynamically calculated factor is applied to them all to make them a sensible size (by default,
the largest ones will be afew tens of pixels). If false, the sizes will be the actual input valuesin
units of pixels.

If auto-scaling is off, then markers will keep exactly the same screen size during pan and zoom
operations; if it's on, then the visible sizes will change according to what other points are
currently plotted.

Marker size is also affected by the scal e parameter.
[Default: t rue]

i cndN = <crds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* A filename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give thei f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

scal eN = <factor> (Double)
Scales the size of variable-sized markers. The default is 1, smaller or larger values multiply the
visible sizes accordingly.

SUN/256 67
[Default: 1]

shadi ngN = auto| flat|transl ucent|transparent]|density|aux|wei ghted <shade- paransN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

shapeN = filled_circle|lopen_circle|... (MarkShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

filled_circle
open_circle

Cross

X

open_squar e
open_di anond
open_triangl e_up
open_triangl e_down
filled_square
filled_di anond
filled_ triangle_up
filled_triangl e_down

[Default: filled_circle]

si zeN = <num expr > (String)
Size to draw each sized marker. Units are pixels unless auto-scaling is in effect, in which case
units are arbitrary. The plotted size is also affected by the scal e value.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.3 si zexy

Plots a shaped marker with variable horizontal and vertical extents at each position. The X and Y
dimensions are determined by two additional input data values.

The actual size of the markers depends on the setting of the aut oscal e parameter. If autoscaling is
off, the basic dimensions of each marker are given by the input data values in units of pixels. If
autoscaling is on, the data values are gathered for al the currently visible points, and scaling factors
are applied so that the largest ones will be a sensible size (a few tens of pixels). This autoscaling
happens independently for the X and Y directions. The basic sizes can be further adjusted with the
scal e factor.

SUN/256 68

Currently data values of zero aways correspond to marker dimension of zero, negative data values
are not represented, and the mapping is linear. An absolute maximum of 100 pixelsis aso imposed
on marker sizes. Other options may be introduced in future.

Note: for marker sizes that correspond to data values in data coordinates, you may find Error
plotting more appropriate.

Usage Overview:

| ayer N=si zexy shapeN=open_rectangl e| open_triangle|... scal eN=<factor>
aut oscal eN=true| fal se
shadi ngN=aut o| fl at |t ransl ucent | transparent | densi ty| aux| wei ght ed <shade- par anc
<pos- coor d- par ansN> xsi zeN=<num expr > ysi zeN=<num expr >
i NN=<tabl e> i fm N=<in-format> istreanN=true|fal se i cmdN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par amsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (pl ot 2pl ane) the parameters would be xN and yN. The coordinate parameter values
are in al cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

autoscaleN = true|false (Boolean)
Determines whether the basic size of variable sized markers is automatically scaled to have a
sensible size. If true, then the sizes of al the plotted markers are examined, and some
dynamically calculated factor is applied to them all to make them a sensible size (by default,
the largest ones will be afew tens of pixels). If false, the sizes will be the actual input valuesin
units of pixels.

If auto-scaling is off, then markers will keep exactly the same screen size during pan and zoom
operations; if it's on, then the visible sizes will change according to what other points are
currently plotted.

Marker size is also affected by the scal e parameter.
[Default: t rue]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'@'. Thus a value of "@i | enane" causes the file filenane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN=<in-format> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program

SUN/256 69

will exit with an error explaining which formats were attempted.
[Default: (aut o)]

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "-", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

scal eN = <factor> (Double)
Scales the size of variable-sized markers. The default is 1, smaller or larger values multiply the
visible sizes accordingly.

[Default: 1]

shadi ngN = auto| flat|translucent|transparent]|density|aux| wei ghted <shade- paranmsN>
(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)
translucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

shapeN = open_rectangl e| open_triangle]... (XYShape)
The available options are:

open_rectangl e
open_triangl e
open_tri angl e_down
open_di anond
open_el i pse
filled_rectangle

SUN/256 70

filled_triangle
filled_triangl e_down
filled_di anond
filled_ellipse

[Default: open_r ect angl €]

xsi zeN = <num expr > (String)
Horizontal extent of each marker. Units are pixels unless auto-scaling is in effect, in which
case units are arbitrary.

The value is a numeric algebraic expression based on column names as described in Section
10.

ysi zeN = <num expr > (String)
Vertical extent of each marker. Units are pixels unless auto-scaling is in effect, in which case
units are arbitrary.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.4 xyvect or

Plots directed lines from the data position given delta values for the coordinates. The plotted
markers are typically little arrows, but there are other options.

In some cases such delta values may be the actual magnitude required for the plot, but often the
vector data represents a value which has a different magnitude or is in different units to the
positional data. As a convenience for this case, the plotter can optionally scale the magnitudes of all
the vectors to make them a sensible size, so by default the largest ones are a few tens of pixelslong.
This auto-scaling is in operation by default, but it can be turned off or adjusted with the scaling and
auto-scaling options.

Usage Overview:

| ayer N=xyvector arrowN=snmal | _arrow medi um arrow ... scal eN=<factor>
aut oscal eN=true| fal se
shadi ngN=auto| fl at|transl ucent | transparent| density| aux| wei ght ed <shade- par ¢
XN=<num expr> yN=<num expr> xdel t aN=<num expr >
ydel t aN=<num expr > i nN=<t abl e> i f nt N=<i n-f or mat >
i streamN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

arrowN = smal | _arrow nediumarrow . .. (ErrorRenderer)
How arrows are represented.

The available options are:

smal | _arrow

nedi um_ar r ow

| arge_arrow

smal | _open_dart
nmedi um_open_dart

| arge_open_dart
smal | _filled_dart
medium fill ed_dart
large filled dart

SUN/256 71

e lines
* capped_lines

[Default: smal | _arr ow]

autoscal eN = true|fal se (Boolean)
Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be a few tens of pixels). If false, the sizeswill be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scal e parameter.
[Default: true]

i cmdN = <crds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

« AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not all formats can be streamed in this
way.

* A system command line with either a "<" character at the start, or a"| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|false (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less

SUN/256 72

resource usage when processing large files in certain formats (such as VOTable).
[Default: f al se]

scal eN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadi ngN = auto|flat|translucent|transparent|density|aux|weighted <shade- paranmsN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

xN = <num expr > (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xdel taN = <numexpr> (String)
Vector component in the X direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <numexpr> (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

ydel taN = <numexpr> (String)
Vector component inthe Y direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.5xyerror

Plots symmetric or asymmetric error bars in some or all of the plot dimensions. The shape of the
error "bars' is quite configurable, including (for 2-d and 3-d errors) ellipses, rectangles etc aligned
with the axes.

Usage Overview:

capped_lines|. ..

| ayer N=xyerror errorbarN=none|lines|
t|transl ucent|transparent|density|aux|wei ghted <shade- par ar

shadi ngN=auto| fl a

SUN/256 73

XN=<num expr > yN=<num expr> xerrhi N=<num expr >

xerrl oN=<num expr > yerrhi N=<num expr> yerrl oN=<num expr >
i NN=<t abl e> i fm N=<in-format> istreamN=true|fal se

i cmdN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

errorbarN = none|lines|capped_|ines|... (ErrorRenderer)
How errorbars are represented.

The available options are:

none

lines
capped_Il i nes

caps

arr ows

el lipse
crosshair_ellipse
rectangl e
crosshai r_rectangl e
filled_ellipse
filled_rectangle

[Default: I'i nes]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i n\.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file filenane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN=<in-format> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your tableisin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

SUN/256 74

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

shadi ngN = auto|flat|translucent|transparent|density|aux|weighted <shade- paranmsN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

xN = <num expr > (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrhi N = <numexpr> (String)
Error in the X coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrl oN = <numexpr> (String)
Error in the X coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <numexpr> (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrhiN = <numexpr> (String)
Error in the Y coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

SUN/256 75

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrl oN = <num expr > (String)
Error inthe Y coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.6 xyel | i pse

Plots an ellipse (or rectangle, triangle, or other similar figure) defined by two principal radii and an
optional rotation angle.

Usage Overview:

| ayer N=xyel | i pse ellipseN=ellipse|crosshair_ellipse|... scal eN=<factor>
aut oscal eN=true| fal se
shadi ngN=auto| fl at|transl ucent|transparent| density| aux| wei ght ed <shade- pal
XNE<num expr > yN=<num expr > raN=<num expr > r bN=<num expr >
posangN=<deg- expr> i nN=<t abl e> i f nmt N=<i n-f or mat >
i streamN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

autoscaleN = true|false (Boolean)
Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be afew tens of pixels). If false, the sizeswill be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scal e parameter.
[Default: t rue]

ellipseN = ellipse|crosshair_ellipse|... (ErrorRenderer)
How ellipses are represented.

The available options are:

el lipse
crosshair_ellipse
filled_ellipse
rectangl e
crosshair_rectangl e
filled_rectangle
open_triangl e
filled_triangle
l'i nes
capped_Il i nes

arr ows

[Default: el I i pse]
i cmiN = <cmds> (ProcessingStep[])

SUN/256 76

Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

posangN = <deg- expr > (String)
Orientation of the ellipse. The value is the angle in degrees from the X axistowardsthe Y axis
of the first principal axis of the ellipse.

The value is a numeric algebraic expression based on column names as described in Section
10.

raN = <numexpr> (String)
Ellipsefirst principal radius.

The value is a numeric algebraic expression based on column names as described in Section
10.

rbN = <numexpr> (String)
Ellipse second principal radius. If this value is blank, the two radii will be assumed equal, i.e.
the ellipses will be circles.

SUN/256 77

The value is a numeric algebraic expression based on column names as described in Section
10.

scal eN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadi ngN = auto|flat|translucent|transparent|density|aux|weighted <shade- paranmsN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

xN = <num expr > (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <numexpr> (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.71ink2
Plots aline linking two positions from the same input table row.

Usage Overview:

| ayer N=l i nk2 shadi ngN=aut o] fl at | transl ucent|transparent| density| aux| wei ght ed <shade- par ansl
<pos- coor d- par ans1N> <pos-coor d- par ans2N> | nN=<t abl e>
ifntN=<in-format> i streanN=true|fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par ams 1N> , <pos- coor d- par ams2N> give 2 positions
for each row of the input table. Their form depends on the plot geometry, i.e. which plotting
command is used. For a plane plot (pl ot 2pl ane) the parameters would be x1N, y1N, x2N and
y2N. The coordinate parameter values are in all cases strings interpreted as numeric expressions
based on column names. These can be column names, fixed values or algebraic expressions as
described in Section 10.

SUN/256 78

i cnmdN = <crds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* A filename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a "<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

shadi ngN = auto|flat|translucent|transparent|density|aux|wei ghted <shade- paranmsN>
(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

SUN/256 79

* weighted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

8.3.8 mar k2

Plots 2similar markers of fixed size and shape representing 2 separate positions from the same input
table row.

Usage Overview:

| ayer N=mar k2 shapeN=filled_circle|open_circle|... sizeN=<pixel s>
shadi ngN=aut o| f1 at | transl ucent | transparent | densi t y| aux| wei ght ed <shade- par ansl
<pos- coor d- parans1N> <pos- coor d- parans2N> | nN=<t abl e>
i fmt N=<in-format> istreanN=true|fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par ams 1N> , <pos- coor d- par ams2N> give 2 positions
for each row of the input table. Their form depends on the plot geometry, i.e. which plotting
command is used. For a plane plot (pl ot 2pl ane) the parameters would be x1N, y1N, x2N and
y2N. The coordinate parameter values are in all cases strings interpreted as numeric expressions
based on column names. These can be column names, fixed values or algebraic expressions as
described in Section 10.

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@i | ename" causes the file fil ename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. Thisflag can be used if you know what format your tableisin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.
« AURL.
e The special value "-", meaning standard input. In this case the input format must be given

SUN/256 80

explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

shadi ngN = auto|flat|translucent|transparent|density|aux|weighted <shade- paranmsN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

shapeN = filled_circle|open_circle|... (MarkShape)
Sets the shape of markers that are plotted at each position of the scatter plot.

The available options are:

filled circle
open_circle

Cross

X

open_square
open_di anond
open_triangl e_up
open_triangl e_down
filled_square

fill ed_di amond
filled_triangle_up
filled_triangl e _down

[Default: filled_circle]

sizeN = <pixel s> (Integer)
Size of the scatter plot markers. The unit is pixels, in most cases the marker is approximately
twice the size of the supplied value.

SUN/256 81
[Default: 1]

8.391ine

Plots a point-to-point line joining up the positions of data points. Note that for a large and
unordered data set this can lead to a big scribble on the screen.

Usage Overview:

| ayer N=l i ne col or N=<rrggbb>| red| bl ue| ... thickN=<pi xel s>
dashN=dot | dash|...|<a,b,...> antialiasN=true|fal se
<pos- coor d- paranmsN> i nN=<t abl e> i f nt N=<i n-f or mat >
i streanN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par amsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (pl ot 2pl ane) the parameters would be xN and yN. The coordinate parameter values
arein all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

antialiasN = true|false (Boolean)
If true, plotted lines are drawn with antialising. Antialised lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: f al se]

col orN = <rrggbb>| red| bl ue| . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"tfoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, bl ue, green, grey, nagenta, cyan, orange, pi nk, yel | ow, bl ack,
light_grey,white.

[Default: r ed]

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the line is solid.

Possible values for dashed lines are dot, dash, | ongdash, dot dash. You can aternatively
supply a comma-separated list of on/off length values such as "4, 2, 8, 2".

icmiN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@i | ename" causes the file fil ename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

SUN/256 82

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

thi ckN = <pixel s> (Integer)
Thickness of plotted line in pixels.

[Default: 1]

83.10linearfit
Plots aline of best fit for the data points.
Usage Overview:

| ayer N=l i nearfit col or N=<rrggbb>| red| bl ue| ... thickN=<pi xel s>
dashN=dot | dash|...|<a,b,...> antialiasN=true|fal se
<pos- coor d- paramsN> wei ght N=<num expr > i nN=<t abl e>
i fmN=<in-format> istreamN\=true|fal se i cmrdN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par amsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (pl ot 2pl ane) the parameters would be xN and yN. The coordinate parameter values
are in all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

SUN/256 83

antialiasN = true|fal se (Boolean)
If true, plotted lines are drawn with antialising. Antialised lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: f al se]

col orN = <rrggbb>| red| bl ue| . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nmagenta, cyan, orange, pi nk, yel |l ow, bl ack,
[ight_grey,white.

[Default: r ed]

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the lineis solid.

Possible values for dashed lines are dot, dash, | ongdash, dotdash. You can aternatively
supply a comma-separated list of on/off length values such as "4, 2, 8, 2".

icnmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. Thisflag can be used if you know what format your tableisin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

« AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not all formats can be streamed in this
way.

* A system command line with either a "<" character at the start, or a ™| " character at the
end ("<syscnmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|false (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is

SUN/256 84

necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

thi ckN = <pixel s> (Integer)
Thickness of plotted linein pixels.

[Default: 1]

wei ght N = <num expr > (String)
The weight associated with each data point for fitting purposes. Thisis used for calculating the
coefficients of the line of best fit, and the correlation coefficient. If no coordinate is supplied,
all points are assumed to have equal weight (1). Otherwise, any point with a null weight value
is assigned aweight of zero, i.e. ignored.

Given certain assumptions about independence of samples, a suitable value for the weight may
be1/ (err*err),if err isthe measurement error for each Y value.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.111 abel

Draws a text label at each position. You can select the font, where the labels appear in relation to
the point positions, and how crowded the points have to get before they are suppressed.

Usage Overview:

| ayer N=l abel texttypeN=plain|antialias]l tex font si zeN=<i nt - val ue>
font styl eN=st andard| serif| no
f ont wei ght N=pl ai n| bol d| i t al |c| bold_italic
anchor N=west | east | nort h| sout h col or r N=<rr ggbb>| r ed| bl ue| .

spaci ngN=<pi xel s> crowdl i m t N=<n> <pos- coor d- par ansN>
| abel N=<expr > i nN=<t abl e> i fnt N=<i n-format > i streanN=true| f al se
i cmdN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par amsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (pl ot 2pl ane) the parameters would be xN and yN. The coordinate parameter values
arein all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

anchor N = west | east | north| south (Anchor)
Determines where the text appears in relation to the plotted points. Values are points of the
compass.

The available options are:

L west
o east
. north

SUN/256 85

. sout h

[Default: west |

col orN = <rrggbb>| red| bl ue| . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,
light_grey,white.

[Default: r ed]

crowdl imitN = <n> (Integer)
Sets the maximum number of labels in a label group. This many labels can appear closely
spaced without being affected by the label spacing parameter.

It is useful for instance if you are looking at pairs of points, which will aways be close
together; if you set this value to 2, an isolated pair of labels can be seen, but if it's 1 then they
will only be plotted when they are distant from each other, which may only happen at very
high magnifications.

[Default: 2]

fontsi zeN = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyl eN = standard]| serif|nono (FontType)
Font style for text.

The available options are:

o st andar d
o serif
* nono

[Default: st andar d]

fontwei ght N = plain|bold|italic|bold_italic (FontWeight)
Font weight for text.

The available options are:

e plain

* bold

e talic

* bold.italic
[Default: pl ai n]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@i | ename" causes the file fil ename to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters

SUN/256 86

and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <t abl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a "<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

| abel N = <expr > (String)
Column or expression giving the text of the label to be written near the position being labelled.
Label values may be of any type (string or numeric)

Thevalueisabj ect algebraic expression based on column names as described in Section 10.

spaci ngN = <pi xel s> (Integer)
Determines the closest that labels can be spaced. If a group of labelsis closer to another group
than the value of this parameter, they will not be drawn, to avoid the display becoming too
cluttered. The effect is that you can see individual labels when you zoom in, but not when
there are many labelled points plotted close together on the screen. Set the value higher for less
cluttered labelling.

[Default: 12]

texttypeN = plain|antialias|latex (TextSyntax)
Determines how to turn label text into characters on the plot. Pl ai n and Anti al i as both take
the text at face value, but Antiali as smooths the characters. LaTex interprets the text as
LaTeX source code and typesetsit accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: pl ai n]

SUN/256 87

8.3.12 cont our

Plots position density contours. This provides another way (alongside the auto and density shading
modes) to visualise the characteristics of overdense regionsin a crowded plot. It's not very useful if
you just have afew points.

The contours are currently drawn as pixels rather than lines so they don't look very beautify in
exported vector output formats (PDF, PostScript). This may be improved in the future.

Usage Overview:

| ayer N=cont our col or N=<rrggbb>| red| bl ue|... nlevel N=<i nt-val ue>
smoot hN=<pi xel s> scal i ngN=l i near | | og| equal zer oN=<nunber >
<pos- coor d- paranmsN> i nN=<t abl e> | f nt N=<i n-f or mat >
i streanN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par amsN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (pl ot 2pl ane) the parameters would be xN and yN. The coordinate parameter values
arein all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

col orN = <rrggbb>| red| bl ue| . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"tfoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, bl ue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,
light _grey,white.

[Default: r ed]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'@'. Thus a value of "@i | ename" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your tableisin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

SUN/256 88

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "-", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

nlevel N = <int-value> (Integer)
Number of countour lines drawn. In fact, thisis an upper limit; if there is not enough variation
in the plot's density, then fewer conrour lineswill be drawn.

[Default: 5]

scal i ngN = linear|l og| equal (LevelMode)
How the smoothed density is treated before contour levels are determined.

The available options are:

* linear: levelsare equaly spaced
* |og: level logarithms are equally spaced
* equal : levelsare spaced to provide equal-area inter-contour regions

[Default: 1i near]

smoot hN = <pi xel s> (Integer)
The size of the smoothing kernel applied to the density before performing the contour
determination. If set too low the contours will be too crinkly, and if too high they will lose
definition.

[Default: 4]

zeroN = <nunber> (Double)
Determines the level at which the first contour (and hence all the others, which are separated
from it by afixed amount) are drawn.

[Default: 0]

8.3.13 density

Plots a density map on the pixel grid of the plot surface, coarsened by a configurable factor. You
can optionally use aweighting for the points, and you can configure how the points are combined to
produce the output pixel values.

SUN/256 89

The way that data values are mapped to colours is usually controlled by options at the level of the
plot itself, rather than by per-layer configuration.

Usage Overview:

| ayer N=densi ty bi npi xN=<i nt -val ue> conbi neN=<val ue> opaqueN=<nunber >
<pos- coor d- par ansN> wei ght N=<num expr > i nN=<t abl e>
ifntN=<in-format> i streanN=true|fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Positional Coordinate Parameters:
The positional coordinates <pos- coor d- par ansN> give a position for each row of the input
table. Their form depends on the plot geometry, i.e. which plotting command is used. For a
plane plot (pl ot 2pl ane) the parameters would be xN and yN. The coordinate parameter values
arein all cases strings interpreted as numeric expressions based on column names. These can
be column names, fixed values or algebraic expressions as described in Section 10.

bi npi xN = <i nt-value> (Integer)
Determines the dimension of grid bins in pixels. Bins are square in pixel dimensions, and this
parameter gives the extent in pixels aong each side. Currently, only integer values are
allowed.

[Default: 2]

conbi neN = <value> (Combiner)
Defines how values contributing to the same density map bin are combined together to
produce the value assigned to that bin (and hence its colour).

For unweighted values (a pure density map), it usually makes sense to use count . However, if
the input is weighted by an additional data coordinate, one of the other values such as nean
may be more revealing.

[Default: sum

i cnmdN = <crds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]
inN = <tabl e> (StarTable)

SUN/256 90

The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "-", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

opaqueN = <nunber > (Double)
The opacity of points plotted in the Aux colour. The value is the number of points which have
to be overplotted before the background is fully obscured.

[Default: 1]

wei ght N = <num expr > (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
afixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.14 hi st ogr am
Plots a histogram.
Usage Overview:

| ayer N=hi st ogr am col or N=<rrggbb>| red| bl ue| ... transparencyN=0..1
bi nsi zeN=+<wi dt h>| - <count > phaseN=<numnber >
cumul ati veN=t rue| f al se normal i seN=none| ar ea| naxi mun| hei ght
bar f or m\=open| filled|senm _filled|steps|sem _steps|spi kes
t hi ckN=<pi xel s> dashN=dot | dash|...|<a, b, ...> xN=<num expr >
wei ght N=<num expr > i nN=<t abl e> i f mt N=<i n-f or mat >
i streamN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

barformN = open|filled|sem _filled|steps|sem _steps|spikes (Form)
How histogram bars are represented. Note that options using transparent colours may not
render very faithfully to some vector formats like PDF and EPS.

The available options are:

* open

SUN/256 91

e filled

e senm _filled
* steps

* seni_steps
* spikes

[Default: semi _filled]

bi nsi zeN = +<wi dt h>| - <count > (BinSizer)
Configures the width of histogram bins. If the supplied string is a positive number, it is
interpreted as a fixed width in the data coordinates of the X axis (if the X axis is logarithmic,
the value is a fixed factor). If it is a negative number, then it will be interpreted as the
approximate number of bins to display across the width of the plot (though an attempt is made
to use only round numbers for bin widths).

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: - 30]

col orN = <rrggbb>| red| bl ue| . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nmagenta, cyan, orange, pi nk, yel |l ow, bl ack,
[ight_grey,white.

[Default: r ed]

curmul ativeN = true|fal se (Boolean)
If true, the histogram bars plotted are calculated cumulatively; each bin includes the counts
from all previous bins.

[Default: f al se]

dashN = dot|dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the lineis solid.

Possible values for dashed lines are dot, dash, | ongdash, dotdash. You can aternatively
supply a comma-separated list of on/off length values such as "4, 2, 8, 2".

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. Thisflag can be used if you know what format your tableisin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

SUN/256 92

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "-", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

nor mal i seN = none| ar ea| maxi nunj hei ght (Normalisation)
Defines how, if at all, the bars of histogram-like plots are normalised.

The available options are:

* none: No normalisation is performed.

* area: The total area of histogram bars is normalised to unity. For cumulative plots, this
behaves like hei ght .

* maxi nuni The height of the tallest histogram bar is normalised to unity. For cumulative
plots, this behaveslike hei ght .

* hei ght: Thetotal height of histogram barsis normalised to unity.

[Default: none]

phaseN = <nunber> (Double)
Controls where the horizontal zero point for binning is set. For instance if your bin size is 1,
this value controls whether bin boundariesareat 0, 1, 2, .. or 0.5, 1.5, 2.5, ... etc.

A value of 0 (or any integer) will result in a bin boundary at X=0 (linear X axis) or X=1
(logarithmic X axis). A fractional value will give abin boundary at that value multiplied by the
bin width.

[Default: 0]

thi ckN = <pi xel s> (Integer)
Thickness of plotted line in pixels.

[Default: 2]

transparencyN = 0..1 (Double)
Transparency with which compoents are plotted, in the range 0 (opaque) to 1 (invisible). The
valueis 1-apha

[Default: 0]

wei ght N = <numexpr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying

SUN/256 93

afixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <num expr > (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.15kde

Plots a Discrete Kernel Density Estimate giving a smoothed frequency of data values along the
horizontal axis, using a fixed-width smoothing kernel. This is a generalisation of a histogram in
which the bins are always 1 pixel wide, and a smoothing kernel is applied to each bin. The width
and shape of the kernel may be varied.

This is suitable for cases where the division into discrete bins done by a normal histogram is
unnecessary or troublesome.

Note this is not a true Kernel Density Estimate, since, for performance reasons, the smoothing is
applied to the (pixel-width) bins rather than to each data sample. The deviation from a true KDE
caused by this quantisation will be at the pixel level, hence in most cases not visually apparent.

Usage Overview:

| ayer N=kde col or N=<rrggbb>|red| blue|... transparencyN=0..1
smoot hN=+<wi dt h>| - <count >
ker nel N=squar e| | | near | epanechni kov| cos| cos2| gauss3| gauss6
curul ati veN=true| f al se normal i seN=none| ar ea| maxi nuni hei ght
fill N=solid|line|sem thickN=<pixel s> xN=<num expr >
wei ght N=<num expr > i nN=<t abl e> i f nt N=<i n-f or mat >
i streamN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

col orN = <rrggbb>| red| bl ue| . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecima number giving red, green and blue intensities, e.g.
"tfoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, bl ue, green, grey, nagenta, cyan, orange, pi nk, yel | ow, bl ack,
Iight _grey,white.

[Default: red]

cunul ativeN = true|false (Boolean)
If true, the histogram bars plotted are calculated cumulatively; each bin includes the counts
from all previous bins.

[Default: f al se]

fillN = solid|line|seni (FillMode)
How the density function is represented.

The available options are:

* solid: areabetween level and axisisfilled with solid colour
* line:level ismarked by awiggly line
* semi:level ismarked by awiggly line, and areabelow it isfilled with atransparent colour

SUN/256 94

[Default: seni |

i cndN = <crds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* A filename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a"”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

kernel N = square| | i near | epanechni kov| cos| cos2| gauss3| gauss6 (Kernel 1dShape)
The functional form of the smoothing kernel. The functions listed refer to the unscaled shape;
all kernels are normalised to give atotal area of unity.

The available options are:

squar e: Uniform value: f(x)=1, |x|=0..1

l'i near: Triangle: f(x)=1-|x|, [X|=0..1

epanechni kov: Parabola: f(x)=1-x*x, |x|=0..1

cos: Cosine: f(x)=cos(x* pi/2), |x|=0..1

cos2: Cosine sguared: f(x)=cos"2(x*pi/2), [x|=0..1

gauss3: Gaussian truncated at 3.0 sigma: f(x)=exp(-x*x/2), [x|=0..3

SUN/256 95
* gauss6: Gaussian truncated at 6.0 sigma: f(X)=exp(-x*x/2), |x|=0..6

[Default: epanechni kov]

nor mal i seN = none| ar ea| maxi nuni hei ght (Normalisation)
Defines how, if at all, the bars of histogram-like plots are normalised.

The available options are:

* none: No normalisation is performed.

* area: The total area of histogram bars is normalised to unity. For cumulative plots, this
behaves like hei ght .

* maxi nuni The height of the tallest histogram bar is normalised to unity. For cumulative
plots, this behaveslike hei ght .

* hei ght: Thetotal height of histogram barsis normalised to unity.

[Default: none]

smoot hN = +<wi dt h>| -<count> (BinSizer)
Configures the smoothing width for kernel density estimation. This is the characteristic width
of the kernel function to be convolved with the density to produce the visible plot.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it isa
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: - 100]

thi ckN = <pixel s> (Integer)
Thickness of plotted linein pixels.
[Default: 2]

transparencyN = 0..1 (Double)
Transparency with which compoents are plotted, in the range 0 (opaque) to 1 (invisible). The
valueis 1-apha

[Default: 0]

wei ght N = <numexpr> (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
afixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <numexpr> (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.16 knn

Plots a Discrete Kernel Density Estimate giving a smoothed frequency of data values along the
horizontal axis, using an adaptive (K-Nearest-Neighbours) smoothing kernel. This is a

SUN/256 96

generalisation of a histogram in which the bins are always 1 pixel wide, and a smoothing kernel is
applied to each bin. The width and shape of the kernel may be varied.

The K-Nearest-Neighbour figure gives the number of points in each direction to determine the
width of the smoothing kernel for smoothing each bin. Upper and lower limits for the kernel width
are also supplied; if the upper and lower limits are equal, thisis equivalent to afixed-width kernel.

Note this is not a true Kernel Density Estimate, since, for performance reasons, the smoothing is
applied to the (pixel-width) bins rather than to each data sample. The deviation from a true KDE
caused by this quantisation will be at the pixel level, hence in most cases not visually apparent.

Usage Overview:

| ayer N=knn col or N=<rr ggbb>| red| bl ue| ... transparencyN=0..1 knnN=<nunber >
synmmetri cN=true| fal se m nsnmoot hN=+<wi dt h>| - <count >
maxsnoot hN=+<w dt h>| - <count >
ker nel N=squar e| | i near | epanechni kov| cos| cos2| gauss3| gauss6
cunmul ati veN=true| fal se nornmal i seN=none| ar ea| maxi mun| hei ght
fill N=solid|line|sem thickN=<pixel s> xN=<num expr >
wei ght N=<num expr > i nN=<t abl e> i f nt N=<i n-f or mat >
i streamN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

col orN = <rrggbb>| red| bl ue] . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,
light_grey,white.

[Default: r ed]

cunul ativeN = true|fal se (Boolean)
If true, the histogram bars plotted are calculated cumulatively; each bin includes the counts
from all previous bins.

[Default: f al se]

fillN = solid|line|sen (FillMode)
How the density function is represented.

The available options are:

* solid: areabetween level and axisisfilled with solid colour
* line:level ismarked by awiggly line
* semi: level ismarked by awiggly line, and areabelow it isfilled with atransparent colour

[Default: semi |

icmiN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter

SUN/256 97

commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <t abl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

kernel N = square| | i near | epanechni kov| cos| cos2| gauss3| gauss6 (Kernel 1dShape)
The functional form of the smoothing kernel. The functions listed refer to the unscaled shape;
all kernels are normalised to give atotal area of unity.

The available options are:

squar e: Uniform value: f(x)=1, |x|=0..1

l'i near: Triangle: f(x)=1-|x|, [X|=0..1

epanechni kov: Parabola: f(x)=1-x*x, |x|=0..1

cos: Cosine: f(x)=cos(x* pi/2), |x|=0..1

cos2: Cosine squared: f(x)=cos"2(x*pi/2), [x|=0..1

gauss3: Gaussian truncated at 3.0 sigma: f(x)=exp(-x*x/2), [x|=0..3
gauss6: Gaussian truncated at 6.0 sigma: f(x)=exp(-x*x/2), [x|=0..6

[Default: epanechni kov]

knnN = <nurmber> (Double)
Sets the number of nearest neighbours to count away from a sample point to determine the
width of the smoothing kernel at that point. For the symmetric case this is the number of
nearest neighbours summed over both directions, and for the asymmetric case it is the number
inasingle direction.

