
Yafit - Yet Another Fitting Tool

Version 0.1b

User Guide
Mark Taylor
6 Feb 2007

$Id: yafit-user.xml,v 1.10 2007/02/13 18:39:53 mbt Exp $

Abstract

Yafit is a tool for fitting curves. Although it could be used in other contexts, it is mainly intended
for fitting observed photometric data to calculated model spectra. In general one uses it by
preparing a file containing one or more sets of observations, preparing a file containing a number of
model spectra, and then running the fitting program which identifies the model that most closely fits
each set of observations. The results can be viewed graphically and/or output in a number of
formats.

Contents
Abstract... 1
1 Introduction.. 3
2 Invoking Yafit commands.. 4
3 How to fit spectra using Yafit.. 5
3.1 Preparing Observation Data.. 5
3.2 Preparing Model Data... 6
3.3 Performing the Fit... 7
4 Model Formats.. 9
5 Graphical Display... 10
6 Expression Language... 12
Appendix A: Command Reference.. 13
A.1 copymodel.. 13
A.2 fit.. 14
A.3 funcs... 15
A.4 plotmodel... 16
A.5 plotobs.. 16
A.6 tableobs.. 17
Appendix B: Acknowledgements... 20

2

1 Introduction

Yafit is a package intended for identifying which spectral models from a given set are best fits to
one or more observational data sets. Operation is as follows:

1. Prepare a file containing the observations to fit
2. Prepare a file containing calculated model spectra to fit the observations against
3. Perform the fit

In general this will be done by executing three separate commands. Section 2 explains how to
invoke commands from the Yafit package, and Section 3.1, Section 3.2 and Section 3.3 describe the
three steps above. Note it is the user's responsibility to ensure that the quantities to be fitted against
each other (the observation and model data) are compatible, that is, represent the same X and Y
quantities and have compatible units.

To use Yafit, you should read Section 2 to find out how to invoke the commands, and then Section
3 for an explanation of how to use the tool to fit your data. The other sections can be consulted as
required.

3

2 Invoking Yafit commands

Yafit is a java program, usually distributed as the file yafit.jar. It requires a Java Runtime
Environment (JRE) version 1.4 or later to run.

The package comprises a number of different tasks; tasks are called things like fit and plotobs.
They are invoked by giving the task name followed by a set of arguments, usually in the form
name=value. Each command and its arguments are described in detail in Appendix A

There are two ways of invoking the program:

Directly with java:
java -jar yafit.jar <task-name> <task-args>

With script (unix only):
yafit <task-name> <task-args>

The yafit script is a convenience for running on unix-like operating systems: if you don't have the
script, you can extract it from the jar file like this:

unzip yafit.jar yafit
chmod +x yafit

To run the script file, you must have the java command on your path, and the yafit script should
be in the same directory as yafit.jar.

Invoking the program with the -help flag gives a summary of the available tasks:
yafit -help

Usage:
yafit [-help] [-version] [-verbose] [-debug] [-bench]

<task-name> <task-args>

yafit <task-name> -help

Known tasks:
fit
funcs
copymodel
tableobs
plotmodel
plotobs

Usage information (a list of parameters) for each individual task can be obtained by supplying the
-help flag after the name of the task itself, e.g.

yafit fit -help

Full help for each command is given in the reference section, Appendix A.

4

3 How to fit spectra using Yafit

3.1 Preparing Observation Data

Before fitting, you must prepare your observation data in a way that the program can understand.
This involves generating a .yobs file which contains spectral information about one or more
sources. Typically this will consist of photometric observations at a number of pass bands for each
of several sources of interest. Currently the tableobs task is provided to convert observations in a
table for which each column represents observations in a given pass band to a .yobs file.

Suppose that you have photometric observations in a table as follows:
RA DEC PHOTOZ J J_ERR H H_ERR K K_ERR

119.608 21.410 2.52 11.94 0.022 12.16 0.024 12.57 0.018
53.094 -27.839 3.05 12.33 0.022 12.34 0.026 12.67 0.020

213.870 -46.515 1.65 17.32 0.106 17.57 0.192 17.49 0.176
204.143 -29.089 0.50 15.93 0.041 16.29 0.071 16.48 0.073

This represents observations of four objects in each of three photometric bands (J, H and K). The
fluxes are here represented as magnitude values, and the flux at each of the bands has an associated
error value. The fitting program must identify each of these bands with a region of the model
spectrum and determine how close the observation is to the model flux in that region to see how
well the observation fits the model. The flux error in each case provides a measure of how large
deviations are to be tolerated. An additional column (PHOTOZ) gives the known redshift for each
object and the sky position is given by the RA and DEC columns.

