
Tutorial #3: TOPCAT and STILTS

Mark Taylor (University of Bristol)

Astro-CC Pilot Training Event, Centro de Astrobiología, ESAC Madrid,

3 December 2025

\$Id: tcintro.tex,v 1.9 2025/12/01 12:33:45 mbt Exp \$

TOPCAT/STILTS Installation

MacOS:

- If you have Homebrew:
 - ▷ brew install --cask topcat --no-quarantine
- Otherwise download DMG file (use curl not browser):
 - ▷ curl -OL http://www.starlink.ac.uk/topcat/topcat-all.dmg
 - topcat -version
 - ▷ stilts -version

Linux

- You need Java (JRE, any version)
 - ▷ Debian/Ubuntu: sudo apt install openjdk-21-jre, maybe xwayland too?
- Then download the JAR file and stilts script:
- Run TOPCAT:
 - java -jar topcat-full.jar
- Run STILTS:
 - ▷ ./stilts -version

Not working? Ask!

Display problems on Ubuntu? maybe try

https://github.com/RedChaosWolf92/TOPCAT_RESOURCES

Debian astro installation is possible, but installs an older version (not everything will work): sudo apt install topcat stilts

Windows

- You need Java (JRE, any version)
- Download http://www.starlink.ac.uk/topcat/topcat-full.jar
- ... click on it?

Outline

Introduction (10 mins)

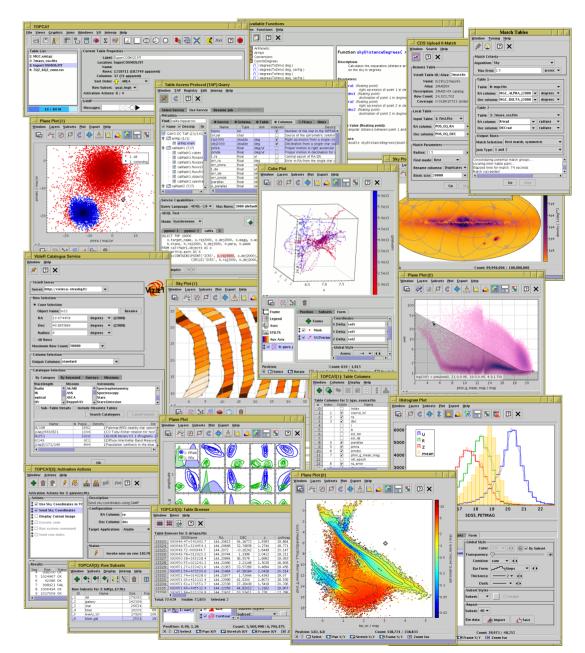
- What is TOPCAT?
- What is STILTS?
- Gaia mission and data
- Examples overview

Hands-on examples:

- 1. Cluster identification #1: M4 in proper motion using Cone Search
- 2. Cluster identification #2: Hyades in 3-D velocity space using TAP
- 3. Match Gaia and HST observations
- 4. M4 in proper motion space using STILTS
- 5. Local Herzsprung-Russell Diagram

TOPCAT Overview

TOPCAT = Tool for OPerations on Catalogues And Tables


"Does what you want with tables"

Suitable for:

- Interactive exploration
- Quick look at unfamilar data
- In-depth analysis

Overall aim:

 Makes table manipulation easy, so users can concentrate on doing science

TOPCAT Aims

User-friendly

- Easy to install and run (pure Java one download file, no library issues)
- Easy to get started
- Simple things fairly obvious
- Complicated things at least well-documented
 - ... this does get harder as more functionality is added

High Performance

- Most things are fast
- Handles quite large tables: millions of rows, hundreds of columns easily (can be much more)
- ... even on modest hardware

Do the things that astronomers need

- Development is led by community input (mailing list, personal emails, tutorials, feature requests, bug reports...)
- Feedback always welcome!