The threshold is actually the weighted total of samples; for unweighted (wei ght =1) binsthat is
equivalent to the number of samples.

SUN/256 98
[Default: 100]

maxsmoot hN = +<wi dt h>| - <count > (BinSizer)
Fixes the maximum size of the smoothing kernel. This functions as an upper limit on the
distance that is otherwise determined by searching for the K nearest neighbours at each sample
point.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it isa
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: - 100]

ni nsnoot hN = +<wi dt h>| - <count > (BinSizer)
Fixes the minimum size of the smoothing kernel. This functions as a lower limit on the
distance that is otherwise determined by searching for the K nearest neighbours at each sample
point.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it isa
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: 0]

nor mal i seN = none| ar ea| maxi nunj hei ght (Normalisation)
Defines how, if at all, the bars of histogram-like plots are normalised.

The available options are:

* none: No normalisation is performed.

* area: The total area of histogram bars is normalised to unity. For cumulative plots, this
behaves like hei ght .

* maxi nuni The height of the tallest histogram bar is normalised to unity. For cumulative
plots, this behaveslike hei ght .

* hei ght: Thetotal height of histogram barsis normalised to unity.

[Default: none]

symmetricN = true|fal se (Boolean)
If true, the nearest neigbour search is carried out in both directions, and the kernel is
symmetric. If false, the nearest neigbour search is carried out separately in the positive and
negative directions, and the kernel width is accordingly different in the positive and negative
directions.

[Default: t rue]

thi ckN = <pi xel s> (Integer)
Thickness of plotted line in pixels.

[Default: 2]

transparencyN = 0..1 (Double)
Transparency with which compoents are plotted, in the range 0 (opaque) to 1 (invisible). The
valueis 1-apha

SUN/256 99

[Default: 0]

wei ght N = <num expr > (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
afixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <num expr > (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.17 densogr am

Represents smoothed density of data values along the horizontal axis using a colourmap. This is
like a Kernel Density Estimate (smoothed histogram with bins 1 pixel wide), but instead of
representing the data extent vertically as bars or a line, values are represented by a fixed-size
pixel-width column of a colour from a colour map. A smoothing kernel, whose width and shape
may be varied, is applied to each data point.

Thisisarather unconventional way to represent density data, and this plotting mode is probably not
very useful. But hey, nobody's forcing you to useit.

Usage Overview:

| ayer N=densogr am col or N=<rrggbb>| red| bl ue| ... snpot hN=+<wi dt h>| - <count >
ker nel N=squar e| | i near | epanechni kov| cos| cos2| gauss3| gauss6
densemapN=i nf er no| magma| pl asma| ... densecl i pN=<I 0>, <hi >
densefl i pN=true| f al se densequant N=<nunber >
densef uncN=l og| | i near | sqrt| square densesubN=<| 0>, <hi >
cunul ati veN=true| f al se si zeN=<pi xel s> posN=<fracti on>
XNE<num expr > wel ght N=<num expr > i nN=<t abl e>
ifntN=<in-format> i streanN=true|fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

col or N = <rrggbb>| red| bl ue| . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,
[ight_grey,white.

[Default: r ed]

cunul ativeN = true|fal se (Boolean)
If true, the histogram bars plotted are calculated cumulatively; each bin includes the counts
from all previous bins.

[Default: f al se]

denseclipN = <l o> <hi> (Subrange)
Defines a subrange of the colour ramp to be used for Density shading. The is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0, 1 (the default) is used, the whole range of colours specified by the selected

SUN/256 100
shader will be used. But if, for instance avalue of 0, 0. 5 is given, only those colours at the left
hand end of the ramp will be seen.

[Default: o, 1]

denseflipN = true|fal se (Boolean)
If true, the colour map on the Density axiswill be reversed.

[Default: f al se]

densefuncN = | og| | i near|sqrt|square (Scaling)
Defines the way that values in the Density range are mapped to the selected colour ramp.

The available options are:

| og: Logarithmic scaling
l'i near : Linear scaling
sqrt : Square root scaling
squar e: Square scaling

[Default: I'i near]

densemapN = i nf er no| magna| pl asm| . . . (Shader)
Color map used for Density axis shading.

A mixed bag of colour ramps are available: i nf erno, nagma, pl asm, viridis, cubeheli x,
sron, rai nbow, rai nbow2, rai nbow3, pastel, accent, gnupl ot, gnupl ot 2, specxby, set1,
pai red, hotcold, rdbu, piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, |ight,
greyscal e, col our, st andar d, bugn, bupu, orrd, pubu, purd, huecl , hue,intensity, rgb_red,
rgb_green, rgb_bl ue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scal e_hsv_s, scal e_hsv_v,
scal e_yuv_y, mask, blacker, whiter, transparency. Notee many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

[Default: i nf er no]

densequant N = <nunber > (Double)
Allows the colour map used for the Density axis to be quantised. If an integer value N is
chosen then the colour map will be viewed as N discrete evenly-spaced levels, so that only N
different colours will appear in the plot. This can be used to generate a contour-like effect, and
may make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
amedium-sized number like 256).

densesubN = <l o>, <hi> (Subrange)
Defines a normalised adjustment to the data range of the Density axis. The value may be
specified as a comma-separated pair of two numbers, giving the lower and upper bounds of the
range of of interest respectively. This sub-range is applied to the data range that would
otherwise be used, either automatically calculated or explicitly supplied; zero corresponds to
the lower bound and one to the upper.

The default value "0, 1" therefore has no effect. The range could be restricted to its lower half
with thevalueo, 0. 5.

[Default: o, 1]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

SUN/256 101

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give thei f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

kernel N = square| | i near | epanechni kov| cos| cos2| gauss3| gauss6 (Kernel 1dShape)
The functional form of the smoothing kernel. The functions listed refer to the unscaled shape;
all kernels are normalised to give atotal area of unity.

The available options are:

squar e: Uniform value: f(x)=1, |x|=0..1

l'i near: Triangle: f(x)=1-|x|, [x|=0..1

epanechni kov: Parabola: f(x)=1-x*x, |x|=0..1

cos: Cosine: f(x)=cos(x* pi/2), |x|=0..1

cos2: Cosine squared: f(x)=cos"2(x*pi/2), [x|=0..1

gauss3: Gaussian truncated at 3.0 sigma: f(x)=exp(-x*x/2), [x|=0..3
gauss6: Gaussian truncated at 6.0 sigma: f(x)=exp(-x*x/2), [x|=0..6

[Default: epanechni kov]

posN = <fraction> (Double)
Determines where on the plot region the density bar appears. The value should be in the range
0..1; zero corresponds to the bottom of the plot and one to the top.

[Default: 0. 05]
sizeN = <pixel s> (Integer)

SUN/256 102

Height of the density bar in pixels.
[Default: 12]

snoot hN = +<wi dt h>| - <count > (BinSizer)
Configures the smoothing width for kernel density estimation. This is the characteristic width
of the kernel function to be convolved with the density to produce the visible plot.

If the supplied value is a positive number it is interpreted as a fixed width in the data
coordinates of the X axis (if the X axis is logarithmic, the value is a fixed factor). If it isa
negative number, then it will be interpreted as the approximate number of smooothing widths
that fit in the width of the visible plot (i.e. plot width / smoothing width). If the value is zero,
no smoothing is applied.

When setting this value graphically, you can use either the slider to adjust the bin count or the
numeric entry field to fix the bin width.

[Default: - 100]

wei ght N = <num expr > (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
afixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

xN = <num expr > (String)
Horizontal coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.18 f uncti on

Plots an analytic function. This layer is currently only available for the Plane plots (including
histogram).

Usage Overview:

| ayer N=f uncti on axi sN=Hori zontal | Vertical xnameN=<nane> fexpr N=<expr >
col or N=<rrggbb>| red| bl ue| ... thi ckN=<pi xel s>
dashN=dot | dash|...|<a,b,...> antialiasN=true|fal se

All the parameters listed here affect only the relevant layer, identified by the suffix N.

antialiasN = true|fal se (Boolean)
If true, plotted lines are drawn with antialising. Antialised lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: f al se]

axi sSN = Horizontal | Verti cal (FuncAxis)
Which axis the independent variable varies along. Options are currently Hori zontal and
Vertical .

[Default: Hori zont al]

col orN = <rrggbb>| red| bl ue] . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.

SUN/256 103

ff00f f" for magenta. Alternatively it may be the name of one of the pre-defined colors. These
are currently red, blue, green, grey, mamgenta, cyan, orange, pink, yellow, black,
light_grey,white.

[Default: r ed]

dashN = dot | dash|...|<a,b,...> (float[])
Determines the dash pattern of the line drawn. If null (the default), the lineis solid.

Possible values for dashed lines are dot, dash, | ongdash, dotdash. You can aternatively
supply a comma-separated list of on/off length values such as "4, 2, 8, 2".

fexprN = <expr> (String)
An expression using TOPCAT's expression language in terms of the independent variable to
define the function. This expression must be standalone - it cannot reference any tables.

thi ckN = <pixel s> (Integer)
Thickness of plotted linein pixels.

[Default: 1]

xnameN = <name> (String)
Name of the independent variable for use in the function expression. This is typically x for a
horizontal independent variable and y for a vertical independent variable, but any string that is
a legal expression language identifier (starts with a letter, continues with letters, numbers,
underscores) can be used.

[Default: x]

8.3.19 skyvect or

Plots directed lines from the data position given delta values for the coordinates. The plotted
markers are typically little arrows, but there are other options.

In some cases such delta values may be the actual magnitude required for the plot, but often the
vector data represents a value which has a different magnitude or is in different units to the
positional data. As a convenience for this case, the plotter can optionally scale the magnitudes of all
the vectors to make them a sensible size, so by default the largest ones are a few tens of pixels long.
This auto-scaling is in operation by default, but it can be turned off or adjusted with the scaling and
auto-scaling options.

Usage Overview:

| ayer N=skyvect or arrowN=smal | _arrow| medi umarrow ... scal eN=<factor>
aut oscal eN=true| fal se
shadi ngN=aut o| fl at | transl ucent |t ransparent | densi t y| aux| wei ght ed <shade- par
| onN=<deg- expr> | at N=<deg- expr > dl onN=<deg- expr >
dl at N=<deg- expr > i nN=<t abl e> i f nt N=<i n- f or mat >
i streanN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

arrowN = smal | _arrow nediumarrow . .. (ErrorRenderer)
How arrows are represented.

The available options are:

* small_arrow
e nmedium.arrow
* |arge_arrow

SUN/256 104

smal | _open_dart
nmedi um_open_dart

| arge_open_dart
smal | _filled_dart
medi um fill ed_dart
large_filled_dart
lines
capped_I i nes

[Default: smal | _arr ow]

autoscal eN = true|fal se (Boolean)

d

d

Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be afew tens of pixels). If false, the sizeswill be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scal e parameter.
[Default: true]

atN = <deg- expr > (String)

Change in the latitude coordinate represented by the plotted vector. The supplied value is an
angle in degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

onN = <deg- expr > (String)
Change in the longitude coordinate represented by the plotted vector. The supplied value is an
angle in degrees, and is considered to be premultiplied by cos(L atitude).

The value is a numeric algebraic expression based on column names as described in Section
10.

i cmdN = <cnds> (ProcessingStep[])

Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmtN = <in-format> (String)

Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. Thisflag can be used if you know what format your tableisin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)

SUN/256 105

The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "-", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

latN = <deg-expr> (String)
Latitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

| onN = <deg- expr > (String)
Longitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

scal eN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadi ngN = auto|flat|translucent|transparent|density|aux|weighted <shade- paranmsN>
(ShapeMode)
Determines how plotted objects in layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

SUN/256 106

8.3.20 skyel | i pse

Plots an ellipse (or rectangle, triangle, or other similar figure) defined by two principal radii and an
optional rotation angle.

Usage Overview:

| ayer N=skyel | i pse el lipseN=el|lipse|crosshair_ellipse|... scal eN=<factor>
aut oscal eN=true| fal se
shadi ngN=auto| fl at|transl ucent| transparent| density| aux| wei ght ed
| onN=<deg- expr > | at N=<deg- expr > r aN=<deg- expr >
r bN=<deg- expr > posangN=<deg- expr > i nN=<t abl e>
ifntN=<in-format> i streanN=true|fal se i cnidN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

autoscal eN = true|fal se (Boolean)
Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be a few tens of pixels). If false, the sizeswill be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scal e parameter.
[Default: true]

ellipseN = ellipse|crosshair_ellipse|... (ErrorRenderer)
How ellipses are represented.

The available options are:

el lipse
crosshair_ellipse
filled_ ellipse
rectangl e
crosshai r_rectangl e
filled_rectangle
open_triangle
filled_ _triangle
l'i nes
capped_l i nes
arrows

[Default: el I i pse]

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters

<shade- pe

SUN/256 107

and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <t abl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a "<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

| at N = <deg- expr > (String)
Latitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

lonN = <deg-expr> (String)
Longitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

posangN = <deg-expr> (String)
Orientation of the ellipse. The value is the angle in degrees from the North pole to the primary
axis of the ellipse in the direction of increasing longitude.

The value is a numeric algebraic expression based on column names as described in Section
10.

raN = <deg-expr> (String)
Ellipsefirst principal radiusin degrees.
The value is a numeric algebraic expression based on column names as described in Section
10.

rbN = <deg-expr> (String)
Ellipse second principal radius in degrees. If this value is blank, the two radii will be assumed
equal, i.e. the ellipses will be circles.

SUN/256 108

The value is a numeric algebraic expression based on column names as described in Section
10.

scal eN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadi ngN = auto|flat|translucent|transparent|density|aux|weighted <shade- paranmsN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

auto (Section 8.4.1)

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: aut o]

8.3.21 skydensity

Plots a density map on the sky. The grid on which the values are drawn uses the HEALPix
tesselation, with a configurable resolution. You can optionally use a weighting for the points, and
you can configure how the points are combined to produce the output pixel values.

The way that data values are mapped to colours is usually controlled by options at the level of the
plot itself, rather than by per-layer configuration.

Usage Overview:

| ayer N=skydensity | evel N=<-rel -1evel | +abs-| evel > conbi neN=<val ue>
opaqueN=<numrber > | onN=<deg- expr > | at N=<deg- expr >
wei ght N=<num expr > i nN=<t abl e> i f nt N=<i n-f or mat >
i streamN=true| fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

conmbi neN = <value> (Combiner)
Defines how values contributing to the same density map bin are combined together to
produce the value assigned to that bin (and hence its colour).

For unweighted values (a pure density map), it usually makes sense to use count . However, if
the input is weighted by an additional data coordinate, one of the other values such as nean
may be more revealing.

[Default: sun]

icmiN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If

SUN/256 109

more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <t abl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

| at N = <deg- expr > (String)
Latitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

level N = <-rel -1evel | +tabs-level > (Integer)
Determines the HEALPix level of pixelswhich are averaged over to calculate density.

If the supplied value is a non-negative integer, it gives the absolute level to use; at level O there
are 12 pixels on the sky, and the count multiplies by 4 for each increment.

If the value is negative, it represents arelative level; it is approximately the (negative) number
of screen pixels along one side of aHEALPix sky pixel. In this case the actual HEALPix level
will depend on the current zoom.

[Default: - 3]
lonN = <deg-expr> (String)

SUN/256 110

Longitude in decimal degrees.

The value is a numeric algebraic expression based on column names as described in Section
10.

opaqueN = <nunber > (Double)
The opacity of points plotted in the Aux colour. The value is the number of points which have
to be overplotted before the background is fully obscured.

[Default: 1]

wei ght N = <num expr > (String)
Weighting of data points. If supplied, each point contributes a value to the histogram equal to
the data value multiplied by this coordinate. If not supplied, the effect is the same as supplying
afixed value of one.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.22 xyzvect or

Plots directed lines from the data position given delta values for the coordinates. The plotted
markers are typically little arrows, but there are other options.

In some cases such delta values may be the actual magnitude required for the plot, but often the
vector data represents a value which has a different magnitude or is in different units to the
positional data. As a convenience for this case, the plotter can optionally scale the magnitudes of all
the vectors to make them a sensible size, so by default the largest ones are afew tens of pixelslong.
This auto-scaling is in operation by default, but it can be turned off or adjusted with the scaling and
auto-scaling options.

Usage Overview:

| ayer N=xyzvector arrowN=smal | _arrow| medi umarrow ... scal eN=<factor>
aut oscal eN=true| fal se
shadi ngN=f | at | t ransl ucent | transparent | densi t y| aux| wei ght ed <shade- paransN
XN=<num expr > yN=<num expr> zN=<num expr >
xdel t aN=<num expr > ydel t aN=<num expr> zdel t aN=<num expr >
i NN=<t abl e> i fnm N=<i n-format> istreanN=true|fal se
i cmdN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

arrowmN = smal | _arrow medi umarrow . .. (ErrorRenderer)
How arrows are represented.

The available options are:

smal | _arrow

medi um_ar r ow

| arge_arrow

smal | _open_dart
nmedi um open_dart
| ar ge_open_dart
smal |l _filled_dart
medi um filled_dart
large_filled_dart
lines
capped_Il i nes

SUN/256 111

[Default: smal | _arr ow]

autoscal eN = true|fal se (Boolean)
Determines whether the default size of variable-sized markers like vectors and ellipses are
automatically scaled to have a sensible size. If true, then the sizes of all the plotted markers are
examined, and some dynamically calculated factor is applied to them all to make them a
sensible size (by default, the largest ones will be afew tens of pixels). If false, the sizeswill be
the actual input values interpreted in data coordinates.

If auto-scaling is on, then markers will keep approximately the same screen size during zoom
operations; if it's off, they will keep the same size in data coordinates.

Marker size is also affected by the scal e parameter.
[Default: t rue]

i cmdN = <crds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane” causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

« AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not all formats can be streamed in this
way.

* A system command line with either a "<" character at the start, or a"| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|false (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

SUN/256 112

scal eN = <factor> (Double)
Affects the size of variable-sized markers like vectors and ellipses. The default value is 1,
smaller or larger values multiply the visible sizes accordingly.

[Default: 1]

shadi ngN = fl at|transl ucent|transparent| density|aux|wei ghted <shade-paranmsN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: f1 at]

xN = <num expr > (String)
X coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xdel taN = <numexpr> (String)
Vector component in the X direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <numexpr> (String)
Y coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

ydel taN = <numexpr> (String)
Vector component inthe Y direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

zN = <numexpr> (String)
Z coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

zdel taN = <numexpr> (String)
Vector component in the Z direction.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.23 xyzerror

Plots symmetric or asymmetric error bars in some or all of the plot dimensions. The shape of the

SUN/256 113

error "bars' is quite configurable, including (for 2-d and 3-d errors) ellipses, rectangles etc aligned
with the axes.

Usage Overview:

| ayer N=xyzerror errorbarN=none|lines|capped_lines|..
shadi ngN=f | at | t ransl ucent | t ranspar ent | densi t y| aux| wei ght ed <shade- par ansN>
XN=<num expr > yN=<num expr> zN=<num expr > xerrhi N=<num expr >
xerrl oN=<num expr > yerrhi N=<num expr > yerr| oN=<num expr >
zerr hi Ne<num expr > zerr| oN=<num expr > i nN=<t abl e>
i fntN=<in-format> i streanN=true|fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

errorbarN = none| | i nes| capped_|ines|... (ErrorRenderer)
How errorbars are represented.

The available options are:

none
l'i nes

capped_Il i nes

caps

arrows

cuboi d

el lipse
crosshair_el lipse
rectangl e
crosshair_rectangl e
filled_ellipse
filled_rectangle

[Default: I'i nes]

icmiN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. Thisflag can be used if you know what format your tableisin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

« A filename.

SUN/256 114

 AURL.

* The special value "-", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

shadi ngN = fl at|transl ucent|transparent| density|aux|wei ghted <shade-paranmsN>
(ShapeMode)
Determines how plotted objectsin layer N are coloured. This may be influenced by how many
objects are plotted over each other as well as the values of other parameters. Available options
(Section 8.4) are:

flat (Section 8.4.2)

transl ucent (Section 8.4.3)
transparent (Section 8.4.4)
density (Section 8.4.5)

aux (Section 8.4.6)

wei ghted (Section 8.4.7)

Each of these options comes with its own set of parameters to specify the details of how
colouring is done.

[Default: f1 at]

xN = <num expr > (String)
X coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrhi N = <numexpr> (String)
Error in the X coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

xerrl oN = <numexpr> (String)
Error in the X coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

yN = <numexpr> (String)
Y coordinate.

SUN/256 115

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrhi N = <num expr > (String)
Error in the Y coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrl oN = <num expr > (String)
Error inthe Y coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

zN = <num expr > (String)
Z coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

zerrhi N = <num expr > (String)
Error in the Z coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

zerrl oN = <numexpr> (String)
Error in the Z coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.24 yerror

Shape
Plots symmetric or asymmetric error barsin the Y direction.

Shading
Paints markersin asingle fixed colour.

Usage Overview:

| ayer N=yerror errorbarN=none|lines|capped_|ines|caps|arrows
col or N=<rrggbb>| red| bl ue| ... tN=<tinme-expr> yN=<num expr>
yer rhi N=<num expr> yerr| oN=<num expr> i nN=<t abl e>
i fmN=<in-format> i streamN\=true|fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

col orN = <rrggbb>| red| bl ue] . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecima number giving red, green and blue intensities, e.g.

SUN/256 116

ff00f f" for magenta. Alternatively it may be the name of one of the pre-defined colors. These
are currently red, blue, green, grey, mamgenta, cyan, orange, pink, yellow, black,
light_grey,white.

[Default: r ed]

errorbarN = none| |l i nes| capped_l i nes| caps| arrows (ErrorRenderer)
How errorbars are represented.

The available options are:

* none

e lines

* capped_lines
* caps

e arrows
[Default: I'i nes]

i cndN = <crds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i nN.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

« AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not all formats can be streamed in this
way.

* A system command line with either a "<" character at the start, or a"| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreanN = true|false (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less

SUN/256 117

resource usage when processing large files in certain formats (such as VOTable).
[Default: f al se]

tN = <tinme-expr> (String)
Time coordinate.

Thevalueisabj ect algebraic expression based on column names as described in Section 10.

yN = <num expr > (String)
Vertical coordinate.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrhi N = <num expr > (String)
Error in the Y coordinate in the positive direction. If no corresponding negative error value is
supplied, then this value is also used in the negative direction, i.e. in that case errors are
assumed to be symmetric.

The value is a numeric algebraic expression based on column names as described in Section
10.

yerrl oN = <num expr > (String)
Error inthe Y coordinate in the negative direction. If left blank, it is assumed to take the same
value as the positive error.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.3.25 spect rogram

Plots spectrograms. A spectrogram is a sequence of spectra plotted as vertical 1-d images, each one
plotted at a different horizontal coordinate.

This specialised layer isonly availablefor ti ne plots.
Usage Overview:

| ayer N=spect rogr am spect r omapN=i nf er no| magna| pl asmg| . . .
spectrocl | pN=<I 0>, <hi > spectrofli pN=true|false
spect r oquant N=<numnber >
spectrofuncN=l og| | i near| sqrt| square spectrosubN=<| 0>, <hi >
spectronul | col or N=<rrggbb>| red| bl ue| ... tN=<tine-expr>
spect rumN=<arr ay- expr > tw dt hN=<num expr > i nN=<t abl e>
ifntN=<in-format> i streanN=true|fal se i cndN=<cnds>

All the parameters listed here affect only the relevant layer, identified by the suffix N.

icmdN = <cmds> (ProcessingStep[])
Specifies processing to be performed on the layer N input table as specified by parameter i n\.
The value of this parameter is one or more of the filter commands described in Section 6.1. If
more than one is given, they must be separated by semicolon characters (*;"). This parameter
can be repeated multiple times on the same command line to build up alist of processing steps.
The sequence of commands given in this way defines the processing pipeline which is
performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

SUN/256 118

ifmN = <in-formt> (String)
Specifies the format of the input table as specified by parameter i nN. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

inN = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the i f nt N parameter. Note that not al formats can be streamed in this
way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istreamN = true|fal se (Boolean)
If set true, the input table specified by the i nN parameter will be read as a stream. It is
necessary to give the i f nt N parameter in this case. Depending on the required operations and
processing mode, this may cause the read to fail (sometimes it is necessary to read the table
more than once). It is not normally necessary to set this flag; in most cases the data will be
streamed automatically if that is the best thing to do. However it can sometimes result in less
resource usage when processing large filesin certain formats (such as VOTable).

[Default: f al se]

spectroclipN = <l 0>, <hi > (Subrange)
Defines a subrange of the colour ramp to be used for Spectral shading. The is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0, 1 (the default) is used, the whole range of colours specified by the selected
shader will be used. But if, for instance avalue of 0, 0. 5 is given, only those colours at the left
hand end of the ramp will be seen.

[Default: o, 1]

spectroflipN = true|false (Boolean)
If true, the colour map on the Spectral axis will be reversed.

[Default: f al se]

spectrofuncN = log|linear|sqrt|square (Scaling)
Defines the way that values in the Spectral range are mapped to the selected colour ramp.

The available options are:

| og: Logarithmic scaling
l'i near: Linear scaling
sqrt : Square root scaling
squar e: Square scaling

[Default: 1i near]

spect romapN = i nf er no| magra| pl asma] . . . (Shader)
Color map used for Spectral axis shading.

SUN/256 119

A mixed bag of colour ramps are available: i nf erno, nagma, pl asm, viridis, cubeheli x,
sron, rai nbow, rai nbow2, rai nbow3, pastel, accent, gnupl ot, gnupl ot 2, specxby, set1,
pai red, hotcold, rdbu, piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, |ight,
greyscal e, col our, st andar d, bugn, bupu, orrd, pubu, purd, huecl , hue,intensity, rgb_red,
rgb_green, rgb_bl ue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scal e_hsv_s, scal e_hsv_v,
scal e_yuv_y, mask, blacker, whiter, transparency. Note. many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

[Default: i nf er no]

spectronul | col or N = <rrggbb>| red| bl ue| . .. (Color)
The color of points with anull value of the Spectral coordinate.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nmagenta, cyan, orange, pink, yel |l ow, bl ack,
[ight_grey,white.

If the value is null, then points with a null Spectral value will not be plotted at all.
[Default: grey]

spectroquant N = <nunber > (Double)
Allows the colour map used for the Spectral axis to be quantised. If an integer value N is
chosen then the colour map will be viewed as N discrete evenly-spaced levels, so that only N
different colours will appear in the plot. This can be used to generate a contour-like effect, and
may make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
amedium-sized number like 256).

spectrosubN = <l o>, <hi > (Subrange)
Defines a normalised adjustment to the data range of the Spectral axis. The value may be
specified as a comma-separated pair of two numbers, giving the lower and upper bounds of the
range of of interest respectively. This sub-range is applied to the data range that would
otherwise be used, either automatically calculated or explicitly supplied; zero corresponds to
the lower bound and one to the upper.

The default value "0, 1" therefore has no effect. The range could be restricted to its lower half
with thevalueo, 0. 5.

[Default: o, 1]

spectrunN = <array- expr> (String)
Provides an array of spectral samples at each data point. The value must be a numeric array
(e.g. the value of an array-valued column).
Thevalueisabj ect algebraic expression based on column names as described in Section 10.

tN = <tinme-expr> (String)
Time coordinate.

Thevalueisabj ect algebraic expression based on column names as described in Section 10.

twi dthN = <numexpr> (String)
Range on the Time axis over which the spectrum is plotted. If no value is supplied, an attempt
will be made to determine it automatically by looking at the spacing of the Time coordinates
plotted in the spectrogram.

The value is a numeric algebraic expression based on column names as described in Section
10.

8.4 Shading Modes

SUN/256 120

Some plot layer types have an associated shadi ng parameter which determines how plotted markers
are coloured. This is independent of the marker shapes (which may be points, vectors, elipses, ...)
but may be affected by how many markers are plotted on top of each other, additional input table
values, selected colour maps etc. For the simplest shading types (e.g. flat) it's just a case of
choosing a colour, but the more complex ones have several associated parameters.

The various shading types and their usages are described in the following subsections.

8.4.1auto

Paints isolated points in their selected colour but where multiple points in the same layer overlap it
adjusts the clour by darkening it. This means that for isolated points (most or al points in a
non-crowded plot, or outliers in a crowded plot) it behaves just like flat mode, but it's easy to see
where overdense regionslie.

Thisislike density mode, but with no user-configurable options.
Usage:

shadi ngN=aut o col or N=<rrggbb>| red| bl ue| ...

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Associated parameters are as follows:

col orN = <rrggbb>| red| bl ue] . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, magenta, cyan, orange, pi nk, yel |l ow, bl ack,
[ight_grey,white.

[Default: r ed]

8.4.2f1 at
Paints markersin asingle fixed colour.
Usage:

shadi ngN=f | at col or N=<rrggbb>| red| bl ue| ...

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Associated parameters are as follows:

col orN = <rrggbb>| red| bl ue| . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, magenta, cyan, orange, pi nk, yel |l ow, bl ack,
light_grey,white.

[Default: r ed]

SUN/256 121

8.4.3 transl ucent

Paints markers in a transparent version of their selected colour. The degree of transparency is
determined by how many points are plotted on top of each other and by the transparency level.
Unlike transparent mode, the transparency varies according to the average point density in the plot,
so leaving the setting the same as you zoom in and out usually has a sensible effect.

Usage:

shadi ngN=t ransl ucent col or N=<rrggbb>|red| bl ue| ... transl evel N=<nunber >

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Associated parameters are as follows:

col orN = <rrggbb>| red| bl ue] . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,
ight_grey,white.

[Default: r ed]

transl evel N = <nunber > (Double)
Sets the level of automatically controlled transparency. The higher this value the more
transparent points are. Exactly how transparent points are depends on how many are currently
being plotted on top of each other and the value of this parameter. The idea is that you can set
it to some fixed value, and then get something which looks similarly transparent while you
zoom in and out.

[Default: 0. 1]

8.4.4transpar ent

Paints markers in a transparent version of their selected colour. The degree of transparency is
determined by how many points are plotted on top of each other and by the opague limit. The
opaque limit fixes how many points must be plotted on top of each other to completely obscure the
background. Thisis set to afixed value, so atransparent level that works well for a crowded region
(or low magnification) may not work so well for a sparse region (or when zoomed in).

Usage:

shadi ngN=t r anspar ent col or N=<rr ggbb>| red| bl ue| ... opaqueN=<nunber >

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Associated parameters are as follows:

col orN = <rrggbb>| red| bl ue] . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,

SUN/256 122

light_grey,white.
[Default: r ed]
opaqueN = <nunber > (Double)

The opacity of plotted points. The value is the number of points which have to be overplotted
before the background is fully obscured.

[Default: 4]

8.45density

Paints markers using a configurable colour map to indicate how many points are plotted over each
other. Specifically, it colours each pixel according to how many times that pixel has has been
covered by one of the markers plotted by the layer in question. To put it another way, it generates a
false-colour density map with pixel granularity using a smoothing kernel of the form of the markers
plotted by the layer. The upshot is that you can see the plot density of points or other markers
plotted.