The tableobs task can be used to generate an observation file from this table, by specifying which
columns give flux values and flux errors for each band pass. You can also provide expressions
which perform numeric value transformations such as unit conversions if required; recall that the X
(wavelength) and Y (flux) values in your observation file must be compatible with those you supply
in your model file before the fitting is performed.

To define which columns correspond to which band passes in the table, you must prepare a key file,
which lists the flux value and error columns corresponding to each band pass given in the table. For
the table above, this file would look something like the following:

yColName yerrColName x xWidth
J J_ERR 12400 5000
H H_ERR 16600 4000
K K_ERR 21600 6000

The format of this file is a four-column ASCII table - the column names (and any other lines
starting with a '#' character) are ignored. Each line of it must contain four entries in order:

1. Name of column giving Y (flux) values
2. Name of column giving Y (flux) errors
3. X (wavelength) value of band pass centre for these fluxes
4. X (wavelength) width of band pass filter for these fluxes

This key file therefore identifies the meanings of six of the columns in the input table above.

When you run tableobs you can also specify information about how the X and Y values should be
written out. You can label their names and units and give an expression for how to calculate them
from the values in the input table. Note the names and units you give are only annotations and will
not cause any conversions to take place apart from those you specify by providing the expressions.
Nevertheless it is a good idea to provide these in order to document your data files. You may well
wish to convert the X and Y values to more suitable quantities, since they must be in a form which
can be meaningfully fitted against the model data to be provided. For instance in the above case,
you will probably want to convert the Y values from magnitudes to fluxes. A flexible expression
language, described in Section 6, is available to perform these conversions; you will mostly use a

5

few functions such as abToJansky.

Finally, you can specify redshift value if the input table contains one. This may be necessary to
determine how model spectra are to be shifted along the X axis prior to attempting a fit.

Here is an example of a tableobs command to prepare a .yobs file from the input table above.
yafit tableobs in=demo.txt ifmt=ascii

key=jhk.key
redshift=PHOTOZ
xname=Wavelength xunit=Angstrom x=x
yname=Flux yunit=Jansky y='abToJansky(y)'
out=demo.yobs

In detail, this works as follows:

in=demo.txt ifmt=ascii

The input table is named and its format is given as an ASCII table. The format types here are
those permitted by STILTS including VOTable, FITS, CSV and others. See SUN/256.

key=jhk.key

Gives the location of the 4-column 'key file' whose format is described above. This must be in
ASCII format.

redshift=PHOTOZ

Defines the column in the input table which gives redshift. This is not required if redshift is not
known or not represented in the table. This parameter can only be sensibly used if the X axis is
a wavelength measure. The value of the parameter can be an algebraic expression using
column names from the table.

xname=Wavelength xunit=Angstrom x=x

Labels the output X values to be Wavelength quantities with units of Angstrom. The x=x is
optional, but it means that the output X values will be equal to those supplied in the .key file.
You could change the units here by writing, for instance, "xunit=micron x=x*1e-4". The X
widths are automatically adjusted to the same scale as the X values (using numerical
differentiation).

yname=Flux yunit=Jansky y='abToJansky(y)'

Labels the output Y values to be flux quantities with units of Jansky. Additionally, says that
the output Y values are to be calculated from the values in the keyed columns of the input table
using the pre-defined "abToJansky()" function, which converts from AB magnitudes to
Jansky. The Y errors are automatically adjusted to the same scale as the Y values (using
numerical differentiation).

out=demo.yobs

Writes the result to a .yobs file as named. This is in fact a VOTable, and can for instance be
viewed in TOPCAT, but it has some special characteristics, and it may be best to think of it as
an opaque file format used by Yafit. Note that the output file will contain all the original table
information from the input table, and this will be propagated to any output tables, so that for
instance information in the RA and DEC columns is not lost.

A full reference for the tableobs task is given in Appendix A.6.

Having prepared your .yobs file, you can view it using the plotobs command if you wish before
using it for actual fitting.