STIL Tool Set (STIL = Starlink Tables Infrastructure Library)

- Has pretty much the same capabilities as TOPCAT
- but works from the command line (also JyStilts from Jython)

TOPCAT

STILTS

GUI

Interactive
Easy to use
Good for data exploration
Exploratory phase $\lesssim 10^7$ rows

Command line

Scriptable
Reproducible
Good for batch/programmed use
Production phase
Unlimited size (for most things)

Typical usage:

- start off with TOPCAT
- maybe move on to STILTS for more specialised requirements

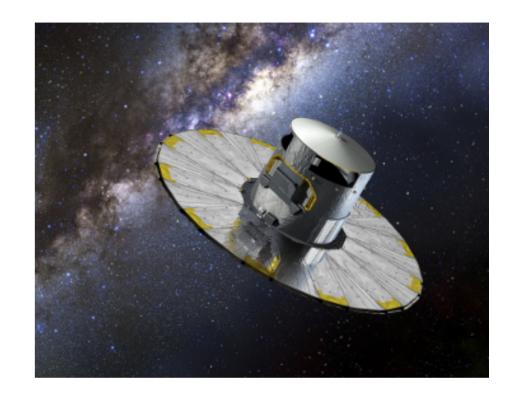
Gaia Mission

ESA astrometry satellite:

- Satellite at L2
- \sim 10 year mission, 2013–2025

Aims

- Measure \sim 2 billion point sources, complete to G \approx 20


 - each source observed multiple times
- Astrometry: positions, parallaxes, proper motions $(10^1-10^3\mu as accuracy)$
- Photometry: G, RP, BP bands (mmag accuracy)
- Spectrometry: radial velocities (1–15 km/s accuracy)
- Spectro-Photometry: low-res spectra in range 330–1050 nm

Highly successful

Thousands of published papers, impacts on all areas of astronomy

Data published primarily to the Virtual Observatory

If you're using Gaia data, it's probably come through the VO

Hands-On Exercises: Instructions

For each exercise:

- I will quickly introduce it
- You work through the script; instructions are quite detailed, especially for the earlier exercises
- You will have 15–20 minutes for each one
- At the end, I'll talk through it

There's quite a lot there, people work at different speeds

- If you don't finish, don't worry!
- If you finish early, explore the software and data to see what else you can do (or go on to Exercise 5)
- The main thing is to get a flavour of what can be done and how to do it

Problems?

- We're here to help!
- You can also try the **Help Button** [7] in all TOPCAT windows documentation is exhaustive!

Cluster identification 1: Messier 4 in proper motion space

Steps

- ▶ Locate Gaia EDR3 Cone Search service
- Query for sources in region of Messier 4
- Plot positions on sky
- ▶ Plot proper motions
- Create subset of comoving objects
- Create subset of background objects
- ▶ Plot proper motion vectors
- ▶ Histogram parallaxes of comoving and background objects
- ▶ Infer distance to Messier 4

TOPCAT features:

▶ Cone search, Table data and metadata, Sky plot, Row Subsets, Histogram

Cluster identification 1: Messier 4 in proper motion space

Steps

- ▶ Locate Gaia EDR3 Cone Search service
- Query for sources in region of Messier 4
- Plot positions on sky
- ▶ Plot proper motions
- Create subset of comoving objects
- Create subset of background objects
- Plot proper motion vectors
- ▶ Histogram parallaxes of comoving and background objects
- ▶ Infer distance to Messier 4

TOPCAT features:

▶ Cone search, Table data and metadata, Sky plot, Row Subsets, Histogram

Distance to Pleiades: $1/0.535 \, \mathrm{mas} \approx 1.8 \, \mathrm{kpc}$

Cluster identification 2: Hyades in 3-D velocity space

Steps

- ▶ Locate Gaia TAP service
- Explore Gaia TAP service
- ▶ Run toy TAP query
- ▶ Run TAP query giving 6-d phase space information for nearby sources (cut'n'paste)
- ▶ Create new columns with 3-d Cartesian velocity components
- Plot sources in 3-d velocity space
- Create subset of comoving sources (Hyades)
- Examine Hyades vs. background sources on the sky
- ▶ Plot colour-magnitude diagram of Hyades vs. background sources
- ▶ Investigate outliers using linked views and activation actions

TOPCAT features:

> TAP, Expression language, 3D plot, Linked views, Activation Actions

Note: There will be much more on ADQL/TAP in Tutorial #4 this afternoon

Cluster identification 2: Hyades in 3-D velocity space

Steps

- Locate Gaia TAP service
- Explore Gaia TAP service
- ▶ Run toy TAP query
- Run TAP query giving 6-d phase space information for nearby sources (cut'n'paste)
- ▶ Create new columns with 3-d Cartesian velocity components
- ▶ Plot sources in 3-d velocity space
- Create subset of comoving sources (Hyades)
- Examine Hyades vs. background sources on the sky
- Plot colour-magnitude diagram of Hyades vs. background sources
- ▶ Investigate outliers using linked views and activation actions

TOPCAT features:

> TAP, Expression language, 3D plot, Linked views, Activation Actions

Note: There will be much more on ADQL/TAP in Tutorial #4 this afternoon

Distance to Hyades: $1000/21 \, \text{mas} \approx 46 \, \text{pc}$

Match Gaia and HST observations for NGC 346

Steps

- Download J/ApJS/166/549 catalogue from VizieR
- ▶ Plot the crossmatch results
- ▶ Graphically find offset between HST and Gaia positions
- ▶ Use this to make sense of cross-match results
- ▶ Re-do crossmatch using TOPCAT internal match window

• TOPCAT features:

Use STILTS for Messier 4 cluster identification

- Steps
 - ▶ Run a simple STILTS command (calc)
 - Download M4 data from a cone search service (cone)
 - □ Get used to table pipeline processing (tpipe)
 - \triangleright Obtain mean parallax for comoving objects \rightarrow distance to M4
 - ▷ Try some STILTS plotting (plot2sky)
- STILTS features
 - Running commands, help system, command documentation, pipeline filters, pipeline output modes, TOPCAT/STILTS interoperability

Further Information

TOPCAT Help

20 Tool Interoperability

File Help

11 SAMP Panel

8 SAMP control

7 Activation Window

6 System properties

3 Control Window

3 Toolbar Buttons

1 Other Windows 1 Subsets Window

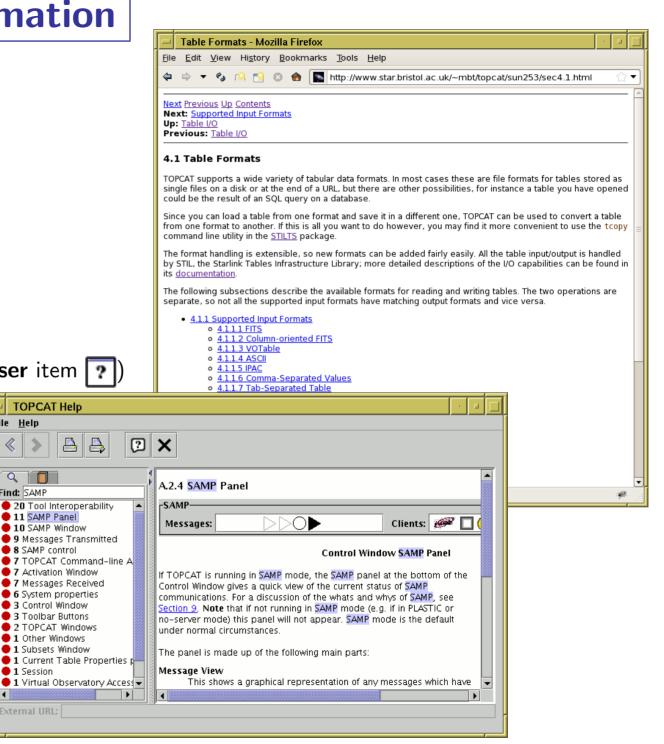
1 Session

2 TOPCAT Windows

7 Messages Received

10 SAMP Window 9 Messages Transmitted

Find: SAMP


- There are things I haven't mentioned!
- Full tutorial and reference documentation:
 - ▶ HTML/PDF manuals on web pages

```
http://www.starlink.ac.uk/topcat/
http://www.starlink.ac.uk/stilts/ (or google them)
```


- ▶ Help for Window button ? on every window
- Help browser includes search tool
- More options in Help Menu (including **Help for Window in Browser** item ?)
- ▷ Or print out the 600-page manual

Support:

- ▶ Talk to me here
- Mailing list: topcat-user@jiscmail.ac.uk
- ▶ All feedback and questions welcome!

Well done!