Thisislike auto mode, but with more user-configurable options.
Usage:

shadi ngN=densi ty col or N=<rrggbb>| red| bl ue| . ..
densemapN=bl acker|whiter|inferno|... denseclipN=<lo>, <hi>
densefl i pN=true| f al se densequant N=<numnber >
densef uncN=l og| | i near| sqrt| square densesubN=<| 0>, <hi >

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Associated parameters are as follows:

col orN = <rrggbb>| red| bl ue] . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"tfoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, bl ue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,
light _grey,white.

[Default: r ed]

denseclipN = <l o> <hi> (Subrange)
Defines a subrange of the colour ramp to be used for Density shading. The is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0, 1 (the default) is used, the whole range of colours specified by the selected
shader will be used. But if, for instance avalue of 0, 0. 5 is given, only those colours at the left
hand end of the ramp will be seen.

[Default: o, 1]

denseflipN = true|false (Boolean)
If true, the colour map on the Density axis will be reversed.

[Default: f al se]

densefuncN = | og| | inear|sqrt]|square (Scaling)
Defines the way that values in the Density range are mapped to the selected colour ramp.

The available options are:

SUN/256 123

* | og: Logarithmic scaling
* linear: Linear scaling
e sgrt: Squareroot scaling
* square: Square scaling
[Default: 1 og]
densemapN = bl acker | whiter|inferno|... (Shader)

Color map used for Density axis shading.

A mixed bag of colour ramps are available: bl acker, whiter, inferno, magma, pl asma,
viridis, cubehelix, sron, rainbow, rainbow2, rainbow3, pastel, accent, gnuplot,
gnupl ot 2, specxby, set 1, pai red, hot col d, rdbu, pi yg, brbg, cyan- magent a, r ed- bl ue, brg,
heat, col d, | i ght, greyscal e, col our, standard, bugn, bupu, orrd, pubu, purd, huecl, hue,
intensity, rgb_red, rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v,
scal e_hsv_s, scal e_hsv_v, scal e_yuv_y. Note: many of these, including rainbow-like ones,
are frowned upon by the visualisation community.

[Default: bl acker]

densequant N = <nunber > (Double)
Allows the colour map used for the Density axis to be quantised. If an integer value N is
chosen then the colour map will be viewed as N discrete evenly-spaced levels, so that only N
different colours will appear in the plot. This can be used to generate a contour-like effect, and
may make it easier to trace the boundaries of regions of interest by eye.

If left blank, the colour map is nominally continuous (though in practice it may be quantised to
amedium-sized number like 256).

densesubN = <l o>, <hi> (Subrange)
Defines a normalised adjustment to the data range of the Density axis. The value may be
specified as a comma-separated pair of two numbers, giving the lower and upper bounds of the
range of of interest respectively. This sub-range is applied to the data range that would
otherwise be used, either automatically calculated or explicitly supplied; zero corresponds to
the lower bound and one to the upper.

The default value "0, 1" therefore has no effect. The range could be restricted to its lower half
with thevalueo, 0. 5.

[Default: o, 1]

8.4.6 aux

Paints markers in a colour determined by the value of an additional data coordinate. The marker
colours then represent an additional dimension of the plot. Y ou can also adjust the transparency of
the colours used. The way that data values are mapped to colours is usually controlled by options at
the level of the plot itself, rather than by per-layer configuration.

Usage:

shadi ngN=aux auxN=<num expr > auxnul | col or N=<rr ggbb>| red| bl ue| . ..
opaqueN=<nunber >

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Associated parameters are as follows:

auxN = <numexpr> (String)
Colour coordinate for Aux shading.

SUN/256 124

This parameter gives a column name, fixed value, or agebraic expression for the aux
coordinate for layer N. The value is a numeric algebraic expression based on column names as
described in Section 10.

auxnul | col or N = <rrggbb>| red| bl ue|. .. (Color)
The color of points with anull value of the Aux coordinate.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,
[ight_grey,white.

If the value is null, then points with anull Aux value will not be plotted at al.
[Default: grey]

opaqueN = <nunber > (Double)
The opacity of points plotted in the Aux colour. The value is the number of points which have
to be overplotted before the background is fully obscured.

[Default: 1]

8.4.7 wei ght ed

Paints markers like the Density mode, but with optional weighting by an additional coordinate. Y ou
can configure how the weighted coordinates are combined to give the final weighted result. The
way that data values are mapped to colours is usualy controlled by options at the level of the plot
itself, rather than by per-layer configuration.

Usage:

shadi ngN=wei ght ed wei ght N=<num expr > col or N=<rr ggbb>| red| bl ue| . ..
conbi neN=sum| nean| medi an| mi n| max| vari ance| count | hi t

All the parameters listed here affect only the relevant layer, identified by the suffix N.

Associated parameters are as follows:

col orN = <rrggbb>| red| bl ue] . .. (Color)
The color of plotted data.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"tfoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, bl ue, green, grey, nagenta, cyan, orange, pi nk, yel | ow, bl ack,
light_grey,white.

[Default: r ed]

combi neN = sum nean| nmedi an| m n| nax| vari ance| count | hi t (Combiner)
Defines how values contributing to the same pixel are combined together to produce the value
assigned to that pixel (and hence its colour).

When a weight is in use, mean or sum are typically sensible choices. If there is no weight (a
pure density map) then count is usualy better, but in that case it may make more sense (it is
more efficient) to use one of the other shading modes instead.

The available options are:

e sum the sum of all the combined values
* nmean: the mean of the combined values
* nedi an: the median of the combined values (may be slow)

SUN/256 125

mi n: the minimum of al the combined values

max: the maximum of all the combined values

vari ance: the sample variance of the combined values

count : the number of non-blank values (weight isignored)

hi t : 1if any values present, NaN otherwise (weight isignored)

[Default: nean]

wei ght N = <num expr > (String)
Weight coordinate for weighted density shading.

This parameter gives a column name, fixed value, or algebraic expression for the wei ght
coordinate for layer N. The value is a numeric algebraic expression based on column names as
described in Section 10.

8.5 Output Modes

The plots generated by the plotting commands can be used in various different ways. One thing you
might want to do is to write the output to a file in a given graphics format (out); another is to
preview it directly on the screen (swi ng). By default one or other of these will happen depending on
whether you specify an output file. However there are other possibilities; these are listed in the
following subsections.

Except for display to the screen, these modes should work happily on a headless machine (one with
no graphics display, as may be the case for a web server). When running headless, you may find it
necessary to set the java system property "j ava. awt . headl ess™ tOt r ue - see Section 3.3.

The default output mode is aut o, which means that output isto afile if an output fileis specified, or
to the screen if it isnot. So in most cases you don't need to specify the omode parameter explicitly.

8.5.1 swi ng

Usage:

onode=sw ng

Plot will be displayed in a window on the screen. This plot is "live"; it can be resized and (except
for old-style plots) navigated around with mouse actions in the same way as plotsin TOPCAT.

8.5.2 out

Usage:
onopde=out out=<out-file> of nt=png| png-transp| gi f|j peg| pdf | eps| eps-gzip

Plot will be written to afile given by out using the graphics format given by of nt .

8.5.3 cgi

Usage:
onode=cgi of nt =png| png-transp| gi f|]j peg| pdf | eps| eps-gzip

Plot will be written in a way suitable for CGI use direct from a web server. The output is in the
graphics format given by of nt , preceded by a suitable "Content-type" declaration.

SUN/256 126

8.5.4di scard

Usage:
onpde=di scard

Plot isdrawn, but discarded. Thereis no output.

855auto

Usage:
onpde=aut o [out=<out-file>]

Behaves as swi ng or out mode depending on presence of out parameter

8.6 Export Formats

Several of the plot output modes write the plot in some graphics format or other. When selecting an
output format it is important to understand the distinction between bitmapped and vector formats;
basically bitmapped formats represent the image as a grid of finite-sized pixels while vector formats
notionally draw smooth lines. Bitmapped formats are fine for a computer screen, but for high
quality paper printouts you will want a vector format. You can convert from vector to bitmapped
but not (usefully) in the other direction. There are a couple of subtleties to this distinction specific
to STILTS graphical output as discussed below.

The following formats are the available values for the of mt parameter of the various plot
commands:

png
PNG format. This is a flexible bitmapped format providing transparency and an unlimited
number of colours with good lossless compression. It is widely supported by non-ancient
browsers and other image viewers, and is generally recommended for bitmapped output.

gif
GIF format. Thisis a bitmapped format providing transparency and lossless compression. The
number of colours is limited to 255 however, so if you are using auxiliary axes (colour
variation to represent higher dimensionality) or other plot features which use a wide range of
colours you may see image degradation. It has long been widely supported by browsers and
other image viewers.

j peg
JPEG format. This is a bitmapped format with lossy compression intended primarily for
photographs. Transparency is not supported, and although there is no limit on the maximum
number of colours, its lossiness means that plots generated using it generally look a bit
smudged.

pdf
Portable Document Format. This is the format which can be read by Adobe's Acrobat Reader.
It is a widely portable vector format, and is suitable for printing at high resolution, either
standalone or imported into some other presentation format. However, there are a couple of
caveats when it comesto using it with STILTS plots.

1. If used to plot a very large number of points, the output PDF file can get quite large,
though it's much better than for eps output (see below).

2. For certain colour shading options (auto, density, and in some circumstances
transparency), the body of the plot will be drawn as a bitmap rather than vector graphics.
This is sometimes a blessing in disguise since with very large numbers of points a vector

SUN/256 127

PDF file could get unmanageably large in any case. In this case the interior of the plot
will be pixellated. The axes and annotations outside of the plot will still be drawn in
vector format however.

eps
Encapsulated Postscript. Thisis avector format which is suitable for printing at high resolution
either standalone or imported into some other presentation format (you may need to convert it
via PDF depending on the intended destination). However, there are a couple of caveats when
it comesto using it with STILTS plots.

1. Unfortunately the postscript driver used by STILTS is not very efficient and can result in
large, sometimes very large, postscript output files. Thisis likely to be a problem for plots
with a large number of non-transparent points. For this reason eps- gzi p or pdf may be a
better choice.

2. Postscript has no support for partial transparency, so if plots are drawn with partially
transparent points (common for very large data sets) the only way they can be rendered is
by drawing the body of the plot as a bitmap rather than as vector graphics. This is
sometimes a blessing in disguise since with very large numbers of points a vector
postscript file would likely be unmanageably large in any case. So if there is any
transparency in the plot, the interior of the plot will be pixellated. The axes and
annotations outside of the plot will still be drawn in vector format however.

eps-gzip
Just like the eps format above except that the output is automatically compressed using the
GZIP format asit iswritten. Postscript compresses well (typically afactor of 5-10).

SUN/256 128

9 Old-Style Plotting
This section describes deprecated commands. For recommended plotting commands, see Section 8.

From version 2.0 (October 2008), STILTS incorporated three table plotting commands:

* plot2d: Old-style 3D Scatter Plot
* plot3d: Old-style 3D Scatter Plot
* plothist: Old-style Histogram

These provided command-line access to some, though not all, of the plotting capabilities offered by
TOPCAT.

Since version 3.0 (October 2014), these commands are deprecated in favour of the more powerful
ones described in Section 8. The rest of this section describes some aspects of the deprecated
commands for the benefit of legacy code. The output modes and formats are the same in old- and
new-style plots, and are discussed in Section 8.5 and Section 8.6. The handling of parameters and
suffixes for these commands is not quite the same as for new-style plots, and is documented in the
next subsection.

As asimple example, if afile "cat.fits' contains the columns RMAG and BMAG for red and blue
magnitudes, you can draw atwo-dimensional colour-magnitude scatter plot with the command:

stilts plot2d in=cat.fits xdata=BMAG RVAG ydat a=BVAG

Since an output file is not specified, the plot is shown on the screen for convenience. To send the
output to a PNG file, do instead:

stilts plot2d in=cat.fits xdat a=BMAG RVAG ydat a=BMAG out =pl ot . png of nt =png

In some cases (including the above), the of nt parameter is not required since STILTS may be able
to guess the format from the output file name. Various other options for output and graphics formats
are described in Section 8.5 and Section 8.6

Some of the parameters use suffixes to define data sets and therefore behave a bit differently from
the parameters elsewhere in STILTS - a discussion of these is given in the following subsection.
Some other plotting-specific topics are a so discussed below.

9.1 Parameter Suffixes
This section describes deprecated commands. For recommended plotting commands, see Section 8.

Some of the parameters for the plotting tasks behave a little bit differently to other parameters in
STILTS, in order to accommodate related sets of values. If you look at the usage of one of the
plotting commands, for instance in Appendix B.12.1, you will see that a number of the parameters
have the suffixes "N' or "Ns". These suffixes can be substituted with any convenient string to
identify parameters which relate to the same input datasets or subsets. Specificaly:
Suffix " N*:
Denotes an input dataset. At least the i nN parameter must be given to identify the source of the
data; any other parameters with the same value of the N suffix relate to that dataset. A dataset
here refers to a particular set of plot data from a table; in most cases each input table
corresponds to a different dataset, though two datasets may correspond to different sets of
columns from the same table.
Suffix " NS":
Denotes a particular subset of the rows in dataset N. At least the subset NS parameter must be
given to identify the expression by which the subset is defined; any other parameters with the

SUN/256 129

same vaue of the Ns suffix relate to that subset.

Some examples will help to illustrate. The following will generate a Cartesian plot of catalogue
position from a single dataset:

stilts plot2d in=gals.fits xdata=RA ydat a=DEC

In this case the N suffix is present on each of the parametersi n, xdat a and ydat a, but is equal to the
empty string, hence invisible. This is perfectly legal, and convenient when only a single table isin
use. If we wish to overplot two datasets however, the dataset suffixes (or one of them at least) have
to be made explicit so that different ones can be used, for instance:

stilts plot2d inl=gals.fits xdatal=RA ydat al=DEC
in2=stars.fits xdata2=RAJ2000 ydat a2=DEJ2000
The suffix values "1" and "2" are quite arbitrary and can be chosen as convenient, so the following
would do exactly the same as the previous example:

stilts plot2d in_GAL=gals.fits xdat a_GAL=RA ydat a_GAL=DEC
i n_STAR=stars.fits xdata STAR=RAJ2000 ydata_ STAR=DEJ2000
The other parameters which have the N suffix apply only to the matching dataset, so for instance the
following:

stilts plot2d inl=gals.fits xdatal=RA ydat al=DEC t xt| abel 1=NGC_|I D
in2=stars.fits xdata2=RAJ2000 ydat a2=DEJ2000
would draw text labels adjacent to the points from only the galsfits file giving the contents of its
NGC_ID column.

The Ns suffix identifies distinct row subsets within the same or different datasets. A subset is
defined by supplying a boolean inclusion expression (each row is included only if the expression
evaluates true for that row) as the value of asubset NS parameter. If, asin al the examples we have
seen so far, no subset NS parameter is supplied for a given dataset, then it is treated as a special
case, asif asingle subset with a name equal to the empty string (s="") containing all rows has been
specified. So our earlier simple example:

stilts plot2d in=gals.fits xdata=RA ydata=DEC
Isequivaent to

stilts plot2d in=gals.fits xdata=RA ydata=DEC subset=true

If we wish to split the plotted points into two sets based on their R-B colours, we can write
something like:

stilts plot2d in=gals.fits xdata=RA ydata=DEC
subset X=' RVAG BMAG>0' subset Y=' RVAG- BVAG<=0'
This will generate a plot with two subsets shown using different colours and/or plotting symbols.
These colours and symbols are selected automatically. More control over the appearance can be
exercised by setting values for some of the other parameters with Ns suffixes, for instance

stilts plot2d in=gals.fits xdata=RA ydat a=DEC
subset _A=" RMAG- BMAG>0' col our _A=bl ue
subset B=' RMAG BMAG<=0"' col our_B=red

Again, the suffix strings can be chosen to have any value as convenient.

The dataset- and subset-specific parameters must be put together if there are multiple datasets with
multiple subsets to plot simultaneously, for instance:

SUN/256 130

stilts plot2d in_1l=gals.fits xdata_1=RA ydata_1=DEC
subset _1_ A=' RVAG BMAG>0' col our _1_ A=bl ue
subset _1 B=' RVAG BMAG<=0"' col our_1 B=red
in_2=stars.fits xdata_2=RAJ2000 ydat a_2=DEJ2000
col our _2=green

Finaly, it's not quite true that the suffixes chosen have no effect on the plot; they may influence the
order in which sets are plotted. Markers drawn for sets plotted earlier may be obscured by the
markers drawn for sets plotted later, so this can affect the appearance of the plot. If you want to
control this, use the sequence parameter. For instance, to ensure that star data appears on top of
galaxy datain the plot, do the following:

stilts plot2d in_GAL=gals.fits xdat a_GAL=RA ydat a_ GAL=DEC
i n_STAR=stars.fits xdata_STAR=RAJ2000 ydat a_STAR=DEJ2000
sequence=_CAL, _STAR

More examples can be found in the Examples subsections of the individual plotting command
descriptionsin Appendix B.

SUN/256 131

10 Algebraic Expression Syntax

Many of the STILTS commands alow you to use algebraic expressions based on table columns
when doing things like making row selections, defining new columns, selecting values to plot or
match, and so on. In these cases you are defining an expression which has a value in each row as a
function of the values in the existing columns in that row. This is a powerful feature which permits
you to manipulate and select table data in very flexible ways. The syntax for entering these
expressionsis explained in this section.

What you write are actually expressions in the Java language, which are compiled into Java
bytecode before evaluation. However, this does not mean that you need to be a Java programmer to
write them. The syntax is pretty similar to C, but even if you've never programmed in C most
simple things, and many complicated ones, are quite intutitive.

The following explanation gives some guidance and examples for writing these expressions.
Unfortunately a complete tutorial on writing Java is beyond the scope of this document, but it
should provide enough information for even a novice to write useful expressions.

The expressions that you can write are basically any function of all the column values which apply
to a given row; the function result can then be used where STILTS needs a per-row value, for
instance to define a new column. If the built-in operators and functions are not sufficient, or it's
unwieldy to express your function in one line of code, it is possible to add new functions by writing
your own classes - see Section 10.7.3.

Note that since these algebraic expressions often contain spaces, you may need to enclose them in
single or double quotes so that they don't get confused with other parts of the command string.

Note: if Java is running in an environment with certain security restrictions (a security manager
which does not permit creation of custom class loaders) then algebraic expressions won't work at
al. It's not particularly likely that security restrictions will be in place if you are running from the
command line though.

10.1 Referencing Column Values

To create a useful expression which can be evaluated for each row in atable, you will have to refer
to cellsin different columns of that row. Y ou can do thisin three ways:

By Name
The Name of the column may be used if it is unique (no other column in the table has the same
name) and if it has a suitable form. This means that it must have the form of a Java variable -
basically starting with a letter and continuing with letters, numbers, underscores and currency
symbols. In particular it cannot contain spaces, commas, parentheses etc.

As a specia case, if an expression contains just a single column name, rather than some more
complicated expression, then any column name may be used, even one containing
non-al phanumeric characters.

Column names are treated case-insensitively.

By $ID
The "$ID" identifier of the column may aways be used to refer to it; thisis a useful fallback if
the column name isn't suitable for some reason (for instance it contains spaces or is not
unique). Thisisjust a"$" sign followed by the column index - the first column is $1.

By ucd$ specifier
If the column has a Unified Content Descriptor (this will usually only be the case for VOTable
or possibly FITS format tables) you can refer to it using an identifier of the form

SUN/256 132

ucd$<ucd- spec>". Depending on the version of UCD scheme used, UCDs can contain various
punctuation marks such as underscores, semicolons and dots; for the purpose of this syntax
these should all be represented as underscores ("_"). So to identify a column which has the
UCD "phot. nmag; emopt.R', you should use the identifier "ucd$phot_nmag_em opt _r".
Matching is not case-sensitive. Futhermore, atrailing underscore acts as a wildcard, so that the
above column could also be referenced using the identifier "ucd$phot _mag_". If multiple

columns have UCDs which match the given identifer, the first one will be used.

Note that the same syntax can be used for referencing table parameters (see the next section);
columns take preference so if a column and a parameter both match the requested UCD, the
column value will be used.

By utype$ specifier

If the column has a Utype (this will usually only be the case for VOTable or possibly FITS
format tables) you can refer to it using an identifier of the form "ut ype$<ut ype- spec>".
Utypes can contain various punctuation marks such as colons and dots; for the purpose of this
syntax these should all be represented as underscores (*_"). So to identify a column which has
the Utype "ssa: Access. Format ", you should use the identifier "ut ype$ssa_Access_For mat .
Matching is not case-sensitive. If multiple columns have Utypes which match the given
identifier, the first one will be used.

Note that the same syntax can be used for referencing table parameters (see the next section);
columns take preference so if a column and a parameter both match the requested Utype, the
column value will be used.

With the Object$ prefix

If a column is referenced with the prefix "oj ect $" before its identifier (e.g. "bj ect $BMAG'
for a column named BVAG) the result will be the column value as a java Object. Without that
prefix, numeric columns are evaluated as java primitives. In most cases, you don't want to do
this, since it means that you can't use the value in arithmetic expressions. However, if you need
the value to be passed to a (possibly user-defined) method, and you need that method to be
invoked even when the value is null, you have to do it like this. Null-valued primitives
otherwise cause expression evaluation to abort.

Thereisalso aspecia column:

$i ndex
The value of thisis the current row number (the first row is 1). You can aternatively use the
form $0 . (The form i ndex is also permitted, but deprecated). Note that this value is a | ong
(8-byte integer); when using it in certain expressions you may find it necessary to convert it to
anint (4-byteinteger) using thet ol nt eger () function.

The value of the variables so referenced will be a primitive (boolean, byte, short, char, int, long,
float, double) if the column contains one of the corresponding types. Otherwise it will be an Object
of the type held by the column, for instance a String. In practice this means: you can write the name
of a column, and it will evaluate to the numeric (or string) value that that column contains in each
row. You can then use thisin normal algebraic expressions such as"B_MAG- U_MAG' as you'd expect.

10.2 Referencing Parameter Values

Some tables have constant values associated with them; these may represent such things as the
epoch at which observations were taken, the name of the catalogue, an angular resol ution associated
with all observations, or any number of other things. Such constants are known as table parameters
(not to be confused with parameters passed to STILTS commands) and can be thought of as extra
columns which have the same value for every row. The values of such parameters can be referenced
in STILTS algebraic expressions as follows:

SUN/256 133

param$name
If the parameter name has a suitable form (starting with a letter and continuing with letters or
numbers) it can be referenced by prefixing that name with the string par ans.

ucd$ucd-spec
If the parameter has a Unified Content Descriptor it can be referenced by prefixing the UCD
specifier with the string ucd$. Any punctuation marks in the UCD should be replaced by
underscores, and a trailing underscore is interpreted as a wildcard. See Section 10.1 for more
discussion.

utype$utype-spec
If the parameter has a Utype, it can be referenced by prefixing the Utype specifier with the
string ut ype$. Any punctuation marks in the Utype should be replaced by underscores. See
Section 10.1 for more discussion.

Note that if a parameter has a name in an unsuitable form (e.g. containing spaces) and has no UCD
then it cannot be referenced in an expression.

There are also a couple of special values:

$ncol
The number of columnsin the table.

$nrow
The number of rowsin the table. Note in some cases thisis not known (e.g. if the table is being
streamed), in which case the value of this variable is null. Note also that this value isal ong
(8-byte integer); when using it in certain expressions you may find it necessary to convert it to
anint (4-byteinteger) using thet ol nt eger () function.

10.3 Null Values

When no specia steps are taken, if a null value (blank cell) is encountered in evaluating an
expression (usually because one of the columns it relies on has a null value in the row in question)
then the result of the expression isalso null.

It is possible to exercise more control than this, but it requires a little bit of care, because the
expressions work in terms of primitive values (numeric or boolean ones) which don't in general
have a defined null value. The name "nul I " in expressions gives you the java nul | reference, but
this cannot be matched against a primitive value or used as the return value of a primitive
expression.

For most purposes, the following two tips should enable you to work with null values:

Testing for null
To test whether a column contains a null value, prepend the string "NULL_" (use upper case) to
the column name or $ID. Thiswill yield a boolean value which is true if the column contains a
blank, and fal se otherwise.

Returning null
To return a null value from a numeric expression, use the name "NuLL" (upper case). To return
anull value from a non-numeric expression (e.g. a String column) use the name "nul I " (lower
case).

Null values are often used in conjunction with the conditional operator, "2 :"; the expression

test ? tval : fval

SUN/256 134

returns the value t val if the boolean expressiont est evaluatestrue, or fval if t est evaluates false.
So for instance the following expression:

Vmag == -99 ? NULL : Vmag

can be used to define a new column which has the same value as the vimag column for most values,
but if vmag has the "magic" value -99 the new column will contain a blank. The opposite trick
(substituting a blank value with a magic one) can be done like this:

NULL_Vmag ? -99 : Vmag
Some more examples are given in Section 10.6.

10.4 Operators

The operators are pretty much the same asin the C language. The common ones are:
Arithmetic

+ (add)

- (subtract)
* (multiply)
/ (divide)
%(modulus)

Boolean

I (not)

&& (and)

|1 (or)

~ (exclusive-or)

== (numeric identity)

I = (numeric non-identity)
< (lessthan)

> (greater than)

<= (lessthan or equal)

>= (greater than or equal)

Bitwise
& (and)
| (or)
~ (exclusive-or)
<< (l€eft shift)
>> (right shift)
>>> (logical right shift)

Numeric Typecasts

(byte) (numeric -> signed byte)

(short) (numeric -> 2-byteinteger)

(int) (numeric-> 4-byte integer)

(1 ong) (numeric-> 8-byteinteger)

(float) (numeric-> 4-typefloating point)
(doubl e) (numeric -> 8-byte floating point)

Note you may find the Maths (Section 10.5.8) conversion functions more convenient for
numeric conversions than these.

Other

SUN/256 135

+ (string concatenation)

[1 (array dereferencing - first element iszero)
2. (conditional switch)

i nst anceof (class membership)

10.5 Functions

Many functions are available for use within your expressions, covering standard mathematical and
trigonometric functions, arithmetic utility functions, type conversions, and some more specialised
astronomical ones. You can use them in just the way you'd expect, by using the function name
(unlike column names, this is case-sensitive) followed by comma-separated arguments in brackets,
SO

max(| MAG, JMAG)
will give you the larger of the valuesin the columns IMAG and IMAG, and so on.

The functions available for use by default are listed by class in the following subsections with their
arguments and short descriptions. The funcs command provides another way to browse these
function descriptions online.

10.5.1 Tilings

Pixel tiling functions for the celestial sphere.

ht mM ndex(level, ra, dec)

Givesthe HTM (Hierachical Triangular Mesh) pixel index for a given sky position.

* level (integer): HTM level
* ra (floating point): right ascension in degrees
» dec (floating point): declination in degrees
* return value (long integer): pixel index
heal pi xNest I ndex(k, ra, dec)
Givesthe pixel index for agiven sky position in the HEALPix NEST scheme.

k (integer): resolution parameter - log to base 2 of nside
ra (floating point): right ascension in degrees

dec (floating point): declination in degrees

return value (long integer): pixel index

heal pi xRi ngl ndex(k, ra, dec)
Givesthe pixel index for a given sky position in the HEALPix RING scheme.

k (integer): resolution parameter - log to base 2 of nside
ra (floating point): right ascension in degrees

dec (floating point): declination in degrees

return value (long integer): pixel index

heal pi xK(pi xel si ze)
Gives the HEALPix resolution parameter suitable for a given pixel size. This k value is the
logarithm to base 2 of the Nside parameter.

* pixel size (floating point): pixel sizein degrees
» return value (integer): HEALPix resolution parameter k

SUN/256 136

heal pi xResol ution(k)
Gives the approximate resolution in degrees for a given HEALPix resolution parameter k This
k valueisthe logarithm to base 2 of the Nside parameter.

* k (integer): HEALPix resolution parameter k
» return value (floating point): approximate angular resolution in degrees
heal pi xSt eradi ans(k)
Returns the solid angle in steradians of each HEALPix pixel at a given order.
* k (integer): HEALPix resolution parameter k
» return value (floating point): pixel sizein steradians
heal pi xSgdeg(k)
Returns the solid angle in square degrees of each HEALPix pixel at agiven order.
* k (integer): HEALPix resolution parameter k
» return value (floating point): pixel sizein steradians
st er adi ansToSqdeg(sr)
Converts a solid angle from steradians to square degrees.
The unit sphere is 4* Pl steradians = 360* 360/PI square degrees.
* sr (floating point): quantity in steradians
» return value (floating point): quantity in sqare degrees
sqdegToSt er adi ans(sqdeg)
Converts a solid angle from square degrees to steradians.
The unit sphere is 4* Pl steradians = 360* 360/PI square degrees.
* sqdeg (floating point): quantity in square degrees
» return value (floating point): quantity in steradians
ht mLevel (pi xel si ze)
Givesthe HTM | evel parameter suitable for a given pixel size.
* pixel si ze (floating point): required resolution in degrees
* return value (integer): HTM level parameter
ht nResol ution(|evel)
Gives the approximate resolution in degrees for agiven HTM depth level.
* level (integer): HTM depth
» return value (floating point): approximate angular resolution in degrees

SQDEG
Solid angle in steradians corresponding to 1 square degree.

10.5.2 Arithmetic

Standard arithmetic functions including things like rounding, sign manipulation, and
maximum/minimum functions.

roundUp(x)
Rounds a value up to an integer value. Formally, returns the smallest (closest to negative
infinity) integer value that is not less than the argument.

SUN/256 137

* x (floating point): avalue.
* return value (integer): x rounded up

roundDown(x)
Rounds a value down to an integer value. Formally, returns the largest (closest to positive
infinity) integer value that is not greater than the argument.

* x (floating point): avaue
* return value (integer): x rounded down

round(x)
Rounds a value to the nearest integer. Formally, returns the integer that is closest in value to
the argument. If two integers are equally close, the result is the even one.

* x (floating point): afloating point value.
» return value (integer): x rounded to the nearest integer

roundDeci mal (x, dp)
Rounds a value to a given number of decimal places. The result is a float (32-bit floating
point value), so this is only suitable for relatively low-precision values. It's intended for
truncating the number of apparent significant figures represented by a value which you know
has been obtained by combining other values of limited precision. For more control, see the
functionsin the For mat s class.

» x (floating point): afloating point value

» dp (integer): number of decimal places (digits after the decimal point) to retain

» return value (floating point): floating point value close to x but with a limited apparent
precision

abs(x)
Returns the absolute value of an integer value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned.

* x (integer): the argument whose absolute value is to be determined
» return value (integer): the absolute value of the argument.

abs(x)
Returns the absolute value of a floating point value. If the argument is not negative, the
argument is returned. If the argument is negative, the negation of the argument is returned.

* x (floating point): the argument whose absolute value is to be determined
» return value (floating point): the absolute value of the argument.

max(a, b))
Returns the greater of two integer values. If the arguments have the same value, the result is
that same value.

* a(integer): an argument.
* b (integer): another argument.
» return value (integer): the larger of a and b.

max(a, b))
Returns the greater of two floating point values. If the arguments have the same value, the
result isthat same value. If either valueis blank, then the result is blank.

* a (floating point): an argument.
* b (floating point): another argument.
» return value (floating point): the larger of a and b.

maxReal (a, b)

SUN/256 138

Returns the greater of two floating point values, ignoring blanks. If the arguments have the
same value, the result is that same value. If one argument is blank, the result is the other one. If
both arguments are blank, the result is blank.

* a(floating point): an argument
* b (floating point): another argument
* return value (floating point): the larger non-blank value of a and b

mn(a, b)
Returns the smaller of two integer values. If the arguments have the same value, the result is
that same value.