3.2 Preparing Model Data

Before fitting, you must prepare your set of model spectra in a way that the program can
understand. Yafit understands a number of model formats, including outputs from certain spectral
simulation codes. You can either provide your models in one of these formats directly or convert

6

them to the special .ymod format prior to use. The copymodel task can convert from the various
foreign model formats to .ymod, optionally applying custom transformations to the data. Even if
your model data is in one of the formats that Yafit understands, you may wish to use copymodel so
as to apply these additional conversions, for instance annotating or modifying the units on the X
(wavelength) or Y (flux) axes to match those presented in the observation data.

Here is an example invocation of copymodel:
yafit copymodel ifmt=galaxev

in=bc2003_salp.a1 in=bc2003_salp.a2
xname=Wavelength xunit=Angstrom
yname=Luminosity yunit=erg/s
y=3.826e33*y
out=gal.ymod

In detail, this works as follows:

ifmt=galaxev

Gives the format in which the input files will be supplied. galaxev is one of the formats that
Yafit understands (see Section 4).

in=bc2003_salp.a1 in=bc2003_salp.a2

Names the two input files in galaxev format. Any number of input model files can be given -
they will be concatenated together before output.

xname=Wavelength xunit=Angstrom

Labels the axis name and unit for the independent (X) variable.

yname=Luminosity unit=erg/s

Labels the axis name and unit for the dependent (Y) variable.

y=3.826e33*y

Multiplies the input Y (flux) values by a given constant. This sort of thing may be required to
convert the values from those used in the input model data to match those used by the
observations during the fit.

out=gal.ymod

Gives the name of the output file to which the converted model data will be written. The
output file is actaully a specially prepared VOTable or FITS table, and can e.g. be viewed in
TOPCAT if required.

A full reference for the copymodel task is given in Appendix A.1.

Having prepared your .ymod file, you can view it using the plotmodel command if you wish before
using it for actual fitting.

3.3 Performing the Fit

Having prepared your input observation and model data, you run the fit task to compare the two.
This compares each input observation with each input model and presents the results in one or more
ways. The most straightforward use of the results is to assess which of the input models matches the
observation best, and then output this information. However, some output modes allow you to see
the goodness of fit for several of the models in addition to the best fit one.

As with the other tasks, the fit task has a number of parameters to configure its operation. These
fall into the following categories:

Input Specification
The model and modelfmt parameters give the location of the input model data file and the obs

parameter gives the location of the input observation data. These should be prepared as
described in Section 3.1 and Section 3.2.

7

Fitting Configuration
The smoother, scale and fitcalc parameters control the details of how the goodness of fit
between a given observation and a given model is to be calculated.

Output Specification
The gui, summary, bestfits and allfits parameters control what the program does with the
results having calculated them. Some of the possibilities are display them in a graphical
window and output a table which contains rows associating the best fit with each input
observation.

A full reference for the fit task is given in Appendix A.2.

NOTE: The most important thing to remember when performing a fit is that the axes of the
presented observation and model files must be compatible. If the wavelength axis for the
observations is in Angstrom and for the models is in microns your results won't make much sense.
Having the same units for the two flux axes may not be necessary - since the models will normally
be scaled by a constant to provide the best fit, an arbitrary multiplicative constant between the two
units may be unimportant unless you need to make use of the fitted scaling constant. However even
in this case you must ensure that the axes are compatible (e.g. both are fluxes, rather than one being
in magnitudes).

An example invocation is as follows:
yafit fit obs=demo.yobs model=demo.ymod

gui=true bestfits=out.vot

This fits the observations in file demo.yobs against the model data in demo.ymod. Default settings
are used for the fitting. By way of output, the results will be presented graphically (gui=true) and
the output written as a VOTable out.vot in which each row gives the details of an observation and
the model which fitted it best, as well as the goodness of fit statistic and scaling constant used.

8

4 Model Formats

Yafit can understand model data in a number of formats as written by various spectral simulation
codes. This list will probably need to be expanded in the future. You can contact the author if a
format that you need is not here, but note that some well-defined description of a format must be
available in order for a handler to be written.

YModel
YModel is the name given to the 'native' format used by Yafit for model data. It is in fact a
FITS or VOTable table in which each row represents one model spectrum. The first column
contains a vector of X values, and the second a vector (of the same size) of Y values, and these
two therefore together define a function Y(X) which represents the spectrum. There may be
any number of additional columns present, giving other information about each model. It is
possible to write YModel files directly and to manipulate them using TOPCAT or STILTS, but
in most cases YModel files will be written using the copymodel task.

