public class Polygon extends Region
Within a SkyFrame, neighbouring vertices are always joined using the shortest path. Thus if an edge of 180 degrees or more in length is required, it should be split into section each of which is less than 180 degrees. The closed path joining all the vertices in order will divide the celestial sphere into two disjoint regions. The inside of the polygon is the region which is circled in an anti-clockwise manner (when viewed from the inside of the celestial sphere) when moving through the list of vertices in the order in which they were supplied when the Polygon was created (i.e. the inside is to the left of the boundary when moving through the vertices in the order supplied).
This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public Licence for more details.
You should have received a copy of the GNU General Public Licence along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,Fifth Floor, Boston, MA 02110-1301, USA
Mapping.Interpolator, Mapping.Spreader
OVERLAP_INSIDE, OVERLAP_NEGATE, OVERLAP_NONE, OVERLAP_OUTSIDE, OVERLAP_PARTIAL, OVERLAP_SAME, OVERLAP_UNKNOWN
LINEAR_INTERPOLATOR, LINEAR_SPREADER, NEAREST_INTERPOLATOR, NEAREST_SPREADER
AST__BAD, AST__TUNULL, pointer
Constructor and Description |
---|
Polygon(Frame frame,
int npnt,
double[] xcoords,
double[] ycoords,
Region unc)
Create a Polygon.
|
getAdaptive, getBounded, getClosed, getFillFactor, getMeshSize, getNegated, getRegionBounds, getRegionFrame, getRegionPoints, getUnc, mapRegion, mask, maskB, maskD, maskF, maskI, maskL, maskS, negate, overlap, setAdaptive, setClosed, setFillFactor, setMeshSize, setNegated, setUnc, showMesh
angle, axAngle, axDistance, axOffset, convert, distance, findFrame, format, getActiveUnit, getAlignSystem, getBottom, getDigits, getDigits, getDirection, getDomain, getDut1, getEpoch, getFormat, getLabel, getMatchEnd, getMaxAxes, getMinAxes, getNaxes, getNormUnit, getObsLat, getObsLon, getPermute, getPreserveAxes, getSymbol, getSystem, getTitle, getTop, getUnit, intersect, norm, offset, offset2, permAxes, pickAxes, resolve, setActiveUnit, setAlignSystem, setBottom, setDigits, setDigits, setDirection, setDomain, setDut1, setEpoch, setEpoch, setFormat, setLabel, setMatchEnd, setMaxAxes, setMinAxes, setObsLat, setObsLon, setPermute, setPreserveAxes, setSymbol, setSystem, setTitle, setTop, setUnit, unformat
decompose, getInvert, getNin, getNout, getReport, getTranForward, getTranInverse, invert, linearApprox, mapBox, mapSplit, rate, rebin, rebinD, rebinF, rebinI, resample, resampleB, resampleD, resampleF, resampleI, resampleL, resampleS, setInvert, setReport, simplify, tran1, tran2, tranGrid, tranN, tranP
annul, clear, copy, delete, equals, finalize, getAstConstantI, getB, getC, getD, getF, getI, getID, getIdent, getL, getNobject, getObjSize, getRefCount, hashCode, isThreaded, reportVersions, sameObject, set, setB, setC, setD, setF, setI, setID, setIdent, setL, show, test, tune
public Polygon(Frame frame, int npnt, double[] xcoords, double[] ycoords, Region unc)
The Polygon class implements a polygonal area, defined by a collection of vertices, within a 2-dimensional Frame. The vertices are connected together by geodesic curves within the encapsulated Frame. For instance, if the encapsulated Frame is a simple Frame then the geodesics will be straight lines, but if the Frame is a SkyFrame then the geodesics will be great circles. Note, the vertices must be supplied in an order such that the inside of the polygon is to the left of the boundary as the vertices are traversed. Supplying them in the reverse order will effectively negate the polygon.
Within a SkyFrame, neighbouring vertices are always joined using the shortest path. Thus if an edge of 180 degrees or more in length is required, it should be split into section each of which is less than 180 degrees. The closed path joining all the vertices in order will divide the celestial sphere into two disjoint regions. The inside of the polygon is the region which is circled in an anti-clockwise manner (when viewed from the inside of the celestial sphere) when moving through the list of vertices in the order in which they were supplied when the Polygon was created (i.e. the inside is to the left of the boundary when moving through the vertices in the order supplied).
frame
- A pointer to the Frame in which the region is defined. It must
have exactly 2 axes. A deep copy is taken of the supplied Frame.
This means that any subsequent changes made to the Frame using the
supplied pointer will have no effect the Region.npnt
- The number of points in the Region.xcoords
- npnt
-elementycoords
- npnt
-elementunc
- An optional pointer to an existing Region which specifies the
uncertainties associated with the boundary of the Box being created.
The uncertainty in any point on the boundary of the Box is found by
shifting the supplied "uncertainty" Region so that it is centred at
the boundary point being considered. The area covered by the
shifted uncertainty Region then represents the uncertainty in the
boundary position. The uncertainty is assumed to be the same for
all points.
If supplied, the uncertainty Region must be of a class for which all instances are centro-symetric (e.g. Box, Circle, Ellipse, etc.) or be a Prism containing centro-symetric component Regions. A deep copy of the supplied Region will be taken, so subsequent changes to the uncertainty Region using the supplied pointer will have no effect on the created Box. Alternatively, a NULL Object pointer may be supplied, in which case a default uncertainty is used equivalent to a box 1.0E-6 of the size of the Box being created.
The uncertainty Region has two uses: 1) when the astOverlap function compares two Regions for equality the uncertainty Region is used to determine the tolerance on the comparison, and 2) when a Region is mapped into a different coordinate system and subsequently simplified (using astSimplify), the uncertainties are used to determine if the transformed boundary can be accurately represented by a specific shape of Region.
AstException
- if an error occurred in the AST libraryCopyright © 2025 Central Laboratory of the Research Councils. All Rights Reserved.