* a(integer): an argument.
* b (integer): another argument.
* return value (integer): the smaller of a and b.

mn(a, b)
Returns the smaller of two floating point values. If the arguments have the same value, the
result is that same value. If either value is blank, then the result is blank.

* a(floating point): an argument.
* b (floating point): another argument.
» return value (floating point): the smaller of a and b.

mnReal (a, b))
Returns the smaller of two floating point values, ignoring blanks. If the arguments have the
same value, the result is that same value. If one argument is blank, the result is the other one. If
both arguments are blank, the result is blank.

* a (floating point): an argument
* b (floating point): another argument
» return value (floating point): the larger non-blank value of a and b

10.5.3 Conversions

Functions for converting between strings and numeric values.

toString(fpval)
Turns anumeric value into a string.

» fpval (floating point): floating point numeric value
* return value (String): a string representation of f pval
toString(intVval)
Turns an integer numeric value into a string.
* intval (longinteger): integer numeric value
» return value (Sring): a string representation of i nt Val
toString(charVval)
Turns asingle character value into a string.
e charVal (char): character numeric value
* return value (String): a string representation of char val

toString(byteval)
Turns a byte value into a string.

SUN/256 139

* byteval (byte): byte numeric value
* return value (String): a string representation of byt eval

toString(bool eanVal)
Turns a boolean value into a string.

* bool eanval (boolean): boolean value (true or false)
* return value (String): a string representation of bool eanval ("true" or "fal se")

toString(objVval)
Turns any object value into a string. As applied to existing string values thisisn't really useful,
but it means that you can apply t oSt ri ng to any object value without knowing its type and get
auseful return fromit.

* obj Vval (Object): non-primitive value
» return value (String): a string representation of obj Val

parseByte(str)
Attempts to interpret a string as a byte (8-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

e str (String): string containing numeric representation
» return value (byte): byte value of str

parseShort(str)
Attempts to interpret a string as a short (16-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

* str (String): string containing numeric representation
» return value (short integer): byte value of st r

parselnt(str)
Attempts to interpret a string as an int (32-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

e str (String): string containing numeric representation
» return value (integer): byte value of st r

parseLong(str)
Attempts to interpret a string as along (64-bit signed integer) value. If the input string can't be
interpreted in thisway, a blank value will result.

e str (String): string containing numeric representation
» return value (long integer): byte value of st r

parseFl oat (str)
Attempts to interpret a string as a float (32-bit floating point) value. If the input string can't be
interpreted in thisway, a blank value will result.

e str (String): string containing numeric representation
» return value (floating point): byte value of st r

par seDoubl e(str)
Attempts to interpret a string as a double (64-bit signed integer) value. If the input string can't
be interpreted in thisway, a blank value will result.
* str (String): string containing numeric representation
» return value (floating point): byte value of st r

toByte(val ue)

SUN/256 140
Attempts to convert the numeric argument to a byte (8-bit signed integer) result. If it is out of
range, a blank value will result.

» val ue (floating point): numeric value for conversion
* return value (byte): val ue converted to type byte

toShort (val ue)
Attempts to convert the numeric argument to a short (16-bit signed integer) result. If it is out of
range, a blank value will result.

» val ue (floating point): numeric value for conversion
* return value (short integer): val ue converted to type short

tol nteger(val ue)
Attempts to convert the numeric argument to an int (32-bit signed integer) result. If it is out of
range, a blank value will result.

» val ue (floating point): numeric value for conversion
* return value (integer): val ue converted to type int

toLong(val ue)
Attempts to convert the numeric argument to along (64-bit signed integer) result. If it is out of
range, a blank value will result.

* val ue (floating point): numeric value for conversion
» return value (long integer): val ue converted to type long

t oFl oat (val ue)
Attempts to convert the numeric argument to afloat (32-bit floating point) result. If it is out of
range, a blank value will result.

* val ue (floating point): numeric value for conversion
» return value (floating point): val ue converted to type float
t oDoubl e(val ue)
Converts the numeric argument to a double (64-bit signed integer) result.
* val ue (floating point): numeric value for conversion
» return value (floating point): val ue converted to type double
t oHex(val ue)
Converts the integer argument to hexadecimal form.
* val ue (long integer): integer value
* return value (String): hexadecimal representation of val ue
fronHex(hexVal)
Converts a string representing a hexadecimal number to its integer value.

* hexVal (String): hexadecimal representation of value
» return value (integer): integer value represented by hexVal

10.5.4 Distances
Functions for converting between different measures of cosmological distance.

The following parameters are used:
ez redshift

SUN/256 141

* HO: Hubble constant in km/sec/Mpc (example value ~70)
* omegaM: Density ratio of the universe (example value 0.3)
* omegal ambda: Normalised cosmological constant (example value 0.7)

For aflat universe, onegaMtonegalLanmbda=1

The terms and formulae used here are taken from the paper by D.W.Hogg, Distance measures in
cosmology, astro-ph/9905116 (http://arxiv.org/abs/astro-ph/9905116) v4 (2000).

MpocToM di st Mpc)
Converts from M egaParsecs to metres.

* di st Mpc (floating point): distancein Mpc
» return value (floating point): distancein m

nmroMpc(di stM)
Converts from metres to M egaParsecs.

» di st M(floating point): distancein m
» return value (floating point): distance in Mpc

zToDist(z)
Quick and dirty function for converting from redshift to distance.

Warning: this makes some reasonable assumptions about the cosmology and returns the
luminosity distance. It is only intended for approximate use. If you care about the details, use
one of the more specific functions here.

» z (floating point): redshift
» return value (floating point): some distance measure in Mpc

zToAge(z)
Quick and dirty function for converting from redshift to time.

War ning: this makes some reasonable assumptions about the cosmology. It is only intended
for approximate use. If you care about the details use one of the more specific functions here.

* z (floating point): redshift
» return value (floating point): ‘age’ of photons from redshift z in Gyr

conovi ngbhi st ancelL(z, HO, onegaM onegalanbda)
Line-of-sight comoving distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe

omegalLanbda (floating point): normalised cosmological constant
return value (floating point): line-of-sight comoving distance in Mpc

conovi nghi stanceT(z, HO, onmegaM onegalLanbda)
Transverse comoving distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe

omegalLanbda (floating point): normalised cosmological constant
return value (floating point): transverse comoving distance in Mpc

angul ar Di anet er Di stance(z, HO, onegaM onegalLanbda)

SUN/256 142

Angular diameter distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): angular diameter distancein Mpc

| um nosityDi stance(z, HO, omegaM onegalLanbda)
Luminosity distance.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): luminosity distance in Mpc

| ookbackTi me(z, HO, onegaM onegalLanbda)
Lookback time. This returns the difference between the age of the universe at time of
observation (now) and the age of the universe at the time when photons of redshift z were
emitted.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): lookback timein Gyr

conmovi ngVol ume(z, HO, onegaM onegalanbda)
Comoving volume. Thisreturns the all-sky total comoving volume out to a given redshift z.

z (floating point): redshift

Ho (floating point): Hubble constant in km/sec/Mpc

omegaM (floating point): density ratio of the universe
omegalLanbda (floating point): normalised cosmological constant
return value (floating point): comoving volumein Gpc3

SPEED OF LI GHT
Speed of light in m/s.

METRE_PER_PARSEC
Number of metresin a parsec.

SEC_PER_YEAR
Number of secondsin ayear.

10.5.5 KCorrections

Functions for calculating K-corrections.

kCorr(filter, redshift, colorType, colorValue)
Calculates K-corrections. This allows you to determine K-corrections for a galaxy, given its
redshift and a colour. Filters for GALEX, SDSS, UKIDSS, Johnson, Cousins and 2MASS are
covered.

SUN/256 143

To define the calculation you must choose both a filter, specified as a KCF_* constant, and a
colour (filter pair) specified as akcc_* constant. For each available filter, only certain colours
are available, as described in the documentation of the relevant KCF_* constant.

The algorithm used is described at http://kcor.sai.msu.ru/ (http://kcor.sai.msu.ru/). This is
based on the paper "Analytical Approximations of K-corrections in Optical and Near-Infrared
Bands' by [.Chilingarian, A.-L.Melchior and I.Zolotukhin (2010MNRAS.405.1409C
(http://adsabs.harvard.edu/abs/2010MNRA S.405.1409C)), but extended to include GALEX
UV bands and with redshift coverage up to 0.5 as described in "Universal UV-optical
Colour-Colour-Magnitude Relation of Galaxies® by I.Chilingarian and 1.Zolotukhin
(2012MNRAS.419.1727C (http://adsabs.harvard.edu/abs/2012MNRAS.419.1727C)).

 filter (KCorrections.KFilter): kcF_* constant defining the filter for which you want to
calculate the K-correction

* redshift (floating point): galaxy redshift; this should be in the range 0-0.5

* colorType (KCorrections.KColor): kcc_* constant defining the filter pair for the
calculation; check the kcF_* constant documentation to see which ones are permitted for a
given filter

* col or Val ue (floating point): the value of the colour

» return value (floating point): K correction

KCF_FUV
GALEX FUV filter (AB). Use with KCC_FUVNUV or KCC_FUVu.

KCF_NUV
GALEX NUV filter (AB). Use with KCC_NUVg or KCC_NUVT.

KCF_u
SDSS u filter (AB). Use with KCC_ur, KCC_ui or KCC_uz.

KCF_g
SDSS g filter (AB). Use with KCC_gr, KCC _gi or KCC_gz.

KCF_r
SDSSr filter (AB). Use with KCC_gr or KCC_ur.

KCF_i
SDSSi filter (AB). Use with KCC_gi or KCC_ui.

KCF_z
SDSS z filter (AB). Use with KCC rz, KCC_gz or KCC _uz.

KCF_Y
UKIDSSY filter (AB). Usewith KCC_YH or KCC_YK.

KCF_J
UKIDSS Jfilter (AB). Use with KCC_JK or KCC_JH.

KCF_H
UKIDSS H filter (AB). Use with KCC_HK or KCC_JH.

KCF_K
UKIDSSK filter (AB). Use with KCC_JK or KCC_HK.

SUN/256 144

KCF_U
Johnson U filter (Vega). Use with KCC_URc.

KCF_B
Johnson B filter (Vega). Use with KCC_BRc or KCC_BIc.

KCF_V
Johnson V filter (Vega). Use with KCC_VIc or KCC_VRc.

KCF_Rc
Cousins Rc filter (Vega). Use with KCC_BRc or KCC_VRc.

KCF_Ic
Cousins|Ic filter (Vega). Use with KCC_VIc.

KCF_J2
2MASS Jfilter (Vega). Use with KCC_J2Ks2 or KCC_J2H2.

KCF_H2
2MASS H filter (Vega). Use with KCC_H2Ks2 or KCC_J2H2.

KCF_Ks2
2MASS Ksfilter (Vega). Use with KCC_J2Ks2 or KCC_H2K s2.

KCC Bl ¢
Johnson B - Cousins | ¢ colour.

KCC BRc
Johnson B - Cousins Rc colour.

KCC_FUVNWV
GALEX FUV - NUV colour.

KCC_FUVU
GALEX FUV - SDSS u colour.

KCC gi
SDSSg-i colour.

KCC_gr
SDSSg - r colour.

KCC gz
SDSS g - z colour.

KCC_H2Ks2
2MASSH - Kscolour.

KCC_HK

SUN/256
UKIDSSH - K colour.

KCC J2H2
2MASS J- H colour.

KCC_J2Ks2
2MASS J- Kscolour.

KCC JH
UKIDSS J- H colour.

KCC JK
UKIDSS J- K colour.

KCC_NUvVg

GALEX NUV - SDSS g colour.

KCC_NuUvr
GALEX NUV - SDSSr colour.

KCC rz
SDSSr - SDSS z colour.

KCC _ui
SDSSu- SDSSi colour.

KCC_URc

Johnson U - Cousins Rc colour.

KCC_ur
SDSSu - r colour.

KCC _uz
SDSSu - z colour.

KCC VI ¢
Johnson V - Cousins I ¢ colour.

KCC_VRc

Johnson V - Cousins Rc colour.

KCC_YH
UKIDSSY - H colour.

KCC_YK
UKIDSSY - K colour.

10.5.6 Times

145

SUN/256 146

Functions for conversion of time values between various forms. The forms used are

Modified Julian Date (M JD)
A continuous measure in days since midnight at the start of 17 November 1858. Based on
UTC.

| SO 8601
A string representation of the form yyyy- nm ddThh: nm ss. s, where the T is aliteral character
(a space character may be used instead). Based on UTC.

Julian Epoch
A continuous measure based on a Julian year of exactly 365.25 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a'J; J2000.0 is defined as 2000 January 1.5 inthe TT
timescale.

Besselian Epoch
A continuous measure based on a tropical year of about 365.2422 days. For approximate
purposes this resembles the fractional number of years AD represented by the date. Sometimes
(but not here) represented by prefixing a'B'.

Decimal Year
Fractional number of years AD represented by the date. 2000.0, or equivalently
1999.99recurring, is midnight at the start of the first of January 2000. Because of leap years,
the size of a unit depends on what year itisin.

Therefore midday on the 25th of October 2004 is 2004- 10- 25T12: 00: 00 in 1SO 8601 format,
53303.5 asan MJD value, 2004.81588 as a Julian Epoch and 2004.81726 as a Besselian Epoch.

Currently thisimplementation cannot be relied upon to better than a millisecond.

i soToM d(isobDate)
Converts an 1SO8601 date string to Modified Julian Date. The basic format of the i soDat e
argument iSyyyy- mm ddThh: nm ss. s, though some deviations from this form are permitted:

The 'T" which separates date from time can be replaced by a space
The seconds, minutes and/or hours can be omitted

The decimal part of the seconds can be any length, and is optional
A 'Z' (which indicates UTC) may be appended to the time

Some legal examples are therefore: "1994-12-21T14:18:23.2", "1968-01-14", and
"2112-05-25 16: 45Z".

* isoDate (String): datein 1SO 8601 format
» return value (floating point): modified Julian date corresponding to i soDat e

dateToM d(year, nonth, day, hour, min, sec)
Converts a calendar date and time to Modified Julian Date.

year (integer): year AD

nont h (integer): index of month; January is 1, December is 12

day (integer): day of month (thefirst day is 1)

hour (integer): hour (0-23)

m n (integer): minute (0-59)

sec (floating point): second (0<=sec<60)

return value (floating point): modified Julian date corresponding to arguments

dateToM d(year, nonth, day)
Converts a calendar date to Modified Julian Date.

SUN/256 147

year (integer): year AD

nont h (integer): index of month; January is 1, December is 12

day (integer): day of month (thefirst day is 1)

return value (floating point): modified Julian date corresponding to 00:00:00 of the date
specified by the arguments

decYear ToM d(decYear)
ConvertsaDecimal Y ear to aModified Julian Date.

* decYear (floating point): decimal year
» return value (floating point): modified Julian Date

nj dTolso(njd)
Converts a Modified Julian Date value to an 1SO 8601-format date-time string. The output
format isyyyy- nm ddThh: nm ss.

* njd (floating point): modified Julian date
* return value (Sring): 1SO 8601 format date corresponding to nj d

nj dToDate(nmjd)
Converts a Modified Julian Date value to an SO 8601-format date string. The output format is
yyyy- nm dd.

* njd (floating point): modified Julian date
* return value (Sring): 1SO 8601 format date corresponding to nj d

nj dToTi me(njd)
Converts a Modified Julian Date value to an 1SO 8601-format time-only string. The output
format ishh: nm ss.

* njd (floating point): modified Julian date
* return value (String): 1SO 8601 format time corresponding to nj d

n dToDecYear(nmjd)
Converts aModified Julian Date to Decimal Y ear.

* njd (floating point): modified Julian Date
» return value (floating point): decimal year

format M d(njd, format)
Converts a Modified Julian Date value to a date using a customisable date format. The format
is as defined by the j ava. t ext. Si npl eDat eFor mat
(http://java.sun.com/j2se/1.5.0/docs/api/javaltext/SimpleDateFormat.html) class. The default
output corresponds to the string "yyyy- Mt dd' T' HH: nm ss”

* njd (floating point): modified Julian date
e format (String): formatting patttern
* return value (String): custom formatted time corresponding to nj d

nj dToJdulian(njd)
Converts a Modified Julian Date to Julian Epoch. For approximate purposes, the result of this
routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

* njd (floating point): modified Julian date
» return value (floating point): Julian epoch

julianToM d(julianEpoch)
Converts a Julian Epoch to Modified Julian Date. For approximate purposes, the argument of

SUN/256 148

this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 2000.5 is approximately 1 July
2000.

* julianEpoch (floating point): Julian epoch
» return value (floating point): modified Julian date

nj dToBesselian(nmd)
Converts Modified Julian Date to Besselian Epoch. For approximate purposes, the result of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

* njd (floating point): modified Julian date
» return value (floating point): Besselian epoch

bessel i anToM d(bessel i anEpoch)
Converts Besselian Epoch to Modified Julian Date. For approximate purposes, the argument of
this routine consists of an integral part which gives the year AD and a fractional part which
represents the distance through that year, so that for instance 1950.5 is approximately 1 July
1950.

* bessel i anEpoch (floating point): Besselian epoch
* return value (floating point): modified Julian date

unixM 1 lisToMd(unixMIlis)
Converts from milliseconds since the Unix epoch (1970-01-01T00:00:00) to a modified Julian
date value

* unixMIlis (longinteger): milliseconds since the Unix epoch
» return value (floating point): modified Julian date

nj dToUni xM I 1is(njd)
Converts from modified Julian date to milliseconds since the Unix epoch
(1970-01-01T00:00:00).

* njd (floating point): modified Julian date
» return value (long integer): milliseconds since the Unix epoch

10.5.7 TrigDegrees

Standard trigonometric functions with angles in degrees.

sinDeg(theta)
Sine of an angle.
* theta (floating point): an angle, in degrees
» return value (floating point): the sine of the argument

cosDeg(theta)
Cosine of an angle.
* theta (floating point): an angle, in degrees
» return value (floating point): the cosine of the argument

tanDeg(theta)
Tangent of an angle.

SUN/256 149

* theta (floating point): an angle, in degrees
» return value (floating point): the tangent of the argument.

asi nDeg(x)
Arc sine. The result isin the range of -90 through 90.

* x (floating point): the value whose arc sineis to be returned.
» return value (floating point): the arc sine of the argument in degrees

acosbDeg(x)
Arc cosine. Theresult isin the range of 0.0 through 180.

* x (floating point): the value whose arc cosine is to be returned.
» return value (floating point): the arc cosine of the argument in degrees

at anDeg(x)
Arc tangent. The result isin the range of -90 through 90.

* x (floating point): the value whose arc tangent is to be returned.
» return value (floating point): the arc tangent of the argument in degrees

atan2Deg(vy, x)
Converts rectangular coordinates (x,y) to polar (r,theta). This method computes the phase
t het a by computing an arc tangent of y/ x in the range of -180 to 180.

* vy (floating point): the ordinate coordinate

* x (floating point): the abscissa coordinate

» return value (floating point): the t het a component in degrees of the point (r,t heta) in
polar coordinates that corresponds to the point (x,y) in Cartesian coordinates.

10.5.8 M aths

Standard mathematical and trigonometric functions. Trigonometric functions work with angles in
radians.

sin(theta)
Sine of an angle.

* theta (floating point): an angle, in radians.
» return value (floating point): the sine of the argument.
cos(theta)
Cosine of an angle.
* theta (floating point): an angle, in radians.
» return value (floating point): the cosine of the argument.
tan(theta)
Tangent of an angle.
* theta (floating point): an angle, in radians.
» return value (floating point): the tangent of the argument.
asin(x)
Arc sine of an angle. The result isin the range of -pi/2 through pi/2.

* x (floating point): the value whose arc sine is to be returned.
» return value (floating point): the arc sine of the argument (radians)

SUN/256 150

acos(x)
Arc cosine of an angle. Theresult isin the range of 0.0 through pi.

* x (floating point): the value whose arc cosine is to be returned.
» return value (floating point): the arc cosine of the argument (radians)

atan(x)
Arc tangent of an angle. The result isin the range of -pi/2 through pi/2.

* x (floating point): the value whose arc tangent is to be returned.
» return value (floating point): the arc tangent of the argument (radians)

exp(x)
Euler's number e raised to a power.

* x (floating point): the exponent to raise e to.
« return value (floating point): the value e X, where e s the base of the natural logarithms.

| 0g10(x)
L ogarithm to base 10.

* x (floating point): argument
» return value (floating point): Ioglo(x)

In(x)
Natural logarithm.

* x (floating point): argument
» return value (floating point): Ioge(x)

sqrt(x)
Square root. The result is correctly rounded and positive.

* x (floating point): avalue.
» return value (floating point): the positive square root of x. If the argument is NaN or less
than zero, the result is NaN.

hypot (x, y)
Returns the square root of the sum of squares of its two arguments. Doing it like this may
avoid intermediate overflow or underflow.

* x (floating point): avalue
* vy (floating point): avalue
» return value (floating point): sgrt(x 2 4 y 2)

atan2(y, x)
Converts rectangular coordinates (x,y) to polar (r,theta). This method computes the phase
t het a by computing an arc tangent of y/ x in the range of -pi to pi.

* vy (floating point): the ordinate coordinate

* x (floating point): the abscissa coordinate

* return value (floating point): the t heta component (radians) of the point (r,theta) in
polar coordinates that corresponds to the point (x,y) in Cartesian coordinates.

pow a, b)
Exponentiation. The result is the value of the first argument raised to the power of the second
argument.

* a (floating point): the base.
* b (floating point): the exponent.

SUN/256 151

o

» return value (floating point): the value a

sinh(x)
Hyperbolic sine.

* x (floating point): parameter
» return value (floating point): result

cosh(x)
Hyperbolic cosine.

* x (floating point): parameter
» return value (floating point): result

tanh(x)
Hyperbolic tangent.

* x (floating point): parameter
» return value (floating point): result

asi nh(x)
Inverse hyperbolic sine.

* x (floating point): parameter
» return value (floating point): result

acosh(x)
Inverse hyperbolic cosine.

* x (floating point): parameter
» return value (floating point): result

atanh(x)
Inverse hyperbolic tangent.

* x (floating point): parameter
» return value (floating point): result

E
Euler's number e, the base of natural logarithms.

Pl
Pi, the ratio of the circumference of acircle to its diameter.

Infinity
Positive infinite floating point value.

NaN
Not-a-Number floating point value. Use with care; arithmetic and logical operations behave in
strange ways near NaN (for instance, NaN! =NaN). For most purposes this is equivaent to the
blank value.

RANDOM
Evaluates to a random number in the range 0O<=x<1. Thisis different for each cell of the table.
The quality of the randomness may not be particularly good.

SUN/256 152

10.5.9 Arrays

Functions which operate on array-valued cells. The array parameters of these functions can only be
used on values which are already arrays (usually, numeric arrays). In most cases that means on
values in table columns which are declared as array-valued. FITS and VOTable tables can have
columns which contain array values, but other formats such as CSV cannot.

The functions fall into a number of categories:

Aggregating operations, which map an array value to a scalar, including si ze, count , maxi num
m ni mum sum nean, nedi an, quanti | e, st dev, vari ance, j oi n.

Operations on one or more arrays which produce array results, including add, subtract,
mul ti ply,divide,reciprocal,condition.

A set of functions named ar ray with various numbers of arguments, which let you assemble
an array value from alist of scalar numbers. This can be used for instance to get the mean of a
set of three magnitudes by using an expression like "mean(array(j mag, hmag, kmag))".

sum(array)
Returns the sum of al the non-blank elements in the array. If array is not a numeric array,
nul | isreturned.

* array (Object): array of numbers
» return value (floating point): sum of al the numeric valuesin arr ay

nmean(array)
Returns the mean of all the non-blank elements in the array. If array is not a numeric array,
nul | isreturned.

* array (Object): array of numbers
» return value (floating point): mean of all the numeric valuesin ar r ay

variance(array)
Returns the population variance of all the non-blank elements in the array. If array isnot a
numeric array, nul | isreturned.

* array (Object): array of numbers
» return value (floating point): variance of the numeric valuesin arr ay

stdev(array)
Returns the population standard deviation of all the non-blank elements in the array. If array
isnot anumeric array, nul | isreturned.

e array (Object): array of numbers
» return value (floating point): standard deviation of the numeric valuesin ar r ay

mnimun{ array)
Returns the smallest of the non-blank elements in the array. If array is not a numeric array,
nul | isreturned.

e array (Object): array of numbers
» return value (floating point): minimum of the numeric valuesin ar r ay

maxi mun(array)
Returns the largest of the non-blank elements in the array. If array is not a numeric array,
nul | isreturned.

e array (Object): array of numbers
» return value (floating point): maximum of the numeric valuesin ar r ay

SUN/256 153

medi an(array)
Returns the median of the non-blank elements in the array. If array is not a numeric array,
nul | isreturned.

* array (Object): array of numbers
» return value (floating point): median of the numeric valuesin arr ay

quantile(array, quant)
Returns a quantile value of the non-blank elements in the array. Which quantile is determined
by the quant vaue; values of 0, 0.5 and 1 give the minimum, median and maximum
respectively. A value of 0.99 would give the 99th percentile.

* array (Object): array of numbers
» quant (floating point): number in the range 0-1 deterining which quantile to calculate
» return value (floating point): quantile corresponding to quant

size(array)
Returns the number of elementsin the array. If array isnot an array, zero is returned.

* array (Object): array
» return value (integer): size of arr ay

count (array)
Returns the number of non-blank elements in the array. If array is not an array, zero is
returned.

e array (Object): array (may or may not be numeric)
* return value (integer): number of non-blank elementsin ar r ay

join(array, joiner)
Returns a string composed of concatenating all the elements of an array, separated by ajoiner
string. If array isnot an array, null is returned.

* array (Object): array of numbers or strings
* joiner (Sring): text string to interpose between adjacent elements
* return value (String): string composed of ar r ay €lements separated by j oi ner strings

add(arrayl, array2)
Returns the result of adding two numeric arrays element by element. Both arrays must be
numeric, and the arrays must have the same length. If either of those conditions is not true,
nul | is returned. The types of the arrays do not need to be the same, so for example it is
permitted to add an integer array to afloating point array.

* arrayl (Object): first array of numeric values

* array2 (Object): second array of numeric values

* return value (array of floating point): element-by-element sum of array1 and arr ay2, the
same length as the input arrays

add(array, constant)
Returns the result of adding a constant value to every element of a numeric array. If the
supplied ar r ay argument is not a numeric array, nul | isreturned.

e array (Object): array input

* constant (floating point): value to add to each array element

» return value (array of floating point): array output, the same length as the array
parameter

subtract(arrayl, array2)
Returns the result of subtracting one numeric array from the other element by element. Both

SUN/256 154

arrays must be numeric, and the arrays must have the same length. If either of those conditions
isnot true, nul | isreturned. The types of the arrays do not need to be the same, so for example
it is permitted to subtract an integer array from afloating point array.

* arrayl (Object): first array of numeric values

* array2 (Object): second array of numeric values

* return value (array of floating point): element-by-element difference of array1 and
array2, the same length as the input arrays

multiply(arrayl, array?2)
Returns the result of multiplying two numeric arrays element by element. Both arrays must be
numeric, and the arrays must have the same length. If either of those conditions is not true,
nul | is returned. The types of the arrays do not need to be the same, so for example it is
permitted to multiply an integer array by afloating point array.

* arrayl (Object): first array of numeric values

* array2 (Object): second array of numeric values

* return value (array of floating point): element-by-element product of array1 and arr ay?2,
the same length as the input arrays

mul tiply(array, constant)
Returns the result of multiplying every element of a numeric array by a constant value. If the
supplied ar r ay argument is not a numeric array, nul | isreturned.

* array (Object): array input

* constant (floating point): value by which to multiply each array element

* return value (array of floating point): array output, the same length as the array
parameter

divide(arrayl, array2)
Returns the result of dividing two numeric arrays element by element. Both arrays must be
numeric, and the arrays must have the same length. If either of those conditions is not true,
nul | is returned. The types of the arrays do not need to be the same, so for example it is
permitted to divide an integer array by afloating point array.

* arrayl (Object): array of numerator values (numeric)

* array2 (Object): array of denominator values (numeric)

» return value (array of floating point): element-by-element result of array1[i]/array2[i]
the same length as the input arrays

reci procal (array)
Returns the result of taking the reciprocal of every element of a numeric array. If the supplied
array argument isnot anumeric array, nul | isreturned.

* array (Object): array input
» return value (array of floating point): array output, the same length as the array
parameter

condition(flagArray, trueVal ue, falseValue)
Maps a boolean array to a numeric array by using supplied numeric values to represent true
and false values from the input array.

This has the same effect as applying the expression outArray[i] = flagArray[i] ?
trueVal ue : fal seVval ue.

f1 agArray (array of boolean): array of boolean values

t rueVal ue (floating point): output value corresponding to an input true value

f al seval ue (floating point): output value corresponding to an input false value

return value (array of floating point): output numeric array, same length asf | agAr r ay

SUN/256 155

array(x1)
Returns a numeric array built from a given element.

* x1 (floating point): array element 1
» return value (array of floating point): 1-element array

array(x1, x2)
Returns a numeric array built from given elements.

* x1 (floating point): array element 1
» x2 (floating point): array element 2
» return value (array of floating point): 2-element array

array(x1, x2, x3)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
return value (array of floating point): 3-element array

array(x1, x2, x3, x4)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
return value (array of floating point): 4-element array

array(x1, x2, x3, x4, x5)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
x5 (floating point): array element 5
return value (array of floating point): 5-element array

array(x1, x2, x3, x4, x5, x6)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
x5 (floating point): array element 5
x6 (floating point): array element 6
return value (array of floating point): 6-element array

array(x1, x2, x3, x4, x5, x6, X7)
Returns a numeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
x5 (floating point): array element 5

SUN/256 156

» x6 (floating point): array element 6
» x7 (floating point): array element 7
» return value (array of floating point): 7-element array

array(x1, x2, x3, x4, x5, x6, x7, x8)
Returns anumeric array built from given elements.

x1 (floating point): array element 1
x2 (floating point): array element 2
x3 (floating point): array element 3
x4 (floating point): array element 4
x5 (floating point): array element 5
x6 (floating point): array element 6
x7 (floating point): array element 7
x8 (floating point): array element 8
return value (array of floating point): 8-element array

10.5.10 Fluxes

Functions for conversion between flux and magnitude values. Functions are provided for
conversion between flux in Janskys and AB magnitudes.

Some constants for approximate conversions between different magnitude scales are also provided:

* Constants JOHNSON_AB_*, for Johnson <-> AB magnitude conversions, from Frei and Gunn,
Astronomical Journal 108, 1476 (1994), Table 2 (1994AJ...108.1476F
(http://adsabs.harvard.edu/abs/1994AJ....108.1476F)).

* Constants VEGA AB *, for Vega <-> AB magnitude conversions, from Blanton et al.,
Astronomical Journal 129, 2562 (2005), Egs. (5 (2005AJ....129.2562B
(http://adsabs.harvard.edu/abs/2005AJ....129.2562B)).

abToJansky(nmagAB)
Converts AB magnitude to flux in Jansky.

F/Jy=10(23(AB+48.6)/25)

» magAB (floating point): AB magnitude value
» return value (floating point): equivalent flux in Jansky

j anskyToAb(fl uxJansky)
Converts flux in Jansky to AB magnitude.
AB=2.5*(23-log, ,(F/Jy))-48.6
* fluxJansky (floating point): flux in Jansky
» return value (floating point): equivalent AB magnitude
[umi nosityToFl ux(lumn, dist)
Converts luminosity to flux given aluminosity distance.
F=lumin/(4 x Pi x dist?)