Galaxev
Spectra extracted into files by Galaxev's galaxevpl (a.k.a. gpl) tool can be used. These look
something like this:

Output file name = bc2003_hr_m42_salp_ssp_exp200.a1
Input file name = bc2003_hr_m42_salp_ssp_exp200.ised
Column 2 3 4
Record 106 107 108
Age (yr) 4.500E+07 4.750E+07 5.000E+07
Lambda(A) Flux Flux Flux
9.100000E+01 6.685E-19 6.602E-19 6.520E-19
9.400000E+01 7.586E-19 7.491E-19 7.398E-19

...

Starburst99
Output files written by the Starburst99 program can be used. These look something like this:

MODEL DESIGNATION: eyles01100FM2
MODEL GENERATED ON 20060527 AT 035003.6

COMPUTED SYNTHETIC SPECTRUM

TIME [YR] WAVELENGTH [A] LOG TOTAL LOG STELLAR LOG NEBULAR [ERG/SEC/A]
.10000E+05 91.00 25.60479 25.60479 -15.00000
.10000E+05 94.00 26.34040 26.34040 -15.00000

...

SvoTar
The Spanish Virtual Observatory (SVO) provides a service from the web page
http://svo.laeff.esa.es/theory/db2vo/html/ which returns grids of model spectra given certain
criteria entered in an HTML form. The result it returns is a tar archive containing a number of
VOTable files each of which holds a single calculated spectrum. These tar files (compressed or
uncompressed) can be understood directly by Yafit as a list of model spectra.

SidewaysVOT
This is an ad-hoc format which can be used to store model data in a standard tabular format as
a VOTable. The first column of the table is used to store X (wavelength) values, and each
subsequent column stores the Y (flux) values for a different model spectrum. All the Y values
in the Nth row correspond to the X value in that row and so on. An M-column sideways table
contains M-1 model spectra. The only additional information about each spectrum is a name or
label, which is supplied by the column name of the column which it represents.

9

5 Graphical Display

Some of the tasks in Yafit provide a graphical display on the screen; plotobs plots observational
data, plotmodel plots model data, and the gui mode of fit shows both. These displays use a
similar format and visual controls, as shown in the figure.

Window displayed by the gui mode of the fit task.

The window consists of two parts: at the top are one or more tables giving details of the model or
observation data being displayed, and at the bottom is the graphical display itself. In this case the
top left part shows the table of observations (one per row) and the top right part shows the table of
models (one per row). In each case, the highlighted row or rows indicate which observation/model
is being drawn, and you can select observations/models for display by clicking on these tables to
highlight rows. Clicking on a row while holding down the CTRL button will usually add/subtract
the relevant row from the display list, while doing it without CTRL will select the relevant row as
the only one for display.

10

The continuous coloured line or lines represent model data, and the points with error bars represent
observational data points. The vertical bars on each point represent the error associated with the
flux at that point, and the horizontal bars represent the width of the band pass. In this case the
coloured dots give the position of the Y samples taken from the model data for comparison with the
observed points - this is determined from the actual model curve according to some smoothing
function as determined by the parameters of the fitting task (typically, by averaging over the band
pass width).

Some control over the form of the plot is available. First, you can resize the window to resize the
plot. Second, you can zoom in by dragging the mouse down and to the right, or zoom back to
"normal" by dragging up and left. Thirdly, by clicking with the right mouse button on the plot you
are a popup menu which provides various options, including:

• Zoom in on one or both axes
• Zoom out on one or both axes
• Modify axis labelling
• Print or save the graph as plotted
• Set or unset auto-ranging for one or both axis bounds
• Type in numeric bounds for one or both axes

The graphical windows displayed by plotobs and plotmodel work in a similar way.

11

6 Expression Language

Some of the parameters to Yafit tasks allow you to enter an algebraic expression in terms of named
variables or column names. For instance the x and y parameters in the tableobs and copymodel

have values which are expresions. This section explains the expression language that is used.

Form most purposes, the language is pretty intutive. The normal algebraic operators (+, -, * and /)
are available, numbers are written in the usual way, and variable names such as those representing
table columns must start with a letter and continue with a sequence of letters, numbers and
underscores.

As well as these, there are a number of pre-defined functions which can be used. As well as
standard ones such as exp(), cos(), max(), sqrt() and so on, there are some useful astronomically
specific ones, including

• luminosityDistance(z,H0,omegaM,omegaLambda)

• mToMpc(distMetres)

• abToJansky(magAB)

• janskyToAb(fluxJansky)

and others. These are not described here, but you can see full documentation of all the available
functions by running the funcs task.