* lunmi n (floating point): luminosity
* dist (floating point): luminosity distance
» return value (floating point): equivalent flux

fluxToLum nosity(flux, dist)

SUN/256 157

Converts flux to luminosity given aluminosity distance.
lumin=(4 x Pi x dist?) F

* flux (floating point): flux
» dist (floating point): luminosity distance
* return value (floating point): equivalent luminosity

JOHNSON_AB_V
Approximate offset between Johnson and AB magnitudes in V band.
\ J~:V A TIOHNSON_AB_V.

JOHNSON_AB_B
Approximate offset between Johnson and AB magnitudes in B band.
B J~=B A TIOHNSON_AB_B.

JOHNSON_AB_B;j
Approximate offset between Johnson and AB magnitudes in Bj band.
Bj ~=Bj ,gIONSON_AB_Bj .

JOHNSON_AB_R
Approximate offset between Johnson and AB magnitudes in R band.
R;~=R,gtJOHNSON_AB_R.

JOHNSON_AB |

Approximate offset between Johnson and AB magnitudesin | band. | 7=l Ag TIONSON_AB_I .

A

JOHNSON_AB_g

Approximate offset between Johnson and AB magnitudes in g band. g i +JOHNSON_AB_g.

~IaB
JOHNSON_AB_r
Approximate offset between Johnson and AB magnitudesin r band. r T Ag TIOHNSON_AB T

JOHNSON_AB i

Approximate offset between Johnson and AB magnitudesin i band. i J~:i g TJOHNSON_AB i .

A

JOHNSON_AB_Rc
Approximate offset between Johnson and AB magnitudes in Rc band.
Rc;~=Rc, ;+IOHNSON_AB_Re.

JOHNSON_AB_I ¢
Approximate offset between Johnson and AB magnitudes in Ic band.
IC;~=IC, g +IOHNSON_AB | c.

JOHNSON_AB _uPri me
Offset between Johnson and AB magnitudes in U band (zero).

U' =U') g HIOHNSON_AB_uPr i me=U', o

JOHNSON_AB gPri ne
Offset between Johnson and AB magnitudes in g band (zero).
g J:g' g TIOHNSON_AB_gPri me=¢' AB"

SUN/256 158

JOHNSON_AB r Pri ne
Offset between Johnson and AB magnitudes in ' band (zero).

I‘J:I‘ AB+J(]-|NS()\I_AB_r Pri me=I'AB.

JOHNSON_AB_i Pri ne
Offset between Johnson and AB magnitudes in i' band (zero).

IJ=I AB+JO—|NSO\I_AB_| Pri me=I AB.

JOHNSON_AB_zPri ne
Offset between Johnson and AB magnitudes in z band (zero).

z J=Z AB+J CHNSON_AB_zPri ne=z

AB’
VEGA AB_J
Approximate offset between Vega (as in 2MASS) and AB magnitudes in J band.

JVega~:J)\ TVEGA AB J.

VEGA_AB_H
Approximate offset between Vega (as in 2MASS) and AB magnitudes in H band.

H,/ o =HAB+VEGA_AB_H.
ega

VEGA_AB K
Approximate offset between Vega (as in 2MASS) and AB magnitudes in K band.

Ky e =KAB+VEGA_AB_K.
ega

10.5.11 Strings

String manipulation and query functions.

concat (s1, s2)
Concatenates two strings. In most cases the same effect can be achieved by writing s1+s2, but
blank values can sometimes appear as the string "nul | " if you do it like that.

e s1(String): first string
e s2(String): second string
e returnvalue (Sring): s1 followed by s2

concat(sl1, s2, s3)
Concatenates three strings. In most cases the same effect can be achieved by writing s1+s2+s3,
but blank values can sometimes appear as the string "nul | " if you do it like that.

s1 (Sring): first string

s2 (Sring): second string

s3 (Sring): third string

return value (String): s1 followed by s2 followed by s3

concat(sl1, s2, s3, s4)
Concatenates four strings. In most cases the same effect can be achieved by writing
s1+s2+s3+s4, but blank values can sometimes appear as the string "nul | " if you do it like that.

s1 (Sring): first string
s2 (Sring): second string
s3 (Sring): third string
s4 (Sring): fourth string

SUN/256 159
* return value (Siring): s1 followed by s2 followed by s3 followed by s4

equal s(sl1, s2)
Determines whether two strings are equal. Note you should use this function instead of s1==s2,
which can (for technical reasons) return false even if the strings are the same.

* s1(Sring): first string
e s2(String): second string
» return value (boolean): trueif sl and s2 are both blank, or have the same content

equal sl gnoreCase(sl1, s2)
Determines whether two strings are equal apart from possible upper/lower case distinctions.

* s1(Sring): first string

e s2 (String): second string

» return value (boolean): true if sl and s2 are both blank, or have the same content apart
from case folding

startsWth(whole, start)
Determines whether a string starts with a certain substring.

* whol e (Sring): the string to test
* start (Sring): the sequence that may appear at the start of whol e
» return value (boolean): trueif the first few characters of whol e arethe same asst art

endsWth(whole, end)
Determines whether a string ends with a certain substring.

* whol e (Sring): the string to test
* end (String): the sequence that may appear at the end of whol e
» return value (boolean): trueif the last few characters of whol e are the same asend

contai ns(whole, sub)
Determines whether a string contains a given substring.

* whol e (Sring): the string to test
* sub (String): the sequence that may appear within whol e
» return value (boolean): trueif the sequence sub appears within whol e

I ength(str)
Returns the length of a string in characters.

e str (String): string
» return value (integer): number of charactersinstr

split(words)
Splits a string into an array of space-separated words. One or more spaces separates each word
from the next. Leading and trailing spaces are ignored.

The result is an array of strings, and if you want to use the individual elements you need to use
sguare-bracket indexing, with [0] representing the first object

* words (String): string with embedded spaces delimiting the words
* return value (array of Sring): array of the separate words; you can extract the individual
words from the result using square bracket indexing

split(words, regex)
Splits a string into an array of words separated by a given regular expression.

The result is an array of strings, and if you want to use the individual elements you need to use
sguare-bracket indexing, with [0] representing the first object

SUN/256 160

* words (String): string with multiple parts

* regex (String): regular expression delimiting the different words in the wor ds parameter

* return value (array of String): array of the separate words; you can extract the individual
words from the result using square bracket indexing

mat ches(str, regex)
Tests whether a string matches a given regular expression.

o str (String): string to test
* regex (Sring): regular expression string
» return value (boolean): trueif r egex matchesstr anywhere

mat chGroup(str, regex)
Returns the first grouped expression matched in a string defined by a regular expression. A
grouped expression is one enclosed in parentheses.

* str (Sring): string to match against
* regex (Sring): regular expression containing a grouped section
» return value (String): contents of the matched group (or null, if regex didn't match st r)

replaceFirst(str, regex, replacenent)
Replaces the first occurrence of a regular expression in a string with a different substring
value.

str (String): string to manipul ate

regex (Sring): regular expression to match in st r

repl acenment (String): replacement string

return value (String): same as st r, but with the first match (if any) of r egex replaced by
repl acenent

replaceAl |l (str, regex, replacenent)
Replaces all occurrences of aregular expression in a string with a different substring value.

str (Sring): string to manipulate

regex (Sring): regular expression to match instr

repl acenent (String): replacement string

return value (String): same as str, but with all matches of regex replaced by
repl acenent

substring(str, startlndex)
Returns the last part of a given string. The substring begins with the character at the specified
index and extends to the end of this string.

e str (String): the input string
e startlndex (integer): the beginning index, inclusive
* returnvalue (String): last part of st r, omitting the first st art | ndex characters

substring(str, startlndex, endlndex)
Returns a substring of a given string. The substring begins with the character at st art | ndex
and continues to the character at index endl ndex-1 Thus the length of the substring is
endl ndex- st art| ndex.

str (Sring): the input string

start | ndex (integer): the beginning index, inclusive
endl ndex (integer): the end index, inclusive

return value (String): substring of st r

t oUpper Case(str)
Returns an uppercased version of astring.

SUN/256 161

* str (String): input string
* return value (String): uppercased version of st r

t oLower Case(str)
Returns an uppercased version of astring.
* str (String): input string
* return value (String): uppercased version of st r

trim(str)
Trims whitespace from both ends of a string.
* str (String): input string
* return value (String): str with any spaces trimmed from start and finish

padWt hZeros(value, ndigit)

Takes an integer argument and returns a string representing the same numeric value but
padded with leading zeros to a specified length.

val ue (long integer): numeric value to pad
ndi gi t (integer): the number of digitsin the resulting string

return value (String): a string evaluating to the same as val ue with at least ndi git
characters

10.5.12 Formats

Functions for formatting numeric values.

format Deci mal (val ue, dp)

Turns afloating point value into a string with a given number of decimal places using standard
settings.
* val ue (floating point): value to format

* dp (integer): number of decimal places (digits after the decmal point)
» return value (String): formatted string

f or mat Deci mal Local (val ue, dp)

Turns afloating point value into a string using current locale settings. For instance if language
is set to French, decimal points will be represented as a comma "," instead of a full stop ".".
Otherwise behaves the same as the corresponding f or mat Deci mal function.

» val ue (floating point): value to format

» dp (integer): number of decimal places (digits after the decmal point)
» return value (String): formatted string

for mat Deci mal (val ue, format)

Turns a floating point value into a formatted string using standard settings. The f or mat String
is as defined by Javas j ava. t ext. Deci mal For mat
(http://java.sun.com/j2se/1.5.0/docs/api/javaltext/Decimal Format.html) class.

* val ue (floating point): value to format

o format (Sring): format specifier

* return value (String): formatted string

f or mat Deci mal Local (val ue, format)

Turns afloating point value into aformatted string using current locale settings. For instance if
language is set to French, decimal points will be represented as a comma "," instead of a full

SUN/256 162

stop ".". Otherwise behaves the same as the corresponding f or mat Deci mal function.

» val ue (floating point): value to format
* format (Sring): format specifier
* return value (String): formatted string

10.5.13 CoordsRadians

Functions for angle transformations and manipulations, based on radians rather than degrees. In
particular, methods for trandlating between radians and HH:MM:SS.S or DDD:MM:SS.S type
sexagesimal representations are provided.

radi ansToDns(rad)
Converts an angle in radians to a formatted degrees:minutes.seconds string. No fractional part
of the seconds field is given.

* rad (floating point): angle in radians
* return value (String): DM S-format string representing r ad

radi ansToDns(rad, secFig)
Converts an angle in radians to a formatted degrees:minutes:seconds string with a given
number of decimal placesin the seconds field.

* rad (floating point): angle in radians
* secFi g (integer): number of decimal placesin the secondsfield
* return value (String): DM S-format string representing r ad

radi ansToHs(rad)
Converts an angle in radians to a formatted hours:minutes:seconds string. No fractional part of
the seconds field is given.

* rad (floating point): anglein radians
* return value (String): HMS-format string representing r ad

radi ansToHs(rad, secFig)
Converts an angle in radians to a formatted hours:minutes.seconds string with a given number
of decimal placesin the seconds field.

* rad (floating point): anglein radians
* secFi g (integer): number of decimal placesin the secondsfield
* return value (String): HM S-format string representing r ad

dmsToRadi ans(dns)
Converts a formatted degrees.minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters dnis], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

e dns (String): formatted DM S string
» return value (floating point): angle in radians specified by dns

hmsToRadi ans(hns)
Converts a formatted hours:minutes:seconds string to an angle in radians. Delimiters may be
colon, space, characters hnis], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

* hns (String): formatted HM S string
» return value (floating point): angle in radians specified by hns

SUN/256

163

dnsToRadi ans(deg, nin, sec)
Converts degrees, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 degrees. This routine uses the sign bit of the deg argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values). It isillegal for the mi n or sec arguments to be negative.

deg (floating point): degrees part of angle
mi n (floating point): minutes part of angle
sec (floating point): seconds part of angle
return value (floating point): specified angle in radians

hmsToRadi ans(hour, min, sec)
Converts hours, minutes, seconds to an angle in radians.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 hours. This routine uses the sign bit of the hour argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating

point values).

* hour (floating point): degrees part of angle

* nin (floating point): minutes part of angle

* sec (floating point): seconds part of angle

» return value (floating point): specified anglein radians

skyDi st anceRadi ans(ral, decl, ra2, dec2)
Calculates the separation (distance around a great circle) of two points on the sky in radians.

ral (floating point): right ascension of point 1 in radians

dec1 (floating point): declination of point 1 in radians

ra2 (floating point): right ascension of point 2 in radians

dec2 (floating point): declination of point 2 in radians

return value (floating point): angular distance between point 1 and point 2 in radians

hour sToRadi ans(hours)
Converts hours to radians.

hour s (floating point): angle in hours
return value (floating point): angle in radians

degreesToRadi ans(deg)
Converts degreesto radians.

deg (floating point): angle in degrees
return value (floating point): angle in radians

radi ansToDegrees(rad)
Converts radians to degrees.

rad (floating point): anglein radians
return value (floating point): angle in degrees

r aFK4t oFK5r adi ans(raFK4, decFK4)
Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Right
Ascension. This assumes zero proper motion in the FK5 frame.

raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
decFk4 (floating point): declination in B1950.0 FK4 system (radians)
return value (floating point): right ascension in J2000.0 FK5 system (radians)

SUN/256 164

decFK4t oFK5r adi ans(raFK4, decFK4)
Converts a B1950.0 FK4 position to J2000.0 FK5 at an epoch of B1950.0 yielding Declination
This assumes zero proper motion in the FK5 frame.

* raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
* decFk4 (floating point): declination in B1950.0 FK4 system (radians)
» return value (floating point): declination in J2000.0 FK5 system (radians)

r aFK5t oFK4r adi ans(raFK5, decFK5)
Converts a J2000.0 FK5 position to B1950.0 FK4 at an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

* raFks (floating point): right ascension in J2000.0 FK5 system (radians)
* decFkKs (floating point): declination in J2000.0 FK5 system (radians)
» return value (floating point): right ascension in the FK4 system (radians)

decFK5t oFK4r adi ans(raFK5, decFK5)
Converts a J2000.0 FK5 position to B1950.0 FK4 a an epoch of B1950.0 yielding
Declination. This assumes zero proper motion, parallax and radial velocity in the FK5 frame.

* raFks (floating point): right ascension in J2000.0 FK5 system (radians)
* decFkKs (floating point): declination in J2000.0 FK5 system (radians)
» return value (floating point): right ascension in the FK4 system (radians)

r aFK4t oFK5Radi ans(raFK4, decFK4, bepoch)
Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Right Ascension. This assumes
zero proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position
in the FK4 frame was determined.

raFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
decFk4 (floating point): declination in B1950.0 FK4 system (radians)

bepoch (floating point): Besselian epoch

return value (floating point): right ascension in J2000.0 FK5 system (radians)

decFK4t oFK5Radi ans(raFK4, decFK4, bepoch)
Converts a B1950.0 FK4 position to J2000.0 FK5 yielding Declination. This assumes zero
proper motion in the FK5 frame. The bepoch parameter is the epoch at which the position in
the FK4 frame was determined.

r aFk4 (floating point): right ascension in B1950.0 FK4 system (radians)
decFk4 (floating point): declination in B1950.0 FK4 system (radians)
bepoch (floating point): Besselian epoch

return value (floating point): declination in J2000.0 FK5 system (radians)

r aFK5t oFK4Radi ans(raFK5, decFK5, bepoch)
Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

raFKs (floating point): right ascension in J2000.0 FK5 system (radians)
decFKs (floating point): declination in J2000.0 FK5 system (radians)
bepoch (floating point): Besselian epoch

return value (floating point): right ascension in the FK4 system (radians)

decFK5t oFK4Radi ans(raFK5, decFK5, bepoch)
Converts a J2000.0 FK5 position to B1950.0 FK4 yielding Declination. This assumes zero
proper motion, parallax and radial velocity in the FK5 frame.

* rafFks (floating point): right ascension in J2000.0 FK5 system (radians)
* decFks (floating point): declination in J2000.0 FK5 system (radians)

SUN/256 165

* bepoch (floating point): Besselian epoch
» return value (floating point): right ascension in the FK4 system (radians)

DEGREE_RADI ANS
The size of one degree in radians.

HOUR_RADI ANS
The size of one hour of right ascension in radians.

ARC_M NUTE_RADI ANS
The size of one arcminute in radians.

ARC_SECOND_RADI ANS
The size of one arcsecond in radians.

10.5.14 Coverage
Functions related to coverage and footprints.

One coverage standard is Multi-Order Coverage maps, described at
http://www.ivoa.net/Documents/MOC/ (http://www.ivoa.net/Documents/MOC/). MOC positions
are always defined in ICRS equatorial coordinates.

MOC locations may be given as either the filename or the URL of aMOC FITSfile. Alternatively,
they may be the identifier of a VizieR table, for instance "v/ 139/ sdss9" (SDSS DR9). A list of all
the MOCs available from VizieR can currently be found at
http://alasky.u-strasbg.fr/footprints/tables/vizier/ (http://alasky.u-strasbg.fr/footprints/tables/vizier/).
You can search for VizieR table identifiers from the VizieR web page (http://vizier.u-strasbg.fr/
(http://vizier.u-strasbg.fr/)); note you must use the table identifier (like "v/ 139/ sdss9") and not the
catalogue identifier (like"v/ 139").

i nMoc(noclLocation, ra, dec)
Indicates whether a given sky position falls strictly within a given MOC (Multi-Order
Coverage map). If the given nocLocat i on value does not represent aMOC (for instance no file
exists or the file is not in MOC format) a warning will be issued the first time it's referenced,
and the result will be false.

* noclocation (String): location of aFITS MOC file: afilename, aURL, or aVizieR table
name

* ra (floating point): ICRS right ascension in degrees

* dec (floating point): ICRS declination in degrees

» return value (boolean): trueiff the given position falls within the given MOC

near Moc(noclLocation, ra, dec, distanceDeg)
Indicates whether a given sky position either falls within, or is within a certain distance of the
edge of, a given MOC (Multi-Order Coverage map). If the given nocLocat i on value does not
represent aMOC (for instance no file exists or the fileis not in MOC format) awarning will be
issued the first timeit's referenced, and the result will be false.

* noclocation (String): location of aFITS MOC file: afilename, aURL, or aVizieR table
name

* ra (floating point): ICRS right ascension in degrees

* dec (floating point): ICRS declination in degrees

SUN/256 166

» di st anceDeg (floating point): permitted distance from MOC boundary in degrees
» return value (boolean): true iff the given position is within di st ance degrees of the given
MOC

10.5.15 CoordsDegrees

Functions for angle transformations and manipulations, with angles generaly in degrees. In
particular, methods for trandating between degrees and HH:MM:SS.S or DDD:MM:SS.S type
sexagesimal representations are provided.

degreesToDms(deg)
Converts an angle in degrees to a formatted degrees.minutes:seconds string. No fractional part
of the seconds field is given.

* deg (floating point): angle in degrees
* return value (String): DM S-format string representing deg

degreesToDms(deg, secFig)
Converts an angle in degrees to a formatted degrees:minutes.seconds string with a given
number of decimal placesin the secondsfield.

* deg (floating point): angle in degrees
* secFi g (integer): number of decimal placesin the secondsfield
* return value (String): DM S-format string representing deg

degreesToHrs(deg)
Converts an angle in degrees to a formatted hours.minutes:seconds string. No fractional part of
the secondsfield is given.

* deg (floating point): angle in degrees
* return value (String): HMS-format string representing deg

degreesToHrs(deg, secFig)
Converts an angle in degrees to a formatted hours:minutes:seconds string with a given number
of decimal placesin the seconds field.

* deg (floating point): angle in degrees
* secFi g (integer): number of decimal placesin the secondsfield
* return value (String): HMS-format string representing deg

drmsToDegr ees(dns)
Converts a formatted degrees:minutes.seconds string to an angle in degrees. Delimiters may be
colon, space, characters dnis], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

e dns (String): formatted DM S string
» return value (floating point): angle in degrees specified by dns

hrmsToDegr ees(hns)
Converts a formatted hours:minutes:seconds string to an angle in degrees. Delimiters may be
colon, space, characters hnis], or some others. Additional spaces and leading +/- are
permitted. The :seconds part is optional.

* hns (String): formatted HM S string
» return value (floating point): angle in degrees specified by hns

dmsToDegrees(deg, mn, sec)

SUN/256 167

Converts degrees, minutes, seconds to an angle in degrees.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 degrees. This routine uses the sign bit of the deg argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating
point values). It isillegal for the mi n or sec arguments to be negative.

deg (floating point): degrees part of angle
mi n (floating point): minutes part of angle
sec (floating point): seconds part of angle
return value (floating point): specified angle in degrees

hmsToDegr ees(hour, min, sec)
Converts hours, minutes, seconds to an angle in degrees.

In conversions of this type, one has to be careful to get the sign right in converting angles
which are between 0 and -1 hours. This routine uses the sign bit of the hour argument, taking
care to distinguish between +0 and -0 (their internal representations are different for floating

point values).

* hour (floating point): degrees part of angle

* nin (floating point): minutes part of angle

* sec (floating point): seconds part of angle

» return value (floating point): specified anglein degrees

skyDi st anceDegrees(ral, decl, ra2, dec2)
Calculates the separation (distance around a great circle) of two points on the sky in degrees.

ral (floating point): right ascension of point 1 in degrees

dec1 (floating point): declination of point 1 in degrees

ra2 (floating point): right ascension of point 2 in degrees

dec? (floating point): declination of point 2 in degrees

return value (floating point): angular distance between point 1 and point 2 in degrees

10.6 Examples

Here are some examples for defining new columns; the expressions below could appear as the
<expr>inatpi pe addcol Of sortexpr command).

Average

(first + second) * 0.5

Square root

sqgrt (vari ance)

Angle conversion

radi ansToDegr ees(DEC r adi ans)
degr eesToRadi ans(RA_degr ees)

Conversion from string to number

parsel nt ($12)
par seDoubl e(i dent)

Conversion from number to string

SUN/256 168

toString(i ndex)

Conversion between numeric types

toShort (obs_type)
t oDoubl e(range)

or

(short) obs_type
(doubl e) range

Conversion from sexagesimal to degrees

hnms ToDegr ees(RA1950)
dnsToDegr ees(decDeg, decM n, decSec)

Conversion from degreesto sexagesimal

degr eesToDns($3)
degreesToHTs(RA, 2)

Ouitlier clipping
m n(1000, max(val ue, 0))
Converting a magic value to null
jmag == 9999 ? NULL : jmag
Converting a null valueto a magic one
NULL_jrmag ? 9999 : jnag
Taking thethird scalar element from an array-valued column

psf Count s[2]

and here are some examples of boolean expressions that could be used for row selection (appearing
inat pi pe sel ect command)

Within anumeric range

RA > 100 &% RA < 120 && Dec > 75 && Dec < 85

Within acircle

$2*$2 + $3*$3 < 1
skyDi st anceDegr ees(r a0, decO, hnsToDegr ees(RA), dnsToDegr ees(DEC)) <15. / 3600.

First 100 rows
i ndex <= 100

(though you could uset pi pe cnd=' head 100' instead)
Every tenth row

index %10 == 0
(though you could uset pi pe cnd="every 10' instead)

SUN/256 169
String equality/matching

equal s(SECTOR, "ZZ9 Plural Z Al pha")

equal sl gnoreCase(SECTOR, "zz9 plural z al pha")
startsWth(SECTOR, "ZZ")

cont ai ns(ph_qual , "U")

String regular expression matching
mat ches(SECTOR, "[XYZ] Al pha")

Test for non-blank value

I NULL ellipticity

10.7 Advanced Topics

This section contains some notes on getting the most out of the algebraic expressions facility. If
you're not a Java programmer, some of the following may be a bit daunting - read on at your own
risk!

10.7.1 Expression evaluation

This note provides a bit more detail for Java programmers on what is going on here; it describes
how the use of functionsin STILTS algebraic expressions relates to normal Java code.

The expressions which you write are compiled to Java bytecode when you enter them (if thereis a
‘compilation error' it will be reported straight away). The functions listed in the previous
subsections are all the publi ¢ static methods of the classes which are made available by default.
The classes listed are all in the package uk. ac. starlink. ttool s. func. However, the public static
methods are al imported into an anonymous namespace for bytecode compilation, so that you write
(sqrt(x,y) and not mat hs. sqrt (x, y). The same happens to other classes that are imported (which
can be in any package or none) - their public static methods all go into the anonymous namespace.
Thus, method name clashes are a possibility.

This cleverness is al made possble by the rather wonderful JEL
(http://www.gnu.org/software/jel/).

10.7.2 Instance M ethods

There is another category of functions which can be used apart from those listed in Section 10.5.
These are caled, in Java/object-oriented parlance, "instance methods" and represent functions that
can be executed on an object.

It is possible to invoke any of its public instance methods on any object (though not on primitive
values - numeric and boolean ones). The syntax is that you place a "." followed by the method
invocation after the object you want to invoke the method on, hence NAME. subst ri ng(3) instead of
subst ri ng(NAME, 3) . If you know what you're doing, feel free to go ahead and do this. However,
most of the instance methods you're likely to want to use have equivaents in the normal functions
listed in the previous section, so unless you're a Java programmer or feeling adventurous, you may
be best off ignoring this feature.

10.7.3 Adding User-Defined Functions

SUN/256 170

The functions provided by default for use with algebraic expressions, while powerful, may not
provide all the operations you need. For this reason, it is possible to write your own extensions to
the expression language. In this way you can specify abritrarily complicated functions. Note
however that this will only allow you to define new columns or subsets where each cell is a
function only of the other cellsin the same row - it will not allow values in one row to be functions
of valuesin another.

In order to do this, you have to write and compile a (probably short) program in the Java language.
A full discussion of how to go about thisis beyond the scope of this document, so if you are new to
Java and/or programming you may need to find a friendly local programmer to assist (or mail the
author). The following explanation is aimed at Java programmers, but may not be incomprehensible
to non-specialists.

The steps you need to follow are:

1. Write and compile a class containing one or more static public methods representing the
function(s) required

2. Makethisclass available on the application's classpath at runtime as described in Section 3.1

3. Specify the class's name to the application, as the value of the j el . cl asses Ssystem property
(colon-separated if there are several) as described in Section 3.3

Any public static methods defined in the classes thus specified will then be available for use. They
should be defined to take and return the relevant primitive or Object types for the function required.
For instance a class written as follows would define a three-value average:

public class AuxFuncs {
public static double average3(double x, double y, double z) {
return (x +y +z) [/ 3.0
}

}
and the command

stilts tpipe cnd="addcol AVERAGE "average3($1, $2, $3)""

would add a new column named AVERAGE giving the average of the first three existing columns.
Exactly how you would build this is dependent on your system, but it might involve doing
something like the following:

1. Writing afile named AuxFuncs. j ava containing the above code
2. Compiling it using acommand like "j avac AuxFuncs. j ava"
3. Runningt pi pe usingtheflags”stilts -classpath . -Djel.classes=AuxFuncs t pi pe"

SUN/256 171

11 Programmatic I nvocation

The STILTS package provides some capabilities, for instance plotting, that might be useful as part
of other Java applications. The code that forms STILTS is fully documented at the API level; there
are comprehensive javadocs throughout for the uk. ac. st arl i nk. tt ool s package, its subpackages,
and most of the other classesin the uk. ac. star i nk tree on which it relies. Anybody is welcome to
use these classes at their own risk, but the code does not form a stable API intended for public use:
the javadocs are not distributed as part of the package (though you may be able to find them here),
tutorial documentation is not provided, and there is no commitment to APl stability between
releases.

With this in mind, there are facilities for invoking the STILTS commands programmatically from
third-party java code. Of course it is possible to do this by just calling the static mai n(String[])
method of the application Main-Class (sti | t s) but we document here how it can be done in away
which allows more control, using the uk. ac. star i nk. t ask parameter handling framework.

Each of the STILTS tasks listed in Appendix B is represented by a class implementing the Task
interface; these all have no-arg constructors. To run it, you need to create an instance of the class,
pass it an Envi ronnent object which can acquire values for parameters by name, and then execute
it. The MapEnvi ronment class, based on a Map containing name/value pairs, is provided for this
purpose. As well as managing parameter values, MapEnvironment captures table and text output in
away that lets you retrieve it after the task has executed. Here is a simple example for invoking the
calc task to perform a simple calcation:

MapEnvi ronment env = new MapEnvironment () ;

env. set Val ue("expression", "sqrt(3*3+4*4)");

Task cal cTask = new uk. ac.starlink.ttools.task. Calc();
cal cTask. creat eExecut abl e(env). execute();

String result = env. get Qut put Text();

The execution corresponds exactly to the command-line:

stilts calc expression="sqrt(3*3+4*4)"
The Usage section for the cal ¢ task notes that the corresponding Task subclassiscal c.

Also in the usage section, each parameter reports the data type that it may take, and objects of this
type may be used as the parameter value passed in the MapEnvi ronnent as an alternative to passing
string values. For the case of the input table parameters, this is st ar Tabl e, SO in atask like tpipe
(Tabl ePi pe), if you want to read afile "datafits', you can either write

env.setValue("in", "data.fits");
or

StarTabl e table = new Star Tabl eFactory().readStarTabl e("data.fits");
env.setValue("in", table);
That doesn't buy you much, but the table could equally be obtained from any other source,
including being a user-defined iterable over existing data structures. See SUN/252 for more
information on st ar Tabl e handling.

For some short examples of programs which invoke STILTS tasks in this way, see the source code
of some of the examples in the uk.ac.starlink.ttools.exanple directory: Caculator and
Head10.

Some commands provide additional methods for use with parameter-based invocation. In particular
the plotting commands can be used to create JComponent objects that can be incorporated into an
existing GUI. A working example of this can be found in the source code for the example

SUN/256 172

EnvPlanePlotter class. For some more tutorial introductions to using the plotting classes
programmatically, see also the example classes SinePlot, ApiPlanePlotter, and BasicPlotGui in the
same place.

SUN/256 173

A Commands By Category

This section lists the commands available broken down by the category of function they provide.
Some commands appear in more than one category. Detailed descriptions and examples for each
command can be found in Appendix B.

Format conversion:

t copy (Appendix B.26): Converts between table formats
vot copy (Appendix B.37): Transforms between VOTable encodings

See also Section 5.
Generic table manipulation:

t copy (Appendix B.26): Converts between table formats

t pi pe (Appendix B.35): Performs pipeline processing on atable

tmul ti (Appendix B.33): Writes multiple tables to a single container file

tmul tin (Appendix B.34): Writes multiple processed tables to single container file
t cat (Appendix B.24): Concatenates multiple similar tables

t cat n (Appendix B.25): Concatenates multiple tables

t1 oop (Appendix B.28): Generates a single-column table from aloop variable

tj oi n (Appendix B.29): Joins multiple tables side-to-side

t cube (Appendix B.27): Calculates N-dimensional histograms

See also Section 6.
Crossmatching:

t mat ch1 (Appendix B.30): Performs a crossmatch internal to asingle table

t mat ch2 (Appendix B.31): Crossmatches 2 tables using flexible criteria

t mat chn (Appendix B.32): Crossmatches multiple tables using flexible criteria

t skymat ch2 (Appendix B.36): Crossmatches 2 tables on sky position

cdsskymatch (Appendix B.2): Crossmaiches table on sky position against
VizieR/SIMBAD table

coneskymat ch (Appendix B.3): Crossmatches table on sky position against remote cone
service

sql skymat ch (Appendix B.18): Crossmatches table on sky position against SQL table

See also Section 7.
Plotting:

pl ot 2pl ane (Appendix B.7): Draws a plane plot

pl ot 2sky (Appendix B.8): Draws a sky plot

pl ot 2cube (Appendix B.9): Draws a cube plot

pl ot 2spher e (Appendix B.10): Draws a sphere plot

pl ot 2t i me (Appendix B.11): Draws atime plot

pl ot 2d (Appendix B.12) (deprecated): Old-style 2D Scatter Plot
pl ot 3d (Appendix B.13) (deprecated): Old-style 3D Scatter Plot
pl ot hi st (Appendix B.14) (deprecated): Old-style Histogram

See also Section 9.
Sky Pixel Operations:

pi xf oot (Appendix B.5): Generates Multi-Order Coverage maps
pi xsanpl e (Appendix B.6): Samples from a HEALPix pixel datafile

VOTables:

vot copy (Appendix B.37): Transforms between VOTable encodings
vot i nt (Appendix B.38): Validates VOTable documents

SUN/256 174

Virtual Observatory service access.