The expression language is powerful and extensible, however, most users of Yafit will not need to
use many of its features, so it is not discussed in detail here. For a full description see the manuals
for STILTS or TOPCAT, which use the same technology.

12

A Command Reference

This section gives reference descriptions of each of the tasks available in the Yafit package, with
detailed descriptions of their parameters. A more tutorial introduction to their use is provided in
some cases in the main part of this document.

A.1 copymodel

copymodel is used to prepare files containing model spectra, ready for fitting by the fit task. It
takes model data in one of the forms described in Section 4 as input, optionally manipulates it in
accordance with the parameters, and writes the output to a .ymod file suitable for input into other
fitting tasks. The main manipulations which can be performed are changing the X and Y values
(using the x and y parameters) and labelling the axes and their units.

See Section 3.2 for some more discussion and examples.

Usage:
Usage: copymodel [-help] [-debug]

in=<model-file>
[ifmt=ymodel|galaxev|starburst99|svotar|sideways-vot]
[out=<out-file>]
[ofmt=ymodel-fits|ymodel-votable|ymodel-votable-binary]
[x=<expr>]
[y=<expr>]
[xname=<value>]
[xunit=<value>]
[yname=<value>]
[yunit=<value>]

Parameters:

ifmt = ymodel|galaxev|starburst99|svotar|sideways-vot

Defines the format of the file given by the in parameter. See Section 4 for a list of known
formats.

[Default: ymodel]

in = <model-file>

Input model data files. The format is given by the ifmt parameter. Multiple model files
(in the same format) may be specified by giving this parameter multiple times.

ofmt = ymodel-fits|ymodel-votable|ymodel-votable-binary

Gives the format in which the output will be written. The basic format is ymodel, but it is
possible to choose which variant (FITS, VOTable etc) of that format is used by specifying
this parameter. It doesn't matter much which is used though there may be performance
implications.

[Default: ymodel-votable]

out = <out-file>

Gives the name of the output file to which the model data will be written in ymodel

format.

[Default: -]

x = <expr>

Formula for the X (wavelength) values in the output model file in terms of the X values in
the input model file. The default value of "x" simply makes the one equal to the other,
however it is possible to use algebraic expressions here in terms of x and y (the Y values
from the input model file). Normal arithmetic operators as well as some special functions
may be used - see Section 6.

13

[Default: x]

xname = <value>

Gives a name for the output X axis, such as "Wavelength". This does not affect
processing, but may be used to annotate the displayed or output results, so it is a good
idea to supply a value if known to reduce confusion.

xunit = <value>

Gives a unit for the output X axis, such as "Angstrom". This does not affect processing,
but may be used to annotate the displayed or output results, so it is a good idea to supply a
value if known to reduce confusion.

y = <expr>

Formula for the Y (flux) values in the output model file in terms of the Y values in the
input model file. The default value of "y" simply makes the one equal to the other,
however it is possible to use algebraic expressions here in terms of y and x (the X values
from the input model file). Normal arithmetic operators as well as some special functions
such as abToJansky() may be used - see Section 6.

[Default: y]

yname = <value>

Gives a name for the output Y axis, such as "Flux". This does not affect processing, but
may be used to annotate the displayed or output results, so it is a good idea to supply a
value if known to reduce confusion.

yunit = <value>

Gives a unit for the output Y axis, such as "Jansky". This does not affect processing, but
may be used to annotate the displayed or output results, so it is a good idea to supply a
value if known to reduce confusion.

A.2 fit

fit is the task which performs the actual fitting of observed data to model spectra. The main inputs
are a set of observations supplied as a .yobs file, and a set of model data supplied as a .ymod file or
in one of the other formats described in Section 4. Some of the other parameters describe how the
fitting will be done, and some specify what form the result will be output in.

See Section 3.3 for some more discussion and examples.