* cdsskymatch (Appendix B.2): Crossmatches table on sky position against
VizieR/SIMBAD table

* coneskymatch (Appendix B.3): Crossmatches table on sky position against remote cone

service

t apskymat ch (Appendix B.23): Crossmatches table on sky position against TAP table

t apquery (Appendix B.21): Queries a Table Access Protocol server

t apr esune (Appendix B.22): Resumes a previous query to a Table Access Protocol server

taplint (Appendix B.20): Tests TAP services

regquery (Appendix B.15): Queriesthe VO registry

SQL Database access:

* sqlclient (Appendix B.17): Executes SQL statements
* sql updat e (Appendix B.19): Updates valuesin an SQL table
* sql skymat ch (Appendix B.18): Crossmatches table on sky position against SQL table

Miscellaneous:

* server (Appendix B.16): Runsan HTTP server to perform STILTS commands
* cal c (Appendix B.1): Evaluates expressions
» funcs (Appendix B.4): Browses functions used by algebraic expression language

SUN/256 175

B Command Reference

This appendix provides the reference documentation for the commands in the package. For each
one a description of its purpose, a list of its command-line arguments, and some examples are
given.

B.1 cal c: Evaluates expressions

cal c isavery smple utility for evaluating expressions. It uses the same expression evaluator as is
used in t pi pe and the other generic table tasks for things like creating new columns, so it can be
used as a quick test to see what expressions work, or in order to evaluate expressions using the
various algebraic functions documented in Section 10.5. Since usually no table is involved, you
can't refer to column names in the expressions. It has one mandatory parameter, the expression to
evaluate, and writes the result to the screen.

B.1.1 Usage
The usage of cal ¢ is

stilts <stilts-flags> cal c tabl e=<tabl e>
[expressi on=] <expr >

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for thiscommand isuk. ac. starlink.ttool s. task. Cal c.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

expression = <expr> (String)
An expression to evaluate. The functionsin Section 10.5 can be used.

table = <table> (StarTable)
A table which provides the context within which expressi on is evaluated. This parameter is
optional, and will usualy not be required; its only purpose is to allow use of constant
expressions (table parameters) associated with the table. These can be referenced using
identifiers of the form par ans*, ucd$* or ut ype$* - see Section 10.2 for more detail.

B.1.2 Examples

Here are some examples of using cal c:

stilts calc 1+2
Calculates one plus two. Writes "3" to standard output.

stilts calc 'isoToM d("2005-12-25T00: 00: 00")"
Works out the Modified Julian Day corresponding to Christmas 2005. The output is "53729.0".

stilts cal c 'parantaut hor' tabl e=catal ogue. xni

In this case the expression is evaluated in the context of the supplied table, which means that
the table's parameters can be referenced in the expression. This example just outputs the value
of the table parameter named "author".

SUN/256 176

B.2 cdsskymat ch: Crossmatchestable on sky position against VizieR/SIMBAD table

cdsskymat ch uses the CDS X-Match service to join alocal table to one of the tables hosted by the
Centre de Données astronomiques de Strasbourg. This includes al of the VizieR tables and the
SIMBAD database. The service is very fast, and in most cases it is the best way to match a local
table against alarge externa table hosted by a service. It is almost certainly much better than using
coneskymat ch, though it is less flexible than TAP (see thet apquery task for flexible accessto TAP
services, and t apskymat ch for positional matches).

The local table is uploaded to the X-Match service in chunks, and the matches for each chunk are
retrieved in turn and eventually stitched together to form the final result. The tool only uploads sky
position and an identifier for each row of the input table, but all columns of the input table are
reinstated in the result for reference.

The remote table in most cases contains only a subset of the the columns in the relevant VizieR
table, including the most useful ones. The service currently provides no straightforward way to
acquire columns which are not returned by default.

Acknowledgement: CDS note that if the use of the X-Match service is useful to your research, they
would appreciate the following acknowledgement:

"This research made use of the cross-match service provided by CDS Srasbourg.”

B.2.1 Usage
The usage of cdsskymat ch is

stilts <stilts-flags> cdsskymatch ifnt=<in-format> istreamrtrue|fal se
i cmd=<cnds> ocnd=<cnds>
onode=out | met a| st at s| count | cgi | di scard| t opcat | sanp| pl ast
out =<out - t abl e> of nt =<out - f or mat >
ra=<expr> dec=<expr >
radi us=<val ue/ ar csec> cdst abl e=<val ue>
find=al | | best| best-renot e| each| each-di st
bl ocksi ze=<i nt - val ue> maxr ec=<i nt - val ue>
conpress=true|fal se
servi ceur | =<url -val ue> usenoc=true|fal se
presort=true|fal se fixcol s=none| dups| al
suf fi xi n=<I abel > suffi xr enot e=<| abel >
[n=] <t abl e>
If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is

uk.ac. starlink.ttool s.task. CdsUpl oadSkyMat ch.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

bl ocksi ze = <int-value> (Integer)
The CDS Xmatch service operates limits on the maximum number of rows that can be
uploaded and the maximum number of rows that is returned as a result from a single query. In
the case of large input tables, they are broken down into smaller blocks, and one request is sent
to the external service for each block. This parameter controls the number of rows in each
block. For an input table with fewer rows than this value, the whole thing is done as a single
request.

At time of writing, the maximum upload size is 100Mb (about 3Mrow; this does not depend on

SUN/256 177

the width of your table), and the maximum return size is 2Mrow.

Large blocksizes tend to be good (up to a point) for reducing the total amount of time a large
xmatch operation takes, but they can make it harder to see the job progressing. There is also
the danger (for ALL-type find modes) of exceeding the return size limit, which will result in
truncation of the returned result.

[Default: 50000]

cdstabl e = <val ue> (String)
Identifier of the table from the CDS crossmatch service that is to be matched against the local
table. This identifier may be the standard VizieR identifier (e.g. "I 1/ 246/ out " for the 2MASS
Point Source Catalogue) or "si nbad" to indicate SIMBAD data.

See for instance the TAPVizieR table searching facility a
http://tapvizier.u-strasbg. fr/adgl/ tofind VizieR catalogue identifiers.

conpress = true|fal se (Boolean)
If true, the service is requested to provide HTTP-level compression for the response stream
(Accept-Encoding header is set to "gzi p", see RFC 2616). This does not guarantee that
compression will happen but if the service honours this request it may result in a smaller
amount of network traffic at the expense of more processing on the server and client.

[Default: true]

dec = <expr> (String)
Declination in degrees in the ICRS coordinate system for the position of each row of the input
table. This may simply be a column name, or it may be an algebraic expression calculated
from columns as explained in Section 10. If left blank, an attempt is made to guess from
UCDs, column names and unit annotations what expression to use.

find = all|best| best-renote| each| each-di st (UserFindMode)
Determines which pair matches are included in the result.

al I - All matches

best : Matched rows, best remote row for each input row

best - r enot e: Matched rows, best input row for each remote row

each: One row per input row, contains best remote match or blank

each- di st : One row per input row, column giving distance only for best match

Note only theal I mode is symmetric between the two tables.

Note also that there is a bug in best-renot e matching. If the match is done in multiple
blocks, it's possible for a remote table row to appear matched against one local table row per
uploaded block, rather than just once for the whole result. If you're worried about that, set
bl ocksi ze >=rowCount. This may be fixed in afuture release.

[Default: al I]

fixcol s = none| dups| al | (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

* none: columns are not renamed

* dups: columns which would otherwise have duplicate names in the output will be
renamed to indicate which table they came from

e all:al columnswill be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suf fi x* parameters.
[Default: dups]

icmd = <cnds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter i n, before
any other processing has taken place. The value of this parameter is one or more of the filter

SUN/256 178

commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up alist of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifm = <in-fornmat> (String)
Specifies the format of the input table as specified by parameter i n. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <table> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using thei f nt parameter. Note that not all formats can be streamed in this way.

* A system command line with either a"<" character at the start, or a"”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream= true|false (Boolean)
If set true, the input table specified by thei n parameter will be read as a stream. It is necessary
to givethei fmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable).

[Default: f al se]

maxrec = <int-value> (Integer)
Limit to the number of rows resulting from this operation. If the value is negative (the default)
no limit is imposed. Note however that there can be truncation of the result if the number of
records returned from a single chunk exceeds the service hard limit (2,000,000 at time of
writing).

[Default: - 1]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (*;"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters

SUN/256 179

and/or semicolons.

of mt = <out-format > (String)

Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onmode = out | neta| stats|count|cgi|discard|topcat|sanp|plastic|tosql]|gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

met a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql
gui

Use the hel p=onode flag or see Section 6.4 for more information.

[Default: out]

out = <out-table> (TableConsumer)

The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

presort = true|false (Boolean)

If true, the rows are sorted by HEALPix index before they are uploaded to the CDS X-Match
service. If the match is done in multiple blocks, this may improve efficiency, since when
matching against a large remote catalogue the X-Match service likes to process requests in
which sources are grouped into a small region rather than scattered all over the sky.

Note this will have a couple of other side effects that may be undesirable: it will read all the
input rows into the task at once, which may make it harder to assess progress, and it will affect
the order of the rowsin the output table.

It is probably only worth setting true for rather large (multi-million-row?) multi-block
matches, where both local and remote catalogues are spread over a significant fraction of the
sky. But feel free to experiment.

[Default: f al se]

SUN/256 180

ra = <expr> (String)
Right ascension in degrees in the ICRS coordinate system for the position of each row of the
input table. This may simply be a column name, or it may be an algebraic expression
calculated from columns as explained in Section 10. If left blank, an attempt is made to guess
from UCDs, column names and unit annotations what expression to use.

radius = <val ue/ arcsec> (Double)
Maximum distance from the local table (ra,dec) position at which counterparts from the remote
table will be identified. This is a fixed value given in arcseconds, and must be in the range
[0,180] (thislimit is currently enforced by the CDS Xmatch service).

serviceurl = <url-val ue> (URL)
The URL at which the CDS Xmatch service can be found. Normally this should not be altered
from the default, but if other implementations of the same service are known, this parameter
can be used to access them.

[Default: htt p: // cdsxmat ch. u- st rasbg. f r/ xmat ch/ api / vi/ sync]

suffixin = <l abel > (String)
If the fixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: _i n]

suffixremote = <label > (String)
If thefixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to al renamed columns from the CDS result table.

[Default: _cds]

usemoc = true|false (Boolean)
If true, first acquire a MOC coverage map from CDS, and use that to pre-filter rows before
uploading them for matching. This should improve efficiency, but have no effect on the result.

[Default: t rue]

B.2.2 Examples

Here are some examples of cdsskynat ch:

stilts cdsskymatch cdstabl e=I1/246/out find=all
i n=dr5qgso. fits ra=RA dec=DEC radi us=1 out =gqso_2nass.fits
Matches a local catalogue dr5gso. fits against the VizieR table 117246/ out (the 2MASS
Point Source Catalogue). The search radius is 1 arcsecond, and all 2MASS sources within the
radius of each input source are returned.

stilts cdsskynmatch cdstabl e=si nbad fi nd=best
i n=sources.txt ifm=ascii ra=RAJ2000 dec=DEJ2000 radi us=8.5
bl ocksi ze=1000 i cnd=pr ogress onbde=t opcat
This finds the closest object in the SIMBAD database within 8.5 arcsec for each row of an
input ASCII table. Uploads are done in blocks of 1,000 rows at a time, and progress is
displayed on the console. When the match is complete, the result is sent directly to a running
instance of TOPCAT.

stilts cdsskymatch i n=3XMM DR4cat _slimvl.0.fits
i cnmd='sel ect "SC PCSERR < 1 && SC EXTENT == 0"'
cdst abl e=B/ nk/ nkt ypes

SUN/256 181

ra=SC_RA dec=SC DEC radi us=1.5

fi nd=best suffixi n=_XMM suffixrenote=_M fixcol s=all

ocnmd="sel ect startsWth(spType_M,\"G ")’

out=xmm gtype.fits
This locates XMM-Newton point-like sources identified as being of spectral type G. It usesthe
3XMM-DR4 XMM-Newton serendipitous source catalogue as input. The i cnd filter selects
the objects in that catalogue with well-defined point-like positions. It then matches them with
Skiff's MK spectral classification catalogue (B/mk/mktypes in VizieR) and finally filters the
result to include only those sources identified as being of spectral type G. Thanks to Ada
Nebot (CDS) for this example.

B.3 coneskymat ch: Crossmatches table on sky position against remote cone service

Note: this command is very inefficient for large tables, and in most cases cdsskymatch or
t apskymat ch provide better alternatives.

coneskymat ch is a utility which performs a cone search-like query to a remote server for each row
of an input table. Each of these queries returns a table with one row for each item held by the server
in the region of sky represented by the input row. The results of all the queries are then
concatenated into one big output table which is the output of this command.

The type of virtual observatory service queried is determined by the servicetype parameter.
Typicaly it will be a Cone Search service, which queries a remote catalogue for astronomical
objects or sources in a particular region. However, you can also query Simple Image Access and
Simple Spectral Access services in just the same way, to return tables of available image and
Spectral resources in the relevant regions.

The identity of the server to query is given by the servi ceurl parameter. Some advice about how
to locate URL s for suitable servicesis given in Appendix B.3.3.

The effect of this command is like doing a positional crossmatch where one of the catalogues is
local and the other is remote and exposes its data via a cone search/SIA/SSA service. Because of
both the network communication and the necessarily naive crossmatching algorithm (which scales
linearly with the size of the local catalogue) however, it is only suitable if the local catalogue has a
reasonably small number of rows, unless you are prepared to wait along time.

Theparal | el parameter alows you to perform multiple cone searches concurrently, so that instead
of completing the first cone search, then the second, then the third, the program can be executing a
number of them at once. This can speed up operation considerably, especially in the face of network
latency, but beware that submitting a very large number of queries ssimultaneously to the same
server may overload it, resulting in some combination of failed queries, ultimately slower runtimes,
and unpopularity with server admins. Best to start with alow parallelism and cautiously increase it
to see whether there are gains in performance.

Note that when running, coneskymat ch can generate a lot of WARNING messages. Most of these
are complaining about badly formed VOTables being returned from the cone search services.

STILTS does its best to work out what the service responses mean in this case, and usually makes a
good enough job of it.

Note: this task was known as mul ti cone in its experimental formin STILTSv1.2 and v1.3.

B.3.1 Usage

The usage of coneskymat ch isS

SUN/256 182

stilts <stilts-flags> coneskymatch ifnt=<in-format> istreanrtrue|false

i cmd=<cnds> ocnd=<cnds>
onode=out | met a| st at s| count | cgi | di scard| t opcat | sanp| pl ast
out =<out -t abl e> of mt =<out - f or mat >
ra=<expr> dec=<expr> sr=<expr/deg>
find=best|all|each usefoot=true|false
f oot nsi de=<i nt - val ue>
copycol s=<colid-1list>
scor ecol =<col - name> paral | el =<n>
erract=abort|ignore |retry|retry<n>
ostreanvtrue| fal se fixcol s=none| dups]| al
suf fi x0=<| abel > suffi x1=<| abel >
servi cet ype=cone| si a| ssa
serviceur| =<url -val ue> verb=1| 2| 3
dat af or mat =<val ue> enpt yok=true| f al se
conpress=true| fal se
[n=] <tabl e>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The avallable <stilts-flags> are listed in Section 2.1. For programmatic

invocation, the Task class for thiscommand isuk. ac. starlink. ttool s. task. Mul ti Cone.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

conpress = true|false (Boolean)
If true, the service is requested to provide HTTP-level compression for the response stream
(Accept-Encoding header is set to "gzi p", see RFC 2616). This does not guarantee that
compression will happen but if the service honours this request it may result in a smaller
amount of network traffic at the expense of more processing on the server and client.

[Default: t rue]

copycol s = <colid-list> (String)
List of columns from the input table which are to be copied to the output table. Each column
identified here will be prepended to the columns of the combined output table, and its value for
each row taken from the input table row which provided the parameters of the query which
produced it. See Section 6.3 for list syntax. The default setting is "*", which means that all
columns from the input table are included in the output.

[Default:]

dat af ormat = <val ue> (String)
Indicates the format of data objects described in the returned table. The meaning of this is
dependent on the value of the ser vi cet ype parameter:

e servicetype=cone: not used

* servicetype=sia: gives the MIME type of images referenced in the output table, also
special values "GrAPHI C" and "ALL".(value of the SIA FORMAT parameter)

* servicetype=ssa: gives the MIME type of spectra referenced in the output table, also
special values "vot abl ", "fits", "conpliant”, "graphic", "al 1", and others (value of
the SSA FORMAT parameter).

dec = <expr> (String)
Declination in degrees in the ICRS coordinate system for the position of each row of the input
table. This may simply be a column name, or it may be an algebraic expression calculated
from columns as explained in Section 10. If left blank, an attempt is made to guess from
UCDs, column names and unit annotations what expression to use.

enptyok = true|false (Boolean)
Whether the table metadata which is returned from a search result with zero rows is to be
believed. According to the spirit, though not the letter, of the cone search standard, a cone

SUN/256

183

search service which returns no data ought nevertheless to return the correct column headings.
Unfortunately this is not always the case. If this parameter is set true, it is assumed that the
service behaves properly in this respect; if it does not an error may result. In that case, set this
parameter fal se. A consequence of setting it false is that in the event of no results being
returned, the task will return no table at all, rather than an empty one.

[Default: true]

erract = abort|ignore |retry|retry<n> (ConeErrorPalicy)
Determines what will happen if any of the individual cone search requests fails. By default the
task aborts. That may be the best thing to do, but for unreliable or poorly implemented services
you may find that some searches fail and others succeed so it can be best to continue operation
in the face of afew failures. The options are:

abort : failure of any query terminates the task

i gnore : failure of aquery istreated the same as a query which returns no rows

retry: failed queries are retried until they succeed; use with care - if the failure is for
some good, or at least reproducible reason this could prevent the task from ever
completing

retry<n>: failed queries are retried at most a fixed number <n> of times If they still fail
the task terminates.

[Default: abort]

find

best| al | | each (String)

Determines which matches are retained.

best : Only the matching query table row closest to the input table row will be output.
Input table rows with no matches will be omitted. (Note this corresponds to the best 1
option in the pair matching commands, and best 1 is a permitted alias).

al | : All query table rows which match the input table row will be output. Input table rows
with no matches will be omitted.

each: There will be one output table row for each input table row. If matches are found,
the closest one from the query table will be output, and in the case of no matches, the
query table columns will be blank.

[Default: al |]

fixcol s = none| dups| al | (Fixer)
Determines how input columns are renamed before use in the output table. The choices are:

none: columns are not renamed

dups: columns which would otherwise have duplicate names in the output will be
renamed to indicate which table they came from

al | : al columnswill be renamed to indicate which table they came from

If columns are renamed, the new ones are determined by suf fi x* parameters.
[Default: dups]

footnside = <int-value> (Integer)
Determines the HEAL Pix Nside parameter for use with the MOC footprint service. This tuning
parameter determines the resolution of the footprint if available. Larger values give better
resolution, hence a better chance of avoiding unnecessary queries, but processing them takes
longer and retrieving and storing them is more expensive.

The value must be a power of 2, and at the time of writing, the MOC service will not supply
footprints at resolutions greater than nside=512, so it should be <=512.

Only used if usef oot =t r ue.

icnd = <cnds> (ProcessingStep[])

SUN/256 184

Specifies processing to be performed on the input table as specified by parameter i n, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up alist of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifm = <in-fornmat> (String)
Specifies the format of the input table as specified by parameter i n. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using thei f nt parameter. Note that not all formats can be streamed in this way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream= true|false (Boolean)
If set true, the input table specified by thei n parameter will be read as a stream. It is necessary
to givetheifmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable).

[Default: f al se]

ocmd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file filenane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ofm = <out-format> (String)
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special

SUN/256 185

value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

onpde = out| nmeta| stats|count|cgi|discard|topcat|sanp]|plastic|tosql| gui

(ProcessingMode)
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out

nmet a
stats
count
cgi

di scard
t opcat
sanp

pl astic
t osql

gui

Use the hel p=onode flag or see Section 6.4 for more information.
[Default: out]

ostream = true|fal se (Boolean)

If set true, this will cause the operation to stream on output, so that the output table is built up
as the results are obtained from the cone search service. The disadvantage of thisis that some
output modes and formats need multiple passes through the data to work, so depending on the
output destination, the operation may fail if thisis set. Use with care (or be prepared for the
operation to fail).

[Default: f al se]

out = <out-table> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
specia value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

parallel = <n> (Integer)

Allows multiple cone searches to be performed concurrently. If set to the default value, 1, the
cone query corresponding to the first row of the input table will be dispatched, when that is
completed the query corresponding to the second row will be dispatched, and so on. If set to
<n>, then queries will be overlapped in such a way that up to approximately <n> may be
running at any onetime.

Whether increasing <n> is a good idea, and what might be a sensible maximum value, depends
on the characteristics of the service being queried. In particular, setting it to too large a number
may overload the service resulting in some combination of failed queries, ultimately slower
runtimes, and unpopularity with server admins.

SUN/256 186

The maximum value permitted for this parameter by default is 10. This limit may be raised by
use of the service.maxparallel system property but use that option with great care since you
may overload services and make yourself unpopular with data centre admins. As a rule, you
should only increase this value if you have obtained permission from the data centres whose
services on which you will be using the increased parallelism.

[Default: 1]

ra = <expr> (String)
Right ascension in degrees in the ICRS coordinate system for the position of each row of the
input table. This may simply be a column name, or it may be an algebraic expression
calculated from columns as explained in Section 10. If left blank, an attempt is made to guess
from UCDs, column names and unit annotations what expression to use.

scorecol = <col - name> (String)
Gives the name of a column in the output table to contain the distance between the requested
central position and the actual position of the returned row. The distance returned is an angular
distance in degrees. If a null value is chosen, no distance column will appear in the output
table.

[Default: separ at i on]

servi cetype = cone| si a| ssa (ServiceType)
Selects the type of data access service to contact. Most commonly this will be the Cone Search
service itsalf, but there are one or two other possibilities:

* cone: Cone Search protocol - returns a table of objects found near each location. See

Cone Search standard.

* sia: Simple Image Access protocol - returns a table of images near each location. See
SIA standard.

* ssa: Simple Spectral Access protocol - returns a table of spectra near each location. See
SSA standard.

[Default: cone]

serviceurl = <url-val ue> (URL)
The base part of a URL which defines the queries to be made. Additional parameters will be
appended to this using CGI syntax ("nane=val ue”, separated by '&"' characters). If this value
doesnot end in either a'? or a'&"', one will be added as appropriate.

See Appendix B.3.3 for discussion of how to locate service URLSs corresponding to given
datasets.

sr = <expr/deg> (String)
Expression which evaluates to the search radius in degrees for the request at each row of the
input table. This will often be a constant numerical value, but may be the name or ID of a
column in the input table, or afunction involving one.

suffix0 = <label > (String)
If thefixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to all renamed columns from the input table.

[Default: 0]

suffixl = <label > (String)
If thefixcol s parameter is set so that input columns are renamed for insertion into the output
table, this parameter determines how the renaming is done. It gives a suffix which is appended
to al renamed columns from the cone result table.

[Default: _1]
usefoot = truelfalse (Boolean)

SUN/256 187

Determines whether an attempt will be made to restrict searches in accordance with available
footprint information. If this is set true, then before any of the per-row queries are performed,
an attempt may be made to acquire footprint information about the servce. If such information
can be obtained, then queries which fall outside the footprint, and hence which are known to
yield no results, are skipped. This can speed up the search considerably.

Currently, the only footprints available are those provided by the CDS MOC (Multi-Order
Coverage map) service, which covers VizieR and afew other cone search services.

[Default: t rue]

verb = 1] 2|3 (String)
Verbosity level of the tables returned by the query service. A vaue of 1 indicates the bare
minimum and 3 indicates all available information.

B.3.2 Examples

Here are some examples of coneskymat ch:

stilts coneskymatch serviceurl =http://archive. stsci.edu/ hst/search. php \
i n=nessi er.xm sr=0.05 out=mat ches. xm
This queries the HST cone search service from Space Telescope for records within .05 degrees
of each Messier object contained in alocal VOTable nessi er. xm . The sky positions in the
input catalogue are guessed from the available table metadata. The result is written to a new
VOTable, mat ches. xm . Since the servi cet ype parameter is not given, the default (cone
search) servicetypeis assumed.

stilts coneskymatch

servi cetype=sia \

serviceurl=http://irsa.ipac. caltech. edu/cgi-bin/ 2MASS/ | M nph-i m si a?t ype=ql &ds=asky

i n=nessi er.xm ra=RA dec=DEC \

dat af or mat =i mage/fits \

out =fi t si mages. xm
Thisis similar to the previous example, but instead of querying an HST cone search server for
catalogue objects near the input table positions, it queries a 2MASS Simple Image Access
(SIA) server for images. It also explicitly names the columns holding the J2000 positions of
reach record in the input catalogue as RA and DEC. The search radius parameter (sr) is not set
here; for SIA queries the default search radius is zero, which has the specia meaning of
including any image which covers the requested position. Setting dat af or mat =i mage/ fits
(which is the default) requests only records describing FITS-format images to be returned;
setting it to an empty value might return other formats such as JPEG too.

stilts coneskymatch \
servi ceurl =" http://ww. nofs. navy. m|/cgi-bin/vo_cone. cgi ?CAT=NOVAD \
i n=vi zi er.xm #7 \
i cmd=" addskycoords -inunit sex fk4 fk5 RAB1950 DEB1950 RAJ2000 DEJ2000' \
i cnd=' progress'
ra=RAJ2000 dec=DEJ2000 sr=0.01 \
ocnd='repl acecol -units deg RA hnmsToDegrees(RA[0], RA[1], RA[2])" \
ocnd='repl acecol -units deg DEC dnsToDegrees(DEC] 0], DEC] 1], DEC[2])" \
onode=t opcat

In this example some pre-processing of the input catalogue and post-processing of the output
catalogue is performed as well as the multiple cone search itself.

The input catalogue, which is the 8th TABLE element in a VOTable file, contains sky
positions in sexagesimal FK4 (B1950) coordinates. The i cnd=addskycoords. .. parameter
specifies a filter which will add new columns in FK5 (J2000) degrees, which are what the
coneskymat ch command requires. The i cnd=pr ogr ess parameter specifies a filter which will

SUN/256 188

write progress information to the terminal so you can see how the queries are progressing.

The NOMAD service specified by the serviceurl parameter used here happens to return
results with the RA/DEC columns represented in a rather eccentric format, namely 3-element
floating point arrays representing (hours,minutes,seconds)/(degrees,minutes,seconds). The two
ocmd=r epl acecol . .. filters replace the values of these columns with the scalar equivalents in
degrees. Finally, the onode=t opcat parameter causes the result table to be loaded directly into
TOPCAT (if itisavailable).

stilts coneskymatch serviceurl =" http://archive.stsci.edu/iuel/search. php? \

i n=queries.txt ifnt=ascii \

ra=' $1' dec=' $2' \

sr='$3" copycol s=" $4' \

out=found.fits
Here the input is a plain text table with four unnamed columns, giving in order the right
ascension, declination, positional error and name of target objects. The command carries out a
cone search to the named service for each one. Note in this case the search radius (sr
parameter) is taken from the table and so varies for each query. The copycol s parameter has
the value '$4', which means that the value of the fourth column of the input table will be
prepended to each row of the output table for which it isresponsible. Output isto a FITS table.

B.3.3 Locating Cone Query Service URLs

To use the coneskymat ch command you need the service URL (also known as the base URL or
access URL) of a cone search, SIA or SSA service to use. If you know one of these representing a
service that you wish to use, you can useit directly.

If you don't, you will need to find the URL from somewhere. It isthe job of the Virtual Observatory
Registry to keep arecord of where you can find various astronomical services, so thisis where you
should look.

There are various ways you can interrogate the registry; the easiest is probably to use a graphical
registry search tool. One such tool is AstroGrid's VOExplorer, which alows you to perform
sophisticated searches for cone search, SIA or SSA services. Another option isto use TOPCAT; the
Cone Search, SIA and SSA load dialogues alow you to search the registry for these services prior
to performing a query; you can just use the registry part and cut'n'paste the URL which is shown.

Other registry querying tools are available, including STILTSS regquery (Appendix B.15)
command. See that section of the manua for details, but for instance to locate registered Cone
Search services which have something to do with SDSS data, you could execute the following:

stilts regquery query="capability/ @tandardlD = "ivo://ivoa.net/std/ ConeSearch' and title
ocnd="keepcol s ' short Nane AccessUr|"'" \
of nt =asci I
Writing just query="capability/ @tandardiD = 'ivo://ivoa.net/std/ ConeSearch' " with no

further qualification would give you all registered cone search services.

B.4 funcs: Browses functions used by algebraic expression language

funcs is a utility which allows you to browse the functions you can use in STILTS's algebraic
expression language. Invoking the command causes a window to pop up on the display with two
parts. The left hand panel contains a tree-like representation of the functions available - the top level
shows the classes (categories) into which the functions are divided, and if you open these up (by
double clicking on them) each contains alist of functions and constants in that class. If you click on
any of these classes or their constituent functions or constants, a full descritption of what they are

SUN/256 189

and how to use them will appear in the right hand panel.

The information available from this command is the same as that given in Section 10.5, but the
graphical browser may be a more convenient way to view the documentation. There are no
parameters.

B.4.1 Usage
The usage of f uncs is

stilts <stilts-flags> funcs

If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -
see Section 3. The avallable <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for thiscommand isuk. ac. starl i nk. tt ool s. t ask. ShowFunct i ons.

Thistask has no parameters.

B.5 pi xf oot : Generates M ulti-Order Cover age maps

pi xf oot takesalist of sky positions from an input table and generates a pixel map describing a sky
region which includes them all. Currently the output is to a format known as a Multi-Order
Coverage map (MOC), which is a HEAL Pix-based format composed of alist of HEALPix pixels of
different sizes, which can efficiently describe complex regions. Other output formats may be
introduced in the future.

See also the Coverage class for MOC-related functions.