Usage:
Usage: fit [-help] [-debug]

model=<model-file>
[modelfmt=ymodel|galaxev|starburst99|svotar|sideways-vot]
obs=<obs-file>
[smoother=square|point]
[scale=true|false]
[fitcalc=chi2|poisson|unscaled]
[gui=true|false]
[summary=<out-file>]
[bestfits=<out-table>]
[bestfitsfmt=<out-format>]

Parameters:

bestfits = <out-table>

Destination filename for a table containing the fitting results. This will be a table with one
row for each observation giving the observation details and the details of the model which
fits it best, along with the goodness-of-fit score and scaling factor if appropriate. The

14

format of the table is given by the bestfitsfmt parameter.

bestfitsfmt = <out-format>

Table format for bestfits table. Must be one of the permitted STILTS formats such as
votable, fits, ascii, text, csv, ... See SUN/256 for a full list.

[Default: (auto)]

fitcalc = chi2|poisson|unscaled

Determines how the goodness of fit score will be calculated.

• chi2: chi squared using value errors
• poisson: chi squared using Poisson errors
• unscaled: absolute root mean squared distance

[Default: chi2]

gui = true|false

If true a window will be displayed plotting the observations and best fit model curves.

[Default: true]

model = <model-file>

File containing the models used for fitting. This will typically be a ymodel file but may be
in some other format. The format is given by the modelfmt parameter. Multiple model
files (in the same format) may be specified by giving this parameter multiple times.

modelfmt = ymodel|galaxev|starburst99|svotar|sideways-vot

Defines the format of the file given by the model parameter. See Section 4 for a list of
known formats.

[Default: ymodel]

obs = <obs-file>

File containing the observations to be fitted against. This must be in yobs format.

scale = true|false

Whether to scale model curves by a multiplicative constant to achieve the best fit. If true,
each model curve will be scaled by whatever factor gives the best fit, otherwise its
absolute amplitude will be used.

[Default: true]

smoother = square|point

Describes how model curves will be sampled over the width of each observation point for
the observations listed in the obs parameter. The options are currently

• square: the model curve will be uniformly averaged over the width of the
observation

• point: a linear interpolation of the model curve will be taken at the central point of
the observation

[Default: square]

summary = <out-file>

Gives the destination file for summary output. This is just a list of the best fit model for
each observation. By default, it is written to standard output ("-"), but it can be sent to a
file by giving its name here.

[Default: -]

A.3 funcs

15

funcs is a documentation utility which allows you to browse the functions available in the
expression language used when specifying some expressions to Yafit, described in Section 6.

Invoking the command causes a window to pop up on the display with two parts. The left hand
panel contains a tree-like representation of the functions available - the top level shows the classes
(categories) into which the functions are divided, and if you open these up (by double clicking on
them) each contains a list of functions and constants in that class. If you click on any of these
classes or their constituent functions or constants, a full descritption of what they are and how to
use them will appear in the right hand panel.

Usage:
Usage: funcs [-help] [-debug]

Parameters:

A.4 plotmodel

plotmodel provides a graphical display of the model data in a .ymod file or one of the other formats
described in Section 4. The upper part of the window shows a table with one row for each of the
input models, and the lower part shows a plot with all of the models drawn as different colour
curves. You can highlight one or more of these models (plot them in black) by clicking on the
relevant row(s) in the table at the top. Use CTRL-click to select multiple rows. Other elements of
the GUI are explained in Section 5.

Usage:
Usage: plotmodel [-help] [-debug]

in=<model-file>
[ifmt=ymodel|galaxev|starburst99|svotar|sideways-vot]

Parameters:

ifmt = ymodel|galaxev|starburst99|svotar|sideways-vot

Defines the format of the file given by the in parameter. See Section 4 for a list of known
formats.

[Default: ymodel]

in = <model-file>

File containing the model data to plot. The format is given by the ifmt parameter.
Multiple model files (in the same format) may be specified by giving this parameter
multiple times.

A.5 plotobs

plotobs provides a graphical display of the observation data in a .yobs file. The upper part of the
window shows a table with one row for each of the input observations, and the lower part shows a
plot with the points represented by the observations each plotted in a different colour. You can
highlight one or more of these observations (overplot them in black) by clicking the relevant row(s)
in the table at the top. Use CTRL-click to select multiple rows. Other elements of the GUI are
explained in Section 5.

Usage:

16

Usage: plotobs [-help] [-debug]
in=<obs-file>

Parameters:

in = <obs-file>

File containing the observations to be plotted. This must be in yobs format.

A.6 tableobs

tableobs is used to prepare .yobs files from tables that contain observation data. A yobs file is the
natural format in which Yafit stores information about observed spectra, but observations are not
usually originally supplied in this form, so tableobs should be used to prepare them in this way. To
use this task, you must have a table which contains data from one or more observations and a key
file which describes what each column of the table means, in particular which columns represent
flux values and flux errors at which wavelengths.