B.5.1 Usage
The usage of pi xf oot IS

stilts <stilts-flags> pixfoot ifnt=<in-format> istreanrtrue|false
i cmd=<cnds> order =<i nt - val ue> r a=<expr>
dec=<expr> radi us=<expr> nocfnt=fits|ascii
out =<out -fil e>
[in=] <t abl e>
If you don't have the stilts script installed, write"java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic

invocation, the Task class for thiscommand iSuk. ac. starlink. ttool s. t ask. Pi xFoot pri nt.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

dec = <expr> (String)
Declination in degrees for the position of each row of the input table. This may smply be a
column name, or it may be an algebraic expression calculated from columns as explained in
Section 10. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

icmd = <cnds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter i n, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up alist of processing steps. The sequence of commands given in this

SUN/256 190

way defines the processing pipeline which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifm = <in-fornmat> (String)
Specifies the format of the input table as specified by parameter i n. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your table isin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

* Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using thei f nt parameter. Note that not all formats can be streamed in this way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

istream= true|false (Boolean)
If set true, the input table specified by thei n parameter will be read as a stream. It is necessary
to givethei fmt parameter in this case. Depending on the required operations and processing
mode, this may cause the read to fail (sometimes it is necessary to read the table more than
once). It is not normally necessary to set this flag; in most cases the data will be streamed
automatically if that is the best thing to do. However it can sometimes result in less resource
usage when processing large files in certain formats (such as VOTable).

[Default: f al se]

mocfmt = fits|ascii (MocFormat)
Determines the output format for the MOC file.
[Default: fits]

order = <int-value> (Integer)
Maximum HEALPix order for the MOC. This defines the maximum resolution of the output
coverage map. The angular resolution corresponding to order k is approximately
180/sgrt(3.Pi)/27k (3520* 2"-k arcmin).

[Default: 13]

out = <out-file> (uk.ac.starlink.util.Destination)
The location of the output file. Thisis usualy afilename to write to. If it is equal to the special
value"-" the output will be written to standard output.

[Default: -]

ra = <expr> (String)
Right ascension in degrees for the position of each row of the input table. This may ssimply be
a column name, or it may be an algebraic expression calculated from columns as explained in
Section 10. If left blank, an attempt is made to guess from UCDs, column names and unit
annotations what expression to use.

SUN/256 191

radius = <expr> (String)
Expression which evaluates to the radius in degrees of the cone at each row of the input table.
The default is"0", which treats each position as a point rather than a cone, but a constant or an
expression as described in Section 10 may be used instead.

[Default: 0]

B.5.2 Examples

Here are some examples of pi xf oot :

stilts pixfoot in=survey.vot order=8 nocfnt=fits out=sfoot.fits

Generates an order-8 FITS MOC file from the point positions of rows in the given VOTable.
The columns representing sky position are determined automatically (if possible) by
examining the metadata in the input table.

stilts pixfoot in="jdbc:mysql://|ocal host/astrol#SELECT * FROM first1l'

i cnd=" addskycoords galactic icrs GLON GLAT ALPHA DELTA

ra=ALPHA dec=DELTA radi us=20./3600.

order=13 nocfm=fits out=first.noc
Generates an order-13 FITS MOC file from positions in a table held in a database. The
positions in the original table are in galactic coordinates, so have to be converted to equatorial
(ICRS) first. The map is formed in this case by surrounding each point by a disc of 20 arcsec.
Note that JDBC database access will have to be set up as per Section 3.4 for this command to
work.

B.6 pi xsanpl e: Samplesfrom a HEAL Pix pixel datafile

pi xsanpl e samples data at the sky position represented by each row from an all-sky map contained
in a HEALPix-format pixel data file. Such files are actually tables (usually in FITS format) in
which the row number corresponds to a HEALPix pixel index, and the pixel values are cell
contents; one or more columns may be present containing values for one or more all-sky maps. The
result of this command is to add a column to the input table representing the pixel data at the
position of each input row for each of the data columnsin the HEALPix table.

This command does not attempt to convert between coordinate systems except as instructed, so it is
important to know what coordinate system the HEALPix fileisin, and ensure that the coordinates
supplied from the input table match this. Y ou may need to examine the documentation or headers of
the HEALPix filein question to find out. See the Examples section for some examples.

There is a choice of how the sampling is done; the simplest way is just to use the value of the pixel
covering the indicated position. An alternative is to average over a disc of given radius (perhaps a
function of the input row). Other options (e.g. max/min) could easily be added.

Although HEALPix is not a common format for storing image data in general, it is used for storing
a number of important all-sky data sets such as the WMAP results and Schlegel dust maps. The
NASA LAMBDA (http://lambda.gsfc.nasa.gov/) (Legacy Archive for Microwave Background Data
Anaysis) archive has a number of maps in a suitable format, including foreground data like
predicted reddening as well as CMB maps.

B.6.1 Usage

The usage of pi xsanpl e IS

SUN/256 192

stilts <stilts-flags> pixsanple in=<table> ifnt=<in-format> i cnd=<cnds>

pi xdat a=<pi x-t abl e> pfnt =<i n-f or mat >
pcnd=<cnds> ocnd=<cnds>
onode=out | net a| st at s| count | cgi | di scard]|topcat | sanp| pl astic
out =<out - t abl e> of mt =<out - f or nat >
pi xor der =nest ed| ri ng| (aut 0) stat =poi nt| mean
| on=<expr> | at =<expr >
i nsys=icrs|fk5|fk4| gal actic|supergal actic|ecliptic
pi xsys=i crs| fk5| f k4| gal actic| supergal actic|ecliptic
radi us=<expr>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -

see Section 3. The avalable <stilts-flags> are listed in Section 2.1. For programmatic

invocation, the Task class for thiscommand isuk. ac. starl i nk. ttool s. t ask. Pi xSanpl e.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

icmd = <cnds> (ProcessingStep[])
Specifies processing to be performed on the input table as specified by parameter i n, before
any other processing has taken place. The value of this parameter is one or more of the filter
commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up alist of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alteratively be supplied in an externa file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

ifm = <in-format> (String)
Specifies the format of the input table as specified by parameter i n. The known formats are
listed in Section 5.2.1. This flag can be used if you know what format your tableisin. If it has
the special value (aut o) (the default), then an attempt will be made to detect the format of the
table automatically. This cannot always be done correctly however, in which case the program
will exit with an error explaining which formats were attempted.

[Default: (aut o)]

in = <tabl e> (StarTable)
The location of the input table. This may take one of the following forms:

o Afilename.

 AURL.

* The special value "-", meaning standard input. In this case the input format must be given
explicitly using thei f mt parameter. Note that not all formats can be streamed in this way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

insys = icrs|fk5|fk4|gal actic|supergal actic|ecliptic (SkySystem)
Specifies the sky coordinate system in which sample positions are provided by the | on/l at
parameters. If the sample positions are given in the same coordinate system as that given by
the pixel datatable, both thei nsys and pi xsys parameters may be set nul I .

The available coordinate systems are:
* icrs: ICRS (Hipparcos) (Right Ascension, Declination)

SUN/256 193

f k5: FK5 J2000.0 (Right Ascension, Declination)

f k4: FK4 B1950.0 (Right Ascension, Declination)

gal acti c: IAU 1958 Galactic (Longitude, L atitude)

super gal acti c: de Vaucouleurs Supergalactic (Longitude, Latitude)
ecliptic: Ecliptic (Longitude, L atitude)

lat = <expr> (String)
Expression which evaluates to the latitude coordinate in degrees in the input table at which
positions are to be sampled from the pixel datatable. Thiswill usually be the name or ID of a
column in the input table, or an expression involving one. If this coordinate does not match the
coordinate system used by the pixel data table, both coordinate systems must be set using the
i nsys and pi xsys parameters.

|l on = <expr> (String)
Expression which evaluates to the longitude coordinate in degrees in the input table at which
positions are to be sampled from the pixel datatable. Thiswill usually be the name or ID of a
column in the input table, or an expression involving one. If this coordinate does not match the
coordinate system used by the pixel data table, both coordinate systems must be set using the
i nsys and pi xsys parameters.

ocnd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the output table, after all other processing has taken
place. The value of this parameter is one or more of the filter commands described in Section
6.1. If more than one is given, they must be separated by semicolon characters (";"). This
parameter can be repeated multiple times on the same command line to build up a list of
processing steps. The sequence of commands given in this way defines the processing pipeline
which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

of m = <out-format> (String)
Specifies the format in which the output table will be written (one of the onesin Section 5.2.2 -
matching is case-insensitive and you can use just the first few letters). If it has the special
value "(aut o) " (the default), then the output filename will be examined to try to guess what
sort of fileisrequired usually by looking at the extension. If it's not obvious from the filename
what output format is intended, an error will result.

This parameter must only be given if onode has its default value of "out ".
[Default: (aut o)]

omode = out | neta| stats|count|cgi|discard|topcat|sanp|plastic|tosql]|gui
(ProcessingMode)
The mode in which the result table will be output. The default mode is out , which means that
the result will be written as a new table to disk or elsewhere, as determined by the out and
of mt parameters. However, there are other possibilities, which correspond to uses to which a
table can be put other than outputting it, such as displaying metadata, calculating statistics, or
populating a table in an SQL database. For some values of this parameter, additional
parameters (<mode- ar gs>) are required to determine the exact behaviour.

Possible values are

out
met a
stats
count

cgi

SUN/256 194

di scard

t opcat

sanmp

pl astic

t osql

gui

Use the hel p=onode flag or see Section 6.4 for more information.

[Default: out]

out = <out-tabl e> (TableConsumer)
The location of the output table. This is usually a filename to write to. If it is equal to the
special value "-" (the default) the output table will be written to standard output.

This parameter must only be given if onode has its default value of "out ".
[Default: -]

pcmd = <cmids> (ProcessingStep[])
Specifies processing to be performed on pixel data table as specified by parameter pi xdat a,
before any other processing has taken place. The value of this parameter is one or more of the
filter commands described in Section 6.1. If more than one is given, they must be separated by
semicolon characters (";"). This parameter can be repeated multiple times on the same
command line to build up alist of processing steps. The sequence of commands given in this
way defines the processing pipeline which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

pfm = <in-fornmat> (String)
File format for the HEALPix pixel datatable. Thisis usually, but not necessarily, FITS.

[Default: fits]

pi xdata = <pi x-t abl e> (StarTable)
The location of the table containing the pixel data. The data must be in the form of a HEALPix
table, with one pixel per row in HEALPix order. These files are typically, but not necessarily,
FITStables. A filename or URL may be used, but alocal file will be more efficient.

Some HEALPix format FITS tables seem to have rows which contain 1024-element arrays of
pixels instead of single pixel values. This (rather perverse?) format is not currently supported
here, but if there is demand support could be added.

pi xorder = nested|ring| (auto) (HealpixScheme)
Selects the pixel ordering scheme used by the pixel data file. There are two different ways of
ordering pixelsin a HEALPix file, "ring" and "nested", and the sampler needs to know which
oneisin use. If you know which is in use, choose the appropriate value for this parameter; if
(aut o) isused it will attempt to work it out from headers in the file (the ORDERING header).
If no reliable ordering scheme can be determined, the command will fail with an error.

[Default: (aut o)]

pi xsys = icrs|fk5|fk4|gal actic|supergal actic|ecliptic (SkySystem)
Specifies the sky coordinate system used for the HEALPix data in the pixdata file. If the
sample positions are given in the same coordinate system as that given by the pixel data table,
both thei nsys and pi xsys parameters may be set nul | .

The available coordinate systems are:

* icrs:ICRS (Hipparcos) (Right Ascension, Declination)
e fk5: FK5J2000.0 (Right Ascension, Declination)

SUN/256 195

f k4: FK4 B1950.0 (Right Ascension, Declination)

gal acti c: IAU 1958 Galactic (Longitude, L atitude)

super gal acti c: de Vaucouleurs Supergalactic (Longitude, Latitude)
ecliptic: Ecliptic (Longitude, L atitude)

radius = <expr> (String)
Determines the radius in degrees over which pixels will be sampled to generate the output
statistic in accordance with the value of the st at parameter. This will typically be a constant
value, but it may be an algebraic expression based on columns from the input table.

Not used if st at =poi nt .

stat = point|nean (StatMode)
Determines how the pixel values will be sampled to generate an output value. The options are:

* point: Usesthe value at the pixel covering the supplied position. In this case the r adi us
parameter is not used.

* nmean: Averages the values over al the pixels within a radius given by the radi us
parameter. This averaging is somewhat approximate; all pixels which are mostly within
the radius are averaged with equal weights.

[Default: poi nt]

B.6.2 Examples

Here are some examples of pi xsanpl e:

stilts pixsanple in=szdata.fits pixdata=wrap_ilc_7yr_v4.fits

| at =GAL_LAT | on=GAL_LON pcnd=" keepcol s TEMPERATURE'

out =szdata cnb.fits
Samples from a HEALPix file containing WMAP data are added to an input file szdata. fits,
giving an output file szdata_cnb. fits which is the same but with an additional column
TEMPERATURE. The sampling is done using the default statistical mode poi nt , which just takes a
point sample at the input position. The HEALPix file must have its pixels ordered using
galactic coordinates, since that is the coordinate system available from the input table.

The pixdata file used here can be found (at time of writing) at
http://lambda.gsfc.nasa.gov/data/map/dr4/dfp/ilc/iwmap_ilc_7yr_vA.fits (24 Mbyte).

stilts pixsanpl e in=nessier.xm pixdata=lanbda_sfd_ebv.fits

st at =nean radi us=5./60.

i nsys=i crs pi xsys=gal actic | on=RA2000 | at =DEC2000
Samples data from a HEALPix table, averaging over a sampling radius of 5 arcmin. The
coordinates in the input table are only available as ICRS (RA,Dec) coordinates, and the
arrangement of the HEALPix pixels in the pixel data file uses galactic coordinates (you can
only determine this by looking at the FITS headers or documentation of that file), so it is
necessary to use thei nsys and pi xsys parameters for conversion.

The pixdata file used here can be found (at time of writing) at
http://lambda.gsfc.nasa.gov/data/foregrounds/SFD/lambda_sfd_ebv.fits (25 Mbyte).

B.7 pl ot 2pl ane: Draws a plane plot

pl ot 2pl ane draws plots on a Cartesian 2-dimensional surface.

SUN/256 196

Positional coordinates are specified asx, y pairs, e.g.:

pl ot 2pl ane | ayerl1=mark i nl=cat.fits x1=RMAG y1=RNMAG BNAG

Content is added to the plot by specifying one or more plot layers using the | ayer N parameter. The
N part is a suffix applied to all the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: mark (Section 8.3.1), si ze
(Section 8.3.2), sizexy (Section 8.3.3), xyvector (Section 8.3.4), xyerror (Section 8.3.5),
xyel | i pse (Section 8.3.6), Iink2 (Section 8.3.7), mark2 (Section 8.3.8), Iine (Section 8.3.9),
linearfit (Section 8.3.10), | abel (Section 8.3.11), contour (Section 8.3.12), density (Section
8.3.13), hi st ogr am(Section 8.3.14), kde (Section 8.3.15), knn (Section 8.3.16), densogr am(Section
8.3.17), functi on (Section 8.3.18).

B.7.1 Usage
The usage of pl ot 2pl ane is

stilts <stilts-flags> plot2pl ane xpi x=<i nt-val ue> ypi x=<i nt -val ue>

i nset s=<t op>, <l eft >, <bottonvp, <ri ght >

onmode=swi ng| out | cgi | di scard]| aut o

st or age=si npl e| cache| basi c- cache

seq=<suffix>[,...] legend=true|false

| egborder=true|fal se | egopaque=true|false

| egpos=<xfrac>, <yfrac>

| egseq=<suffix>[,...] title=<val ue>
| asma| . .
lip=true|false

auxmap=i nf er no| magma| p
auxcl i p=<I 0>, <hi > auxf
auxquant =<nunber >
auxfunc=l og| li near|sqrt|square

auxm n=<nunber > auxmax=<nunber >

auxl abel =<t ext > auxcr owd=<f act or >

auxvi si bl e=true| fal se

forcebi tmap=true|fal se conpositor=0..1

ani mat e=<t abl e> af nt =<i n-f or mat >
astreanrtrue| fal se acnd=<cnds>

paral | el =<i nt -val ue> x|l og=true|fal se

yl og=true|fal se xflip=true|false
yflip=true|fal se x| abel =<t ext >

yl abel =<t ext > aspect =<nunber >
grid=true|fal se xcrowd=<nunber >
ycrowd=<nunber > m nor=true|fal se

gri dcol or =<rrggbb>| red| bl ue| ..

| abel col or=<rrggbb>| red| bl ue| ..
texttype=pl ai n| anti al i as| | at ex

font si ze=<i nt - val ue>
fontstyl e=st andard| seri f| nono

fontwei ght=pl ain|bold|italic|bold_italic

xm n=<nunber > xmax=<nunber > xsub=<| 0>, <hi >
ym n=<nunber > ymax=<nunber > ysub=<I| 0>, <hi >
navaxes=xy| x| y xanchor=true|fal se

yanchor =true| f al se zoonf act or =<nunber >

| egl abel N=<t ext >

| ayer N=<| ayer -type> <l ayer N-speci fi c- parans>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The avallable <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk. ac.starlink.ttools.plot2.task. Pl anePl ot 2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

acnd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter

SUN/256 197

ani mat e, before any other processing has taken place. The value of this parameter is one or
more of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (';"). This parameter can be repeated multiple times on the
same command line to build up alist of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane” causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

afmt = <in-formt> (String)
Specifies the format of the animation control table as specified by parameter ani mate. The
known formats are listed in Section 5.2.1. This flag can be used if you know what format your
table is in. If it has the special value (aut o) (the default), then an attempt will be made to
detect the format of the table automatically. This cannot always be done correctly however, in
which case the program will exit with an error explaining which formats were attempted.

[Default: (aut o)]

ani mte = <tabl e> (StarTable)
If not null, this parameter causes the command to create a sequence of plots instead of just one.
The parameter value is a table with one row for each frame to be produced. Columns in the
table are interpreted as parameters which may take different values for each frame; the column
name is the parameter name, and the value for a given frame is its value from that row.
Animating like this is considerably more efficient than invoking the STILTS command in a
loop.

The location of the animation control table. This may take one of the following forms:

o Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the af nt parameter. Note that not all formats can be streamed in this way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

aspect = <nunber> (Double)
Ratio of the unit length on the X axisto the unit length on the Y axis. If set to 1, the space will
be isotropic. If not set (the default) the ratio will be determined by the given or calculated data
bounds on both axes and the shape of the plotting region.

astream = true|false (Boolean)
If set true, the animation control table specified by the ani mat e parameter will be read as a
stream. It is necessary to give the af mt parameter in this case. Depending on the required
operations and processing mode, this may cause the read to fail (sometimes it is necessary to
read the table more than once). It is not normally necessary to set this flag; in most cases the
data will be streamed automatically if that is the best thing to do. However it can sometimes
result in less resource usage when processing large files in certain formats (such as VOTable).

[Default: f al se]

auxclip = <lo> <hi> (Subrange)
Defines a subrange of the colour ramp to be used for Aux shading. The is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0, 1 (the default) is used, the whole range of colours specified by the selected
shader will be used. But if, for instance avalue of 0, 0. 5 is given, only those colours at the left

SUN/256 198

hand end of the ramp will be seen.
[Default: o, 1]

auxcrowd = <factor> (Double)
Determines how closely the tick marks are spaced on the Aux axis, if visible. The default value
is 1, meaning normal crowding. Larger values result in more ticks, and smaller values fewer
ticks. Tick marks will not however be spaced so closely that the labels overlap each other, so
to get very closely spaced marks you may need to reduce the font size as well.

[Default: 1. 0]

auxflip = true|fal se (Boolean)
If true, the colour map on the Aux axis will be reversed.

[Default: f al se]

auxfunc = log|linear|sqrt|square (Scaling)
Defines the way that values in the Aux range are mapped to the selected colour ramp.

The available options are;

| og: Logarithmic scaling
l'i near : Linear scaling
sqrt : Square root scaling
squar e: Square scaling

[Default: Ii near]

aux| abel = <text> (String)
Sets the label used to annotate the aux axis, if itisvisible.

auxmap = inferno| magma| pl asma| . . . (Shader)
Color map used for Aux axis shading.

A mixed bag of colour ramps are available: i nf erno, nagma, pl asma, viridis, cubeheli x,
sron, rai nbow, rai nbow2, rai nbow3, pastel, accent, gnupl ot, gnupl ot 2, specxby, set1,
pai red, hotcold, rdbu, piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, Iight,
greyscal e, col our, st andar d, bugn, bupu, orrd, pubu, purd, huecl , hue,intensity, rgb_red,
rgb_green, rgb_bl ue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scal e_hsv_s, scal e_hsv_v,
scal e_yuv_y, mask, blacker, whiter, transparency. Note. many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

[Default: i nf er no]

auxmax = <nunber> (Double)
Maximum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxmin = <nunber> (Double)
Minimum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxquant = <nunber> (Double)
Allows the colour map used for the Aux axis to be quantised. If an integer value N is chosen
then the colour map will be viewed as N discrete evenly-spaced levels, so that only N different
colours will appear in the plot. This can be used to generate a contour-like effect, and may
make it easier to trace the boundaries of regions of interest by eye.

If 1eft blank, the colour map is nominally continuous (though in practice it may be quantised to
amedium-sized number like 256).

auxvisible = true|false (Boolean)
Determines whether the aux axis colour ramp is displayed alongside the plot.

SUN/256 199

If not supplied (the default), the aux axis will be visible when aux shading is used in any of the
plotted layers.

conpositor = 0..1 (Compositor)
Defines how multiple overplotted partially transparent pixels are combined to form a resulting
colour. The way thisis used depends on the details of the specified plot.

Currently, this parameter takes a "boost" value in the range 0..1. If the value is zero, saturation
semantics are used: RGB colours are added in proporition to their associated a pha value until
the total alphais saturated (reaches 1), after which additional pixels have no further effect. For
larger boost values, the effect is similar, but any non-zero alpha in the output is boosted to the
given minimum value. The effect of this is that even very dlightly populated pixels can be
visually distinguished from unpopulated ones which may not be the case for saturation
composition.

[Default: 0. 05]

fontsize = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyl e = standard| serif|mono (FontType)
Font style for text.

The available options are:

. st andar d
. serif
. nono

[Default: st andar d]

fontwei ght = plain|bold|litalic|bold_italic (FontWeight)
Font weight for text.

The available options are:

e plain

* bold

e talic

e bold.italic
[Default: pl ai n]

forcebitmap = true|false (Boolean)

This option only has an effect when writing output to vector graphics formats (PDF and
PostScript). If set t rue, the data contents of the plot are drawn as a pixel map embedded into
the output file rather than plotting each point in the output. This may make the output less
beautiful (round markers will no longer be perfectly round), but it may result in a much smaller
fileif there are very many data points. Plot annotations such as axis labels will not be affected
- they are dill drawn as vector text. Note that in some cases (e.g. shadi ngN=auto Of
shadi ngN=densi ty) thiskind of pixellisation will happen in any case.

[Default: f al se]

grid = true|false (Boolean)
If true, grid lines are drawn on the plot at positions determined by the major tick marks. If
false, they are absent.

[Default: f al se]

gridcol or = <rrggbb>|red| bl ue|... (Color)
The color of the plot grid.

SUN/256 200

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, nagenta, cyan, orange, pi nk, yel |l ow, bl ack,
ight_grey,white.

[Default: 1'i ght _grey]

insets = <top>, <l eft>, <bottone, <ri ght> (Insets)
Defines the amount of space in pixels around the actual plotting area. This space is used for
axis labels, and other decorations and any |eft over forms an empty border.

The size and position of the actual plotting area is determined by this parameter along with
xpi x and ypi x. If no value is set (the default), the insets will be determined automatically
according to how much space is required for |abels etc.

| abel col or = <rrggbb>|red| bl ue|... (Color)
The color of axislabels and other plot annotations.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are cunenﬂy red, blue, green, grey, nmagenta, cyan, orange, pi nk, yel |l ow, bl ack
[ight_grey,white.

[Default: bl ack]

| ayer N = <l ayer-type> <l ayer N-speci fi c- par anms> (LayerType)
Selects one of the available plot types for layerN. A plot consists of a plotting surface, set up
using the various unsuffixed parameters of the plotting command, and zero or more plot layers.
Each layer is introduced by a parameter with the name | ayer <N> where the suffix "<n>" is a
label identifying the layer and is appended to all the parameter names which configure that
layer. Suffixes may be any string, including the empty string.

This parameter may take one of the following values, described in more detail in Section 8.3:

mark (Section 8.3.1)

size (Section 8.3.2)

si zexy (Section 8.3.3)
xyvector (Section 8.3.4)
xyerror (Section 8.3.5)
xyel l'i pse (Section 8.3.6)
link2 (Section 8.3.7)

mar k2 (Section 8.3.8)

line (Section 8.3.9)
linearfit (Section 8.3.10)
| abel (Section 8.3.11)
contour (Section 8.3.12)
density (Section 8.3.13)
hi st ogram (Section 8. 3. 14)
kde (Section 8. 3.15)

knn (Section 8.3.16)
densogram (Section 8.3.17)
function (Section 8.3.18)

Each of these layer types comes with a list of type-specific parameters to define the details of
that layer, including some or al of the following groups:

* input table parameters (e.g. i nN, i cdN)

» coordinate params referring to input table columns (e.g. xN, yN)

* layer style parameters (e.g. shadi ngN, col or N)

Every parameter notionally carries the same suffix N. However, if the suffix is not present, the

SUN/256 201

application will try looking for a parameter with the same name with no suffix instead. In this
way, if several layers have the same value for a given parameter (for instance input table), you
can supply it using one unsuffixed parameter to save having to supply several parameters with
the same value but different suffixes.

| egborder = true|false (Boolean)
If true, aline border is drawn around the legend.

[Default: t rue]

| egend = true|fal se (Boolean)
Whether to draw alegend or not. If no value is supplied, the decision is made automatically: a
legend is drawn only if it would have more than one entry.

| egl abel N = <t ext > (String)
Sets the presentation label for the layer with a given suffix. Thisis the text which is displayed
in the legend, if present. Multiple layers may use the same label, in which case they will be
combined to form asingle legend entry.

If no valueis supplied (the default), the suffix itself is used as the label.

| egopaque = true|fal se (Boolean)
If true, the background of the legend is opague, and the legend obscures any plot components
behind it. Otherwise, it's transparent.

[Default: t rue]

| egpos = <xfrac>, <yfrac> (doubl€l])
Determines the position of the legend on the plot, if present. The value is a comma-separated
pair of values giving the X and Y positions of the legend within the plotting bounds, so for
instance "0. 5, 0. 5" will put the legend right in the middle of the plot. If no value is supplied,
the legend will appear outside the plot boundary.

legseq = <suffix>[,...] (String[])
Determines which layers are represented in the legend (if present) and in which order they
appear. The legend has aline for each layer label (as determined by the | egl abel N parameter).
If multiple layers have the same |abel, they will contribute to the same entry in the legend, with
style icons plotted over each other. The value of this parameter is a sequence of layer suffixes,
which determines the order in which the legend entries appear. Layers with suffixes missing
from thislist do not show up in the legend at all.

If no value is supplied (the default), the sequence is the same as the layer plotting sequence
(seeseq).

mnor = true/false (Boolean)
If true, minor tick marks are painted along the axes as well as the major tick marks. Minor tick
marks do not have associated grid lines.

[Default: t rue]

navaxes = xy| x|y (boolean[])
Determines the axes which are affected by the interactive navigation actions (pan and zoom).
The default is xy, which means that the various mouse gestures will provide panning and
zooming in both X and Y directions. However, if it is set to (for instance) x then the mouse
will only allow panning and zooming in the horizontal direction, with the vertical extent fixed.

[Default: xy]

onpde = swi ng| out| cgi | di scard| auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

* swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plotsin TOPCAT.

SUN/256 202

* out: Plot will bewritten to afile given by out using the graphics format given by of nt .

* cgi: Plot will be written in a way suitable for CGI use direct from a web server. The
output is in the graphics format given by of nt, preceded by a suitable "Content-type"
declaration.

* discard: Plotisdrawn, but discarded. There is no output.

* auto: Behavesasswi ng or out mode depending on presence of out parameter

[Default: aut o]

paral lel = <int-value> (Integer)
Determines how many threads will run in parallel if animation output is being produced. Only
used if the ani mate parameter is supplied. The default value is the number of processors
apparently available to the VM.

[Default: 8]

seq = <suffix>[,...] (String[])
Contains a comma-separated list of layer suffixes to determine the order in which layers are
drawn on the plot. This can affect which symbol are plotted on top of, and so potentialy
obscure, which other ones.

When specifying a plot, multiple layers may be specified, each introduced by a parameter
| ayer <N>, where <N> is a different (arbitrary) suffix labelling the layer, and is appended to all
the parameters specific to defining that layer.

By default the layers are drawn on the plot in the order in which the | ayer * parameters appear
on the command line. However if this parameter is specified, each comma-separated element is
interpreted as a layer suffix, giving the ordered list of layers to plot. Every element of the list
must be a suffix with a corresponding | ayer parameter, but missing or repeated elements are
allowed.

storage = sinpl e| cache| basi c- cache (DataStoreFactory)
Determines the way that data is accessed when constructing the plot. There are two basic
options, cached or not.

If no caching is used (si npl e) then rows are read sequentially from the specified input table(s)
every time they are required. This generally requires a small memory footprint (though that
can depend on how the table is specified) and makes sense if the data only needs to be scanned
once or perhapsif the tableisvery large.

If caching is used (cache) then the required data is read once from the specified input table(s)
and cached before any plotting is performed, and plots are done using this cached data. This
may use a significant amount of memory for large tables but it's usually more sensible (faster)
if the datawill need to be scanned multiple times.

The default value is cache if alive plot is being generated (onode=swi ng), since in that case
the plot needs to be redrawn every time the user performs plot navigation actions or resizes the
window, or if animations are being produced. Otherwise (e.g. output to a graphics file) the
default issi npl e.

[Default: si npl e]

texttype = plain|antialias||atex (TextSyntax)
Determines how to turn label text into characters on the plot. Pl ai n and Anti al i as both take
the text at face value, but Antiali as smooths the characters. LaTex interprets the text as
LaTeX source code and typesetsit accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizontal text (MacOS java bug).

[Default: pl ai n]

SUN/256 203

title = <val ue> (String)
Text of atitle to be displayed at the top of the plot. If null, the default, no title is shown and
there's more space for the graphics.

xanchor = true|fal se (Boolean)
If true, then zoom actions will work in such away that the zero point on the X axis staysin the
same position on the plot.

[Default: f al se]

xcrowd = <nurmber> (Double)
Determines how closely the tick marks are spaced on the X axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

[Default: 1]

xflip = true|fal se (Boolean)
If true, the scale on the X axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

[Default: f al se]

x| abel = <text> (String)
Gives alabel to be used for annotating axis X A default value based on the plotted data will be
used if no valueis supplied.

[Default: X]

xlog = true|false (Boolean)
If false (the default), the scale on the X axisislinear, if trueit islogarithmic.

[Default: f al se]

xmax = <nunber> (Double)
Maximum vaue of the data coordinate on the X axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

xmin = <nunber> (Double)
Minimum value of the data coordinate on the X axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

xpi x = <int-value> (Integer)
Size of the output image in the X direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot areaitself. Seedsoi nset s.

[Default: 500]

xsub = <l o> <hi> (Subrange)
Defines anormalised adjustment to the data range of the X axis. The value may be specified as
a comma-separated pair of two numbers, giving the lower and upper bounds of the range of of
interest respectively. This sub-range is applied to the data range that would otherwise be used,
either automatically calculated or explicitly supplied; zero corresponds to the lower bound and
one to the upper.

The default value "0, 1" therefore has no effect. The range could be restricted to its lower half
with the valueo, 0. 5.

[Default: o, 1]

yanchor = true|false (Boolean)
If true, then zoom actions will work in such away that the zero point on the Y axis staysin the
same position on the plot.

[Default: f al se]

SUN/256 204

ycrowd = <number > (Double)
Determines how closely the tick marks are spaced on the Y axis. The default value is 1,
meaning normal crowding. Larger values result in more ticks, and smaller values fewer ticks.
Tick marks will not however be spaced so closely that the labels overlap each other, so to get
very closely spaced marks you may need to reduce the font size as well.

[Default: 1]

yflip = true|fal se (Boolean)
If true, the scale on the Y axis will increase in the opposite sense from usual (e.g. right to left
rather than left to right).

[Default: f al se]

yl abel = <text> (String)
Gives alabel to be used for annotating axis Y A default value based on the plotted data will be
used if no valueis supplied.

[Default: Y]

ylog = true|fal se (Boolean)
If false (the default), the scale on the Y axisislinear, if trueit islogarithmic.

[Default: f al se]

ymax = <nunber> (Double)
Maximum vaue of the data coordinate on the Y axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

ymin = <nunber> (Double)
Minimum value of the data coordinate on the Y axis. This sets the value before any subranging
is applied. If not supplied, the value is determined from the plotted data.

ypi x = <int-value> (Integer)
Size of the output image in the Y direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot areaitself. Seeadsoi nset s.

[Default: 400]

ysub = <l o> <hi> (Subrange)
Defines anormalised adjustment to the data range of the Y axis. The value may be specified as
a comma-separated pair of two numbers, giving the lower and upper bounds of the range of of
interest respectively. This sub-range is applied to the data range that would otherwise be used,
either automatically calculated or explicitly supplied; zero corresponds to the lower bound and
one to the upper.

The default value "0, 1" therefore has no effect. The range could be restricted to its lower half
with thevalueo, 0. 5.

[Default: o, 1]

zoonfactor = <nunber> (Double)
Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
movement. A value of 1 means that mouse wheel zooming has no effect. A higher value means
that the mouse wheel zooms faster and a value nearer 1 means it zooms slower. Vaues below
1 are not permitted.

[Default: 1. 2]

B.7.2 Examples

Here are some examples of pl ot 2pl ane:

SUN/256 205

stilts plot2plane yflip=true |layer_1=mark in_1=cat.fits x_1=BVMAG RVAG y_1=BNAG

This is a colour-magnitude diagram where the input table has columns named RMAG and
BMAG. The Y axis is inverted so that the magnitude values increase downwards not up. The
plot is displayed in awindow on the screen, and may be panned and zoomed with the mouse.

stilts plot2plane | ayer=hi stogramin=hip_main.fits x=plx x|l og=true
x| abel =Par al | ax yl abel =
Plots a histogram of parallaxes for Hipparcos data, with a logarithmic X axis. The axes are
labelled explicitly, with an empty string in the case of the Y axis.

stilts plot2plane xpi x=600 ypi x=500

i n=gavo_g2.fits x=X y=Y

shadi ng=aux aux="'atan2(vely, vel x)' auxmap=hue auxvi si bl e=fal se

| ayer _nmrmar k shape_mecross size_n¥4

| ayer _v=xyvector xdelta_v=vel x ydelta_v=vely scale_v=2

out =vel oci ti es. pdf
Two layers are plotted, point markers representing position (4 pixels radius, shaped like
crosses) and vectors representing velocity. Both markers and vectors are coloured according to
the direction (arctan(vely/velx)) of the arrows, so it's easy to see points moving in similar
directions; the "hue" colour map is good for this, since it's periodic, so values of +Pi and -Pi
have the same colour. Since it's not very revealing in this case, display of the aux axis colour
ramp beside the plot has been turned off. Since the X and Y coordinates and the colouring is
common to both layers, the relevant parameters can given without suffixes to avoid having to
repeat them. Output isto aPDF file.

stilts plot2plane xm n=0 xmax=6.283 ym n=-1 ymax=1 x| abel =Ti ne
| ayer =function axi s=horizontal xnane=time fexpr='sin(tine)
dash=3, 2 t hi ck=4 col or=ee6aa7
Plots a sine curve to the screen. Initialy the view is of one period, but you can pan and zoom
interactively to see any range. The line is plotted in hot pink, four pixels wide, with a custom
dash pattern. Since the function layer type has no data coordinates, no input table is required.
The layer suffix here is the empty string; since there's only one layer, it doesn't cause any
problems.

stilts plot2plane ylog=true xflip=true xm n=-5.2 xmax=3.8 ynm n=250 ynax=3. 5e5
inl=6dfgs_E7.fits xl=bmag-rnag yl=ve
| ayer la=mar k col or la=cyan
| ayer 1b=cont our col or 1b=yel | ow snoot hlb=9 scal i nglb=l og
| ayer 1c=mark icndlc="every 35;select star'
shapelc=filled_triangl e_down sizelc=5 col orlc=red
shadi nglc=transparent opaquelc=3
| ayer 2=function fexpr2="exp(x*2+12)"' col or2=bl ack anti alias2=true
dash2=dash t hi ck2=3
| egl abel 1a=Popul ati on | egl abel 1c=Sanpl e | egpos=. 95,.95 | egseq=1a, 1c
fontsize=16 texttype=latex ylabel="v\,/\, kms~{-1}" x| abel =col our

There are four layers: 1a, 1b and 1c use the same positional data from the same input file, so
the positional coordinates common to them are given the suffix "1". Layer "2" is unrelated, and
has no input data, since it's just an analytic function. The legend is positioned to taste, and its
content is manipulated so that only datasets 1a and 1c are described, and they are given custom
names (the default would be their suffix names).

B.8 pl ot 2sky: Drawsa sky plot

pl ot 2sky draws plots on the celestial sphere. This can be represented in a number of ways,
controlled by the proj ect i on parameter; by default the view is of a rotatable sphere seen from the

SUN/256 206

outside (which approximates to a tangent projection for small regions of the sky), but Aitoff and
Plate Carée projections are also available. A number of options are also provided for drawing and
labelling the grid showing celestial coordinates.

Positional coordinates are specified as | on, 1 at pairs giving longitude and latitude in decimal
degrees. By default these are represented in the output in the same, unlabelled, coordinate system.
However the command can can also transform between different coordinate systems if you specify
the data and view systemse.g.:

pl ot 2sky vi ewsys=gal acti c
| ayer 1=mark inl=cat.fits | on1=RA2000 | at 1=DEC2000 dat asysl=equatori a

Content is added to the plot by specifying one or more plot layers using the | ayer N parameter. The
N part is a suffix applied to al the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: mark (Section 8.3.1), si ze
(Section 8.3.2), si zexy (Section 8.3.3), skyvector (Section 8.3.19), skyel | i pse (Section 8.3.20),
l'ink2 (Section 8.3.7), mark2 (Section 8.3.8), | abel (Section 8.3.11), cont our (Section 8.3.12),
skydensi ty (Section 8.3.21).

B.8.1 Usage
The usage of pl ot 2sky is

stilts <stilts-flags> plot2sky xpi x=<int-val ue> ypi x=<i nt -val ue>
i nset s=<t op>, <l eft >, <bottonv, <ri ght >
onopde=swi ng| out | cgi | di scard| auto
st or age=si npl e| cache| basi c-cache
seq=<suffix>[,...] | egend=true|false
| egborder=true| fal se | egopaque=true|fal se
| egpos=<xfrac>, <yfrac> | egseq=<suffix>[,...]
titl e=<val ue>
auxmap=i nf er no| magrma| pl asmg| . . .
auxcl 1 p=<I 0>, <hi > auxflip=true|fal se
auxquant =<nunber >
auxfunc=l og|linear|sqgrt|square
auxni n=<nunber > auxmax=<nunber >
aux| abel =<t ext > auxcr owd=<f act or >
auxvi si bl e=true| fal se forcebit map=true|fal se
composi tor=0..1 ani nat e=<t abl e>
af nt =<i n-f ormat > astreanrtrue|fal se
acnd=<cnds> paral | el =<i nt - val ue>
proj ection=sin|aitoff]|car
vi ewsys=equat ori al | gal acti c| supergal actic|ecliptic
reflectlon=true|fal se grid=true|false
| abel pos=Aut o| Ext ernal | I nt er nal | Basi c| Hybri d| None
sex=true| f al se crowd=<nunber >
gri dcol or =<rrggbb>| red| bl ue| ..
| abel col or=<rrggbb>| red| bl ue| ..
gridaa=true|fal se
texttype=pl ai n| anti al i as| | at ex
fontsi ze=<int-val ue>
font styl e=standard]| seri f| nono
fontwei ght=plain|bold|italic|bold_italic
cl on=<nunber > cl at =<nunber > radi us=<nunber >
zoonf act or =<nunber > | egl abel N=<t ext >
| ayer N=<| ayer -type> <l ayer N-speci fi c- parans>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The available <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac.starlink.ttools. plot2.task. SkyPl ot 2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

SUN/256 207

acnd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter
ani mat e, before any other processing has taken place. The value of this parameter is one or
more of the filter commands described in Section 6.1. If more than one is given, they must be
separated by semicolon characters (';"). This parameter can be repeated multiple times on the
same command line to build up alist of processing steps. The sequence of commands given in
this way defines the processing pipeline which is performed on the table.

Commands may alteratively be supplied in an external file, by using the indirection character
'‘@'. Thus a value of "@il enane" causes the file fil enane to be read for a list of filter
commands to execute. The commands in the file may be separated by newline characters
and/or semicolons.

afmt = <in-formt> (String)
Specifies the format of the animation control table as specified by parameter ani mate. The
known formats are listed in Section 5.2.1. This flag can be used if you know what format your
table is in. If it has the special value (aut o) (the default), then an attempt will be made to
detect the format of the table automatically. This cannot always be done correctly however, in
which case the program will exit with an error explaining which formats were attempted.

[Default: (aut o)]

ani mte = <tabl e> (StarTable)
If not null, this parameter causes the command to create a sequence of plotsinstead of just one.
The parameter value is a table with one row for each frame to be produced. Columns in the
table are interpreted as parameters which may take different values for each frame; the column
name is the parameter name, and the value for a given frame is its value from that row.
Animating like this is considerably more efficient than invoking the STILTS command in a
loop.

The location of the animation control table. This may take one of the following forms:

o Afilename.

 AURL.

* The special value "- ", meaning standard input. In this case the input format must be given
explicitly using the af nt parameter. Note that not all formats can be streamed in this way.

* A system command line with either a"<" character at the start, or a”| " character at the
end ("<syscmd" or "syscnd|"). This executes the given pipeline and reads from its
standard output. Thiswill probably only work on unix-like systems.

In any case, compressed data in one of the supported compression formats (gzip, Unix
compress or bzip2) will be decompressed transparently.

astream = true|false (Boolean)
If set true, the animation control table specified by the ani mat e parameter will be read as a
stream. It is necessary to give the af mt parameter in this case. Depending on the required
operations and processing mode, this may cause the read to fail (sometimes it is necessary to
read the table more than once). It is not normally necessary to set this flag; in most cases the
data will be streamed automatically if that is the best thing to do. However it can sometimes
result in less resource usage when processing large files in certain formats (such as VOTable).

[Default: f al se]

auxclip = <lo> <hi> (Subrange)
Defines a subrange of the colour ramp to be used for Aux shading. The is specified as a
(low,high) comma-separated pair of two numbers between 0 and 1.

If the full range 0, 1 (the default) is used, the whole range of colours specified by the selected
shader will be used. But if, for instance avalue of 0, 0. 5 is given, only those colours at the left
hand end of the ramp will be seen.

SUN/256 208

[Default: o, 1]

auxcrowd = <factor> (Double)
Determines how closely the tick marks are spaced on the Aux axis, if visible. The default value
is 1, meaning normal crowding. Larger values result in more ticks, and smaller values fewer
ticks. Tick marks will not however be spaced so closely that the labels overlap each other, so
to get very closely spaced marks you may need to reduce the font size as well.

[Default: 1. 0]

auxflip = true|fal se (Boolean)
If true, the colour map on the Aux axis will be reversed.

[Default: f al se]

auxfunc = log|linear|sqrt|square (Scaling)
Defines the way that values in the Aux range are mapped to the selected colour ramp.
The available options are:

| og: Logarithmic scaling

l'i near : Linear scaling

sqrt : Square root scaling
squar e: Square scaling

[Default: I'i near]

aux| abel = <text> (String)
Sets the label used to annotate the aux axis, if it isvisible.

auxmap = inferno| nagma| pl asm| . . . (Shader)
Color map used for Aux axis shading.

A mixed bag of colour ramps are available: i nf erno, nagma, pl asm, viridis, cubeheli x,
sron, rai nbow, rai nbow2, rai nbow3, pastel, accent, gnupl ot, gnupl ot 2, specxby, set1,
pai red, hotcold, rdbu, piyg, brbg, cyan-magenta, red-blue, brg, heat, cold, Iight,
greyscal e, col our, st andar d, bugn, bupu, orrd, pubu, purd, huecl , hue,intensity, rgb_red,
rgb_green, rgb_bl ue, hsv_h, hsv_s, hsv_v, yuv_y, yuv_u, yuv_v, scal e_hsv_s, scal e_hsv_v,
scal e_yuv_y, mask, blacker, whiter, transparency. Notee many of these, including
rainbow-like ones, are frowned upon by the visualisation community.

[Default: i nf er no]

auxmax = <nunber> (Double)
Maximum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxmin = <nunber> (Double)
Minimum value of the data coordinate on the Aux axis. This sets the value before any
subranging is applied. If not supplied, the value is determined from the plotted data.

auxquant = <nunber> (Double)
Allows the colour map used for the Aux axis to be quantised. If an integer value N is chosen
then the colour map will be viewed as N discrete evenly-spaced levels, so that only N different
colours will appear in the plot. This can be used to generate a contour-like effect, and may
make it easier to trace the boundaries of regions of interest by eye.

If 1eft blank, the colour map is nominally continuous (though in practice it may be quantised to
amedium-sized number like 256).

auxvisible = true|false (Boolean)
Determines whether the aux axis colour ramp is displayed alongside the plot.

If not supplied (the default), the aux axis will be visible when aux shading is used in any of the
plotted layers.

SUN/256 209

clat = <nunber> (Double)
Latitude of the central position of the plot in decimal degrees. Use with cl on and r adi us. If the
center is not specified, the field of view is determined from the data.

clon = <nunber> (Double)
Longitude of the central position of the plot in decimal degrees. Use with cl at and r adi us. If
the center is not specified, the field of view is determined from the data.

conpositor = 0..1 (Compositor)
Defines how multiple overplotted partially transparent pixels are combined to form a resulting
colour. The way thisis used depends on the details of the specified plot.

Currently, this parameter takes a "boost" value in the range 0..1. If the value is zero, saturation
semantics are used: RGB colours are added in proporition to their associated a pha value until
the total alphais saturated (reaches 1), after which additional pixels have no further effect. For
larger boost values, the effect is similar, but any non-zero apha in the output is boosted to the
given minimum value. The effect of this is that even very dlightly populated pixels can be
visually distinguished from unpopulated ones which may not be the case for saturation
composition.

[Default: 0. 05]

cromd = <nunber> (Double)
Determines how closely sky grid lines are spaced. The default value is 1, meaning normal
crowding. Larger values result in more grid lines, and smaller valuesin fewer grid lines.

[Default: 1]

fontsize = <int-value> (Integer)
Size of the text font in points.

[Default: 12]

fontstyle = standard|serif|nmono (FontType)
Font style for text.

The available options are:

. st andard
. serif
o nono

[Default: st andar d]

fontwei ght = plain|boldlitalic|bold_italic (FontWeight)
Font weight for text.

The available options are:

e plain

* bold

* italic

* bold_italic
[Default: pl ai n]

forcebitmap = true|false (Boolean)

This option only has an effect when writing output to vector graphics formats (PDF and
PostScript). If set t rue, the data contents of the plot are drawn as a pixel map embedded into
the output file rather than plotting each point in the output. This may make the output less
beautiful (round markers will no longer be perfectly round), but it may result in amuch smaller
fileif there are very many data points. Plot annotations such as axis labels will not be affected
- they are dill drawn as vector text. Note that in some cases (e.g. shadi ngN=auto Of
shadi ngN=densi ty) thiskind of pixellisation will happen in any case.

SUN/256 210

[Default: f al se]

grid = true|fal se (Boolean)
If true, sky coordinate grid lines are drawn on the plot. If false, they are absent.

[Default: true]

gridaa = true|fal se (Boolean)
If true, grid lines are drawn with antialiasing. Antialiased lines look smoother, but may take
perceptibly longer to draw. Only has any effect for bitmapped output formats.

[Default: f al se]

gridcol or = <rrggbb>|red|blue|... (Color)
The color of the plot grid.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"ffoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, magenta, cyan, orange, pi nk, yel |l ow, bl ack,
light_grey,white.

[Default: 1'i ght _grey]

insets = <top>, <left> <bhottonp, <right> (Insets)
Defines the amount of space in pixels around the actual plotting area. This space is used for
axis labels, and other decorations and any |eft over forms an empty border.

The size and position of the actual plotting area is determined by this parameter along with
xpi x and ypi x. If no value is set (the default), the insets will be determined automatically
according to how much space is required for |abels etc.

| abel col or = <rrggbb>| red| bl ue|... (Color)
The color of axislabels and other plot annotations.

The value may be a six-digit hexadecimal number giving red, green and blue intensities, e.g.
"tfoof f" for magenta. Alternatively it may be the name of one of the pre-defined colors.
These are currently red, blue, green, grey, magenta, cyan, orange, pi nk, yel |l ow, bl ack,
Iight_grey,white.

[Default: bl ack]

| abel pos = Auto| External | I nternal | Basic| Hybri d| None (SkyAxisLabeller)
Controls whether and where the numeric annotations of the lon/lat axes are displayed. The
default option Aut o usually does the sensible thing, but other options exist to force labelling
internally or externally to the plot region, or to remove numeric labels altogether.

The available options are:

* Auto: Uses External or Internal policy according to whether the sky fills the plot
bounds or not

Ext er nal : Labels are drawn outside the plot bounds

I nt er nal : Labels are drawn inside the plot bounds

Basi c: Labels are drawn somewhere near the grid line

Hybri d: Grid lines are labelled outside the plot bounds where possible, but inside if they
would otherwise be invisible

* None: Axesarenot labelled

[Default: Aut o]

| ayerN = <l ayer-type> <l ayer N-speci fi c- par ans> (LayerType)
Selects one of the available plot types for layerN. A plot consists of a plotting surface, set up
using the various unsuffixed parameters of the plotting command, and zero or more plot layers.
Each layer is introduced by a parameter with the name | ayer <N> where the suffix "<n>" is a
label identifying the layer and is appended to all the parameter names which configure that

SUN/256 211
layer. Suffixes may be any string, including the empty string.
This parameter may take one of the following values, described in more detail in Section 8.3:

mark (Section 8.3.1)

size (Section 8.3.2)

si zexy (Section 8.3.3)
skyvector (Section 8.3.19)
skyel I'i pse (Section 8.3.20)
link2 (Section 8.3.7)

mar k2 (Section 8.3.8)

| abel (Section 8.3.11)
contour (Section 8.3.12)
skydensity (Section 8.3.21)

Each of these layer types comes with a list of type-specific parameters to define the details of
that layer, including some or al of the following groups:

* input table parameters (e.g. i nN, i cndN)
» coordinate params referring to input table columns (e.g. xN, yN)
» layer style parameters (e.g. shadi ngN, col or N)

Every parameter notionally carries the same suffix N. However, if the suffix is not present, the
application will try looking for a parameter with the same name with no suffix instead. In this
way, if several layers have the same value for a given parameter (for instance input table), you
can supply it using one unsuffixed parameter to save having to supply several parameters with
the same value but different suffixes.

| egborder = true|false (Boolean)
If true, aline border is drawn around the legend.

[Default: t rue]

| egend = true|fal se (Boolean)
Whether to draw alegend or not. If no value is supplied, the decision is made automatically: a
legend is drawn only if it would have more than one entry.

| egl abel N = <t ext > (String)
Sets the presentation label for the layer with a given suffix. Thisis the text which is displayed
in the legend, if present. Multiple layers may use the same label, in which case they will be
combined to form asingle legend entry.

If no valueis supplied (the default), the suffix itself is used as the label.

| egopaque = true|fal se (Boolean)
If true, the background of the legend is opague, and the legend obscures any plot components
behind it. Otherwise, it's transparent.

[Default: t rue]

| egpos = <xfrac>, <yfrac> (doubl€l])
Determines the position of the legend on the plot, if present. The value is a comma-separated
pair of values giving the X and Y positions of the legend within the plotting bounds, so for
instance "0. 5, 0. 5" will put the legend right in the middle of the plot. If no value is supplied,
the legend will appear outside the plot boundary.

l egseq = <suffix>[,...] (String[])
Determines which layers are represented in the legend (if present) and in which order they
appear. The legend has aline for each layer label (as determined by the | egl abel N parameter).
If multiple layers have the same |abel, they will contribute to the same entry in the legend, with
style icons plotted over each other. The value of this parameter is a sequence of layer suffixes,
which determines the order in which the legend entries appear. Layers with suffixes missing

SUN/256 212

from thislist do not show up in the legend at all.

If no value is supplied (the default), the sequence is the same as the layer plotting sequence
(seeseq).

onode = swi ng| out | cgi | di scard| auto (PaintMode)
Determines how the drawn plot will be output, see Section 8.5.

* swing: Plot will be displayed in a window on the screen. This plot is "live"; it can be
resized and (except for old-style plots) navigated around with mouse actions in the same
way as plotsin TOPCAT.

» out: Plot will bewritten to afile given by out using the graphics format given by of nt .

o cgi: Plot will be written in a way suitable for CGI use direct from a web server. The
output is in the graphics format given by of nt, preceded by a suitable "Content-type"
declaration.

* discard: Plotisdrawn, but discarded. There is no output.

* auto: Behavesasswi ng or out mode depending on presence of out parameter

[Default: aut o]

paral lel = <int-value> (Integer)
Determines how many threads will run in paralel if animation output is being produced. Only
used if the ani mate parameter is supplied. The default value is the number of processors
apparently available to the JVM.

[Default: 8]

projection = sin|aitoff]|car (Projection)
Sky projection used to display the plot.

The available options are:

* sin: rotatable sphere
* aitof f: Hammer-Aitoff projection
» car: Plate Carree projection (lon/lat on Cartesian axes)

[Default: si n]

radius = <nunber> (Double)
Approximate radius of the plot field of view in degrees. Only used if cl on and cl at are also
specified.
[Default: 1]

reflectlon = true|false (Boolean)
Whether to invert the celestial sphere by displaying the longitude axis increasing right-to-left
rather than left-to-right. It is conventional to display the celestial sphere in this way because
that's what it looks like from the earth, so the default ist r ue. Set it false to see the sphere from
the outside.

[Default: t rue]

seq = <suffix>[,...] (String[])
Contains a comma-separated list of layer suffixes to determine the order in which layers are
drawn on the plot. This can affect which symbol are plotted on top of, and so potentially
obscure, which other ones.

When specifying a plot, multiple layers may be specified, each introduced by a parameter
| ayer <N>, where <N> is a different (arbitrary) suffix labelling the layer, and is appended to all
the parameters specific to defining that layer.

By default the layers are drawn on the plot in the order in which the | ayer * parameters appear
on the command line. However if this parameter is specified, each comma-separated element is

SUN/256 213

interpreted as a layer suffix, giving the ordered list of layers to plot. Every element of the list
must be a suffix with a corresponding | ayer parameter, but missing or repeated elements are
allowed.

sex = true|fal se (Boolean)
If true, grid line labels are written in sexagesimal notation, if false in decimal degrees.

[Default: t rue]

storage = sinpl e| cache| basi c- cache (DataStoreFactory)
Determines the way that data is accessed when constructing the plot. There are two basic
options, cached or not.

If no caching is used (si npl e) then rows are read sequentially from the specified input table(s)
every time they are required. This generally requires a small memory footprint (though that
can depend on how the table is specified) and makes sense if the data only needs to be scanned
once or perhapsif the tableisvery large.

If caching is used (cache) then the required data is read once from the specified input table(s)
and cached before any plotting is performed, and plots are done using this cached data. This
may use a significant amount of memory for large tables but it's usually more sensible (faster)
if the datawill need to be scanned multiple times.

The default value is cache if alive plot is being generated (onode=swi ng), since in that case
the plot needs to be redrawn every time the user performs plot navigation actions or resizes the
window, or if animations are being produced. Otherwise (e.g. output to a graphics file) the
default issi npl e.

[Default: si npl e]

texttype = plain|antialias||atex (TextSyntax)
Determines how to turn label text into characters on the plot. Pl ai n and Anti al i as both take
the text at face value, but Antiali as smooths the characters. LaTex interprets the text as
LaTeX source code and typesetsit accordingly.

When not using LaTeX, antialiased text usually looks nicer, but can be perceptibly slower to
plot. At time of writing, on MacOS antialiased text seems to be required to stop the writing
coming out upside-down for non-horizonta text (MacOS java bug).

[Default: pl ai n]

title = <val ue> (String)
Text of atitle to be displayed at the top of the plot. If null, the default, no title is shown and
there's more space for the graphics.

vi ewsys = equatorial | gal actic| supergal actic|ecliptic (SkySys)
The sky coordinate system used for the generated plot.

Choice of this value goes along with the data coordinate system that may be specified for plot
layers. If unspecified, a generic longitude/latitude system is used, and all lon/lat coordinates in
the plotted data layers are assumed to be in the same system. If a value is supplied for this
parameter, then a sky system must (implicitly or explicitly) be supplied for each datalayer, and
the coordinates are converted from data to view system before being plotted.

The available options are:

* equatorial : J2000 equatorial system
* galactic: AU 1958 galactic system
* supergal acti ¢c: De Vaucouleurs supergalactic system
* ecliptic: ecliptic system based on conversion at 2000.0
xpi x = <int-value> (Integer)
Size of the output image in the X direction in pixels. This includes space for any axis labels,

SUN/256 214

padding and other decoration outside the plot areaitself. Seedsoi nset s.
[Default: 500]

ypi x = <int-value> (Integer)
Size of the output image in the Y direction in pixels. This includes space for any axis labels,
padding and other decoration outside the plot areaitself. Seedsoi nset s.

[Default: 400]

zoonfactor = <nunber> (Double)
Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
movement. A value of 1 means that mouse wheel zooming has no effect. A higher value means
that the mouse wheel zooms faster and a value nearer 1 means it zooms slower. Vaues below
1 are not permitted.

[Default: 1. 2]

B.8.2 Examples

Here are some examples of pl ot 2sky:

stilts plot2sky in=nessier.xm |on=RA | at =DEC
| ayer. pos=mark size.pos=4
I ayer.txt=l abel |abel.txt=Nane | ayer.col or=grey
Plots the positions of all the Messier objects on the sky, with text labels giving their object
names. This displays a sphere on the screen that you can rotate/zoom using the mouse.

stilts plot2sky projection=aitoff
xpi x=600 ypi x=300
gri dcol our =green | abel col our =bl ack
fontsize=10 gri daa=true texttype=antialias
sex=true crowd=4
This just plots a celestial coordinate grid with no data. Various options are tweaked to adjust

the appearance of the grid.

stilts plot2sky xpix=1000 ypi x=500 fontsize=18 crowd=2

proj ection=aitoff viewsys=gal actic

| ayer 1=mark si zel=0

shadi ngl=density densenmapl=gnupl ot2 densel ogl=true

densesub1=0.5, .95 denseclipl=0.02,1

i nl=gunms_nmw_all .fits

| onl=al pha | at 1=del ta datasysl=equatoria

i cmd1l=progress out =nw. pdf
Makes an all-sky plot using an Aitoff projection into galactic coordinates of a large dataset.
Density shading means that the colour at each point is dependent on how many points are
plotted; the density colour map has been fine-tuned here to get a specific visual effect. The sky
coordinates in the input file (alpha and delta) are equatorial, but these are transformed to
galactic coordinates for plotting. The progress filter applied to the input table displays a

progress indicator on the console to see how far it's got. The result iswritten to a PDF file.

This command was used to plot the GUMS-10 MW dataset, a smulation of the milky way
stars seen by the Gaia satellite; The 2.1 billion row plot took about 45 minutes.

B.9 pl ot 2cube: Draws a cube plot

pl ot 2cube draws plotsin a Cartesian 3-dimensional space. The plotting volume is a cube, which is
viewed from the outside and usually bounded by an annotated wire frame.

SUN/256 215

Positional coordinates are specified asx, y, z triples, e.g.:

pl ot 2cube I ayerl=mark inl=simfits x1=XPOS y1l=YPOS z1=7ZPCS

Content is added to the plot by specifying one or more plot layers using the | ayer N parameter. The
N part is a suffix applied to al the parameters affecting a given layer; any suffix (including the
empty string) may be used. Available layers for this plot type are: mark (Section 8.3.1), si ze
(Section 8.3.2), sizexy (Section 8.3.3), xyzvector (Section 8.3.22), xyzerror (Section 8.3.23),
l'i nk2 (Section 8.3.7), mar k2 (Section 8.3.8), | abel (Section 8.3.11), cont our (Section 8.3.12).

B.9.1 Usage
The usage of pl ot 2cube IS

stilts <stilts-flags> pl ot2cube xpix=<int-val ue> ypi x=<i nt -val ue>

i nset s=<t op>, <l eft >, <bottonvp, <ri ght >

onmode=swi ng| out | cgi | di scard| aut o

st or age=si npl e| cache| basi c- cache

seq=<suffix>[,...] legend=true|false

| egborder=true|fal se | egopaque=true|false

| egpos=<xfrac>, <yfrac>

| egseq=<suffix>[,...] title=<val ue>
| asma| . .
lip=true|false

auxmap=i nf er no| magma| p
auxcl i p=<I 0>, <hi > auxf
auxquant =<nunber >
auxfunc=l og| li near|sqrt|square

auxm n=<nunber > auxmax=<nunber >

auxl abel =<t ext > auxcr owd=<f act or >

auxvi si bl e=true| fal se

forcebi tmap=true|fal se conpositor=0..1

ani mat e=<t abl e> af nt =<i n-f or mat >
astreanrtrue| fal se acnd=<cnds>

paral | el =<i nt -val ue> x|l og=true|fal se

yl og=true|fal se zl og=true|fal se
xflip=true|false yflip=true|false
zflip=true|fal se x|l abel =<t ext >

yl abel =<t ext > zl abel =<t ext > xcr owd=<nunber >
ycr owd=<nunber > zcr owd=<nunber >
frane=true|fal se minor=true|false

gri daa=true|fal se
texttype=pl ai n| anti al i as| | at ex

font si ze=<i nt - val ue>
fontstyl e=st andard| seri f| nono

fontwei ght=pl ain|bold|italic|bold_italic

xm n=<nunber > xmax=<nunber > xsub=<| 0>, <hi >
ym n=<nunber > ymax=<nunber > ysub=<| 0>, <hi >
zm n=<nunber > zmax=<nunber > zsub=<I| 0>, <hi >

t het a=<degr ees> phi =<degr ees> zoome<f act or >
xof f =<pi xel s> yof f =<pi xel s>
zoomaxes=[[x][yl[z]] zoonfactor=<nunber>

| egl abel N=<t ext >

| ayer N=<| ayer-type> <l ayer N-speci fi c- parans>

If you don't have the stilts script installed, write "java -jar stilts.jar" instead of "stilts" -
see Section 3. The avallable <stilts-flags> are listed in Section 2.1. For programmatic
invocation, the Task class for this command is
uk.ac. starlink.ttool s.plot2.task. CubePl ot 2Task.

Parameter values are assigned on the command line as explained in Section 2.3. They are as
follows:

acnd = <cmds> (ProcessingStep[])
Specifies processing to be performed on the animation control table as specified by parameter
ani mat e, before any other p