The key file is an ASCII table format containing optional comment lines (blank or starting with the
'#' character) followed by a series of lines each describing the observations in one band pass. Each
of these lines has four space-separated entries:

1. yColName: name of the table column containing Y value
2. yerrColName: name of the table column containing Y errors (or "null")
3. x: central X value at which measurements are taken
4. xWidth: width of X range over which measurements are taken

The X and Y here are typically wavelength and flux values, so that x is typically a band pass central
wavelength and xWidth is the band pass full width. However, these X and Y values may be
interpreted differently if desired, for instance Y may be in magnitudes rather than flux units.

Note that the Y error column may contain the special value "null" if no the input table contains no
error information for one or more Y values. In this case however beware that error-less Y values
will not be used by the chi2 goodness-of-fit measure in the fit task, since chi-squared fitting
makes no sense without error estimates. To introduce given non-null error values you should
pre-process the table (e.g. using STILTS) to provide a column containing suitable numeric values.

The input table which the key file describes is a table in any of the formats recognised by the
SUN/256 package, including FITS, VOTable, CSV and ASCII. In general it is necessary to say
what format it is in with the ifmt parameter.

See Section 3.1 for some more discussion and examples.

Usage:
Usage: tableobs [-help] [-debug]

in=<table>
[ifmt=<in-format>]
key=<key-file>
[out=<obs-file>]
[redshift=<expr>]
[x=<expr>]
[y=<expr>]
[xname=<value>]
[xunit=<value>]
[yname=<value>]
[yunit=<value>]

Parameters:

ifmt = <in-format>

17

Gives the format of the table located by the in parameter (votable, fits, csv etc).

[Default: (auto)]

in = <table>

Location of the table which contains the input observation data. The columns of this table
must contain the Y (flux) values and errors at different band passes. Which column means
what is specified by the key parameter. The table located by this parameter may be in any
of the formats supported by STIL, as defined by the ifmt parameter.

key = <key-file>

Location of file containing the four-column key file that describes which columns of the
input table give which information. See the command description for more detail.

out = <obs-file>

Name of the file to which the output yobs file will be written.

[Default: -]

redshift = <expr>

May give an expression for redshift of the input observations in terms of quantities in the
input table. If there is one, this will normally be expressed just as the name of the column
in the input table which gives redshift. However, it can be an algebraic expression
combining column names from the input table - see Section 6. A redshift should only be
given if the X values are wavelength (not, for instance, if they are frequencies) since
otherwise the fitting program will not treat them properly.

x = <expr>

Formula for the X (wavelength) values in the output observation file in terms of the X
values in the key file. The default value of "x" simply makes the one equal to the other,
however it is possible to use algebraic expressions here in terms of x, for instance in order
to modify the scaling (change units). Normal arithmetic operators as well as some special
functions may be used - see Section 6.

[Default: x]

xname = <value>

Gives a name for the output X axis, such as "Wavelength". This does not affect
processing, but may be used to annotate the displayed or output results, so it is a good
idea to supply a value if known to reduce confusion.

[Default: X]

xunit = <value>

Gives a unit for the output X axis, such as "Angstrom". This does not affect processing,
but may be used to annotate the displayed or output results, so it is a good idea to supply a
value if known to reduce confusion.

y = <expr>

Formula for the Y (flux) values in the output observation file in terms of the Y values in
the input table. the default value of "y" simpley makes the one equal to the other, however
it is possible to use algebraic expressions here in terms of y, x (the X values from the
input key file), and any of the values in the input table referred to by their column name.
Normal arithmetic operators as well as some special functions such as abToJansky() may
be used - see Section 6

[Default: y]

yname = <value>

Gives a name for the output Y axis, such as "Flux". This does not affect processing, but
may be used to annotate the displayed or output results, so it is a good idea to supply a
value if known to reduce confusion.

18

[Default: Y]

yunit = <value>

Gives a unit for the output Y axis, such as "Jansky". This does not affect processing, but
may be used to annotate the displayed or output results, so it is a good idea to supply a
value if known to reduce confusion.

19

B Acknowledgements

Several people have provided help to me in the design of Yafit. I would most particularly like to
thank Paresh Prema (IoA, Cambrige) and Anita Richards (Jodrell Bank) for their extensive advice.

The expression evaluation language implementation is based on JEL.

